ENTWURF, AUFBAU UND OPTIMIERUNG EINES PEM-BRENNSTOFFZELLENSYSTEMS ZUR HAUSENERGIEVERSORGUNG MIT DAMPFREFORMER

Von der Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau der Universität Duisburg-Essen zur Erlangung des akademischen Grades

DOKTOR-INGENIEUR

genehmigte Dissertation

von
Dipl. Ing. Hendrik Brandt
aus
Essen

Referentin: Prof. Dr. rer nat Angelika Heinzel
Korreferent: Apl. Prof. Dr.-Ing. habil. Gerhard Krost
Tag der mündlichen Prüfung 17.05.2006
VORWORT

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Energie- und Umweltverfahrenstechnik der Universität Duisburg-Essen.

Mein besonderer Dank gilt Frau Prof. Dr. rer. nat. Angelika Heinzel, der Inhaberin des Lehrstuhls für Energietechnik für die Betreuung dieser Arbeit und Herrn Prof. Krost Inhaberin des Lehrstuhls für Elektrische Anlagen und Netze an der Universität Duisburg Essen für die Übernahme des Korreferats und seine Unterstützung.

Für die fortdauernde Unterstützung, Rücksicht und Motivation bedanke ich mich bei meinen Freunden und bei meiner Familie sowie bei Herrn Dr. J. Karthaus und Herrn Dr. W. Benz für deren Expertisen.

Duisburg, Juli 2006 Hendrik Brandt
INHALTSVERZEICHNIS

1 Einleitung .. 1-1

1.1 Zur Brennstoffzelle .. 1-1

1.2 Ziel der Arbeit .. 1-2

1.3 Struktureller Überblick .. 1-4

2 Einführung in die Grundlagen der Brennstoffzellensysteme 2-1

2.1 Brennstoffzellen .. 2-3

2.2 Wasserstoffergzeugungsverfahren .. 2-12

2.2.1 Dampfreformierung .. 2-13

2.3 Peripherie von Brennstoffzellensystemen ... 2-17

2.3.1 Eduktaufbereitung ... 2-17

2.3.1.1 Sauerstoffversorgung des Systems .. 2-17

2.3.1.2 Wasseraufbereitung .. 2-18

2.3.1.3 Wasserstoffqualität .. 2-19

2.3.2 Gasreinigung ... 2-22

2.3.2.1 Schwefel .. 2-22

2.3.2.2 Kohlenmonoxid .. 2-23

2.3.2.3 Ammoniak (NH₃) ... 2-25

2.3.3 Die Umrichtereinheit ... 2-25

2.3.4 Kriterien für Pumpen, Ventile und andere Peripheriekomponenten. 2-28

2.3.5 Steuerung ... 2-30

2.4 Anodenabgasnutzung ... 2-31

2.4.1 Flammformen ... 2-32

2.4.2 Flammenionisation ... 2-39

2.4.3 Schadstoffbildungsmechanismen in der Brennerflamme 2-41

2.4.4 Brennertypen ... 2-44

2.5 Wirkungsgraddefinitionen im Brennstoffzellensystem und ihre Auswirkungen ... 2-46
2.6 Überblick über die Brennstoffzellensysteme .. 2-51

3 Vermessung und Optimierung eines Dampfreformers 3-1
3.1 Ursprüngliche Parameter des Dampfreformers 3-1
3.1.1 Erstmalige Vermessung des Dampfreformers 3-5
3.1.2 Entwicklungsziele (Soll) ... 3-11
3.2 Weiterentwicklungen und Optimierungen des Dampfreformers ... 3-13
3.2.1 Hülle und Isolierung ... 3-13
3.2.2 Anodenabgasrückführung / Brenner 3-17
3.2.3 Gasfeinreinigung ... 3-25
3.2.4 Vermessung und dynamisches Verhalten des optimierten Systems 3-29

4 Vermessung des Brennstoffzellenstapels des Systems 4-1
4.1 Aufbau und Eigenschaften des PM-Brennstoffzellenstapels 4-2
4.2 Vermessung des Zellstapels ... 4-5
4.2.1 Vermessung mit reinem Wasserstoff 4-7
4.2.2 Dynamik der Zellen .. 4-11
4.2.3 Vermessung mit synthetischem Reformatgas 4-14
4.2.4 Einfluss des Air-Bleed auf die Zellleistung 4-16

5 Verschaltung der Systemkomponenten .. 5-1
5.1 Entwicklung des Systemplans ... 5-1
5.2 Aufbau des Laborsystems .. 5-6
5.2.1 Prozesskette ... 5-7
5.2.2 Steuerung des Laborsystems ... 5-8
5.2.3 Geschlossener Systemkreislauf mit Rückführung und Steuerung 5-20
5.2.4 Abschätzung der Systemverluste und des erreichbaren Wirkungsgrades .. 5-27
5.3 Entwicklungsziele und Optimierungspotential 5-36

6 Systemoptimierung ... 6-1
6.1 Reformerneuenteilung .. 6-1
6.2 Zelldefinition .. 6-3
6.3 Peripherie, MSR und Sicherheit .. 6-3
6.4 Verschaltung .. 6-5
7 Zusammenfassung und Ausblick .. 7-1

Anhang A: Brennraummodulation ... a-1
Anhang B: Erläuterung der Gleichungen zur Steuerung des Systems b-1
Anhang C: Sicherheitstechnischer Anhang ... c-1
Anhang D: Peripheriekomponenten ... d-1
Anhang E: Betriebsstrategien für das Gesamtsystem .. e-1
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Abbildung 2-1: Schematische Darstellung eines Brennstoffzellengesamtsystems</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abbildung 2-2: Reaktionen in den Elektrolyten der Brennstoffzellentypen [BZNRW]</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-3: Strom-Spannungskennlinie einer Brennstoffzelle [Ledjeff01]</td>
<td>2-9</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-4: Anordnung der Komponenten in einem Brennstoffzellenstapel [Pehnt02]</td>
<td>2-11</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-5: Thermodynamische Gleichgewichtsrechnung für die Dampfreformierung und für die Wasser-Gas-Shift-Reaktion</td>
<td>2-15</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-6: Zusammenhang von Umsatz, $P_{\text{th,Ref}}/P_{\text{th,Br}}$ und dem Wasserstoffwirkungsgrad</td>
<td>2-16</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-7: Schematischer Aufbau einer Umrichtereinheit</td>
<td>2-26</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-8: Prinzip Schaltung eines Hochsetzstellers</td>
<td>2-26</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-9: IGBT-Wechselrichter-Brücke</td>
<td>2-27</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-10: Anforderungen an Komponenten eines Brennstoffzellensystems</td>
<td>2-29</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-11: Interne thermische Anodenabgasrückführung</td>
<td>2-31</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-12: Externe thermische Anodenabgasrückführung</td>
<td>2-32</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-13: Flammgeometrie und Geschwindigkeiten am Brenner [Renz04]</td>
<td>2-33</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-14: Stabilitätsbereich einer laminaren Erdgasflamme [Renz04]</td>
<td>2-34</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-15: Flammgeschwindigkeit in H_2–Luft Gemischen von der Zusammensetzung des unverbrannten Gases für $p = 1$ bar, $T_u = 298$ K [Warnatz01]</td>
<td>2-35</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-16: Konzentrationsabhängigkeit von v_L in verschiedenen Brennstoff – Luft - Gemischen für $p = 1$ bar, $T_u = 298$ K [Warnatz01]</td>
<td>2-35</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-17: Druck- und Temperaturabhängigkeit der Flammgeschwindigkeit für $T_u = 298$ K (links) und für $p_a = 1$ bar (rechts) in stöchiometrischen CH$_4$–Luft Gemischen [Warnatz01]</td>
<td>2-36</td>
</tr>
<tr>
<td></td>
<td>Abbildung 2-18: Quantitative Abhängigkeit der turbulenten</td>
<td></td>
</tr>
</tbody>
</table>
Flammgeschwindigkeit \(v_f \) von der Turbulenzintensität \(v' \)
[Warnatz01] .. 2-37

Abbildung 2-19: Reaktionsflusschema der Flammonisation nach
Goodings, Bohme und Sugden [Rusche01] .. 2-40

Abbildung 2-20: Qualitativer Verlauf der CO Konzentration über der
Luftzahl \(\lambda \) [Merker99] ... 2-44

Abbildung 2-21: Energieflüsse am Brennstoffzellensystem 2-49

Abbildung 3-1: Stationäre Messpunkte am Reformersystem nach
[Mathiak03] ... 3-3

Abbildung 3-2: Zeitlicher Kohlenmonoxid- und Methanverlauf bei
Lastsprünge im Dampfreformer [Mathiak03] .. 3-4

Abbildung 3-3: Versuchstand zur Vermessung des Dampfreformers .. 3-5

Abbildung 3-4: Schematischer Aufbau des Reformerteststandes zur
Vermessung des Dampfreformers .. 3-6

Abbildung 3-5: Thermographieaufnahme der Reformergeometrie 3-8

Abbildung 3-6: Auswirkung der Variation der Reformerbrennerfußposition
auf den Wirkungsgrad des Dampfreformers .. 3-9

Abbildung 3-7: Einfluss des S/C-Verhältnisses auf die
Gleichgewichtslage (wasserfrei, 1 bar; dargestellt sind
S/C-Verhältnisse von 1 – 4)[Wriske98] .. 3-10

Abbildung 3-8: Anfängliche Konzentrationen und Wirkungsgrad am
Dampfreformer (inkl. der berechneten Standardabweichung) 3-11

Abbildung 3-9: Draufsicht und Seitenansicht der Reformerhülle .. 3-15

Abbildung 3-10: Vermessung des Reformers mit neuer Hülle und neuer
Isolierung (inkl. Standardabweichungen) ... 3-16

Abbildung 3-11: Schematischer Aufbau des im Reformer verwendeten
Zündbrenners .. 3-17

Abbildung 3-12: Originaler und modifizierter Brennerfuß mit Düsen .. 3-19

Abbildung 3-13: Vergleich von Erdgas- und Stadtgasdrallscheibe 3-19

Abbildung 3-14: Vergleich der Flammbilder der Stadtgasdrallscheibe und
der Erdgasdrallscheibe bei gleichen Bedingungen. 3-20

Abbildung 3-15: Einfluss der Drallscheibe auf die \(\text{NO}_x \)-Bildung 3-21

Abbildung 3-16: Einfluss der Drallscheibe auf die CO-Bildung 3-21

Abbildung 3-17: Temperaturverteilung entlang der Reformergeometrie bei
verschiedenen Brennerpositionen und Brenngasen mit
der Stadtgasdrallscheibe ... 3-23

Abbildung 3-18: CO und NOX-Immissionen des Brenners bei Betrieb mit
Anodenabgasrückführung .. 3-24
Abbildung 3-19: Die wassergekühlte SelOx. 3-27
Abbildung 3-20: Dauerbetrieb von SelOx und Reformer 3-28
Abbildung 3-21: Integration der wassergekühlten SelOx in den Kühlwasserkreislauf .. 3-28
Abbildung 3-23: Lastsprung des Reformers im Methanbetrieb von 30 % - 100 % ... 3-32
Abbildung 3-24: Lastsprung des Reformers im Methanbetrieb von 100 % - 30 % ... 3-33
Abbildung 3-25: Umsatzverhalten des SelOx-Katalysators bei verschiedenen Luftzahlen, Temperaturen und Raumgeschwindigkeiten .. 3-33
Abbildung 4-1: Draufsicht und Seitenansicht der PEM-Brennstoffzellenstapel ... 4-4
Abbildung 4-2: Schematischer Aufbau des PEM-Zellstapels 4-5
Abbildung 4-3: Schematische Darstellung des Versuchstandes zur Vermessung der PEM-Brennstoffzellenstapel 4-7
Abbildung 4-4: Spannungs- und Leistungskurven bei verschiedenen Temperaturen ... 4-8
Abbildung 4-5: Variation der Luftzahl λ zur Bestimmung der maximalen elektrischen Leistung .. 4-9
Abbildung 4-6: Leistung des Zellstapels in Abhängigkeit von der Wasserstoffeintrittstemperatur ($T_{AG}=60^\circ C$; GNG=0,8; $\lambda = 2$) .. 4-10
Abbildung 4-7: Strom-Spannungs-Kurve des PEM-Brennstoffzellenstapels bei einem Nutzungsgrad von 0,5 und einer Luftzahl von 2 bei 58°C ... 4-11
Abbildung 4-8: Sprungantwort (50 A – 65 A) von Temperatur und Spannung ... 4-12
Abbildung 4-9: Einzelzellspannung während des Lastsprungs von 50 A – 65 A ... 4-13
Abbildung 4-10: Sprungantwort (75 A – 57 A) von Temperatur und Spannung ... 4-14
Abbildung 4-11: Zellspannung und Leistungsdichte in Abhängigkeit von der Stromdichte bei verschiedenen Anodengaszusammensetzungen .. 4-16
Abbildung 4-12: Einfluss des Air-Bleeds und des Kohlenmonoxids auf die
Abbildung 4-13: Ermittlung des optimalen Air-Bleed-Volumenstroms........ 4-18
Abbildung 5-1: Vereinfachte Energiebilanz im Brennraum.................. 5-3
Abbildung 5-2: Skizze des Systementwurfs für das $1\,\text{kW}_{el}$
Brennstoffzellensystem.. 5-6
Abbildung 5-3: Vergleich der Vermessung der Brennstoffzelle mit
synthetischem und mit realem Reformatgas......................... 5-8
Abbildung 5-4: Schema der Regelstruktur 1................................... 5-15
Abbildung 5-5: Schema der 2. Regelstruktur.................................. 5-15
Abbildung 5-6: Zellreaktion ($P_{el,Ist}$ und $U_{\text{min,Ist}}$) auf Lastsprung und
Störung in der Zellluftzufuhr bei unterschiedlichen
Zelllasten mit der Regelungsstruktur 2 und einem PID-
Regler ($k_P = -60; T_I = 0,002; T_D = 0,001$)....................... 5-16
Abbildung 5-7: Prinzipieller Ablauf eines rampengesteuerten
Lastwechsels... 5-17
Abbildung 5-8: Daten- und Steuerungsfenster der Systemsteuerung...... 5-19
Abbildung 5-9: Vereinfachte schematische Darstellung des
Gesamtsystemversuchstandes.. 5-21
Abbildung 5-10: Gesamtsystem Versuchstand mit Steuerung, Gasanalyse
und Stromsenke.. 5-22
Abbildung 5-11: Wirkungsgrade des Gesamtsystems über den Lastbereich. 5-23
Abbildung 5-12: Vermessung des Reformers mit Anodenabgas im
Laborsystem.. 5-24
Abbildung 5-13: Aktionen beim Lastwechsel von 30 % auf 100 % mit
synthetischem Anodenabgasbetrieb.. 5-25
Abbildung 5-14: Reaktionen beim Lastwechsel von 30 % auf 100 % mit
synthetischem Anodenabgasbetrieb.. 5-26
Abbildung 5-15: Energieflussdiagramm am Brennstoffzellensystem....... 5-30
Abbildung 5-16: Darstellung der Energieverteilung im System.............. 5-34
Abbildung 6-1: Entwurf des eines verbesserten 2,5 kW_{th}-Dampfreformers... 6-2
Abbildung 6-2: Entwurf des verfahrenstechnischen Systemsplans für die
nächste Entwicklungsstufe des Brennstoffzellensystems....... 6-6
Abbildung E-1: Programmablaufschema für die Steuerung des
Gesamtsystems... e-4
Abbildung E-2: Blockschaltplan des Systems für das Abfahren............... e-7
Abbildung E-3: Schematische Vorgehensweise beim Erhöhen des
Lastpunktes des Dampfreformers... e-9
Abbildung E-4: Lasterhöhung des Systems .. e-10
Abbildung E-5: Lastreduzierung des Reformer und der Zelle e-11
Abbildung E-6: Manueller Systemstart .. e-12
Abbildung E-7: Blockschaltplan eines Systemstarts e-14
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 2-1: Übersicht über die Brennstoffzellentypen</td>
<td>2-5</td>
</tr>
<tr>
<td>Tabelle 2-2: Anwendungsbereiche der Brennstoffzellen</td>
<td>2-7</td>
</tr>
<tr>
<td>Tabelle 2-3: Wasserstoffergzeugungsverfahren</td>
<td>2-13</td>
</tr>
<tr>
<td>Tabelle 2-4: Anforderungen an salzfreies Speisewasser für Durchlaufkessel nach TRD 611</td>
<td>2-19</td>
</tr>
<tr>
<td>Tabelle 2-5: Wasseraufbereitungsverfahren [Benz00]</td>
<td>2-19</td>
</tr>
<tr>
<td>Tabelle 2-6: Brennstoffzellentypen und ihre Anforderungen an das Eduktgas [Weind96]</td>
<td>2-21</td>
</tr>
<tr>
<td>Tabelle 2-7: Beurteilung und Vergleich der Entschwefelungsverfahren</td>
<td>2-23</td>
</tr>
<tr>
<td>Tabelle 2-8: Gängige Shift-Typen, -katalysatoren und Temperaturbereiche</td>
<td>2-24</td>
</tr>
<tr>
<td>Tabelle 2-9: CO-Gasfeinreinigungsverfahren</td>
<td>2-24</td>
</tr>
<tr>
<td>Tabelle 2-10: Brenntypen [Rudolph00]</td>
<td>2-45</td>
</tr>
<tr>
<td>Tabelle 3-1: Betriebsparameter des Dampfreformers</td>
<td>3-7</td>
</tr>
<tr>
<td>Tabelle 3-2: Emissionsgrenzwert verschiedener Gesetze und Verordnungen für gasbfeuerte Heizkessel</td>
<td>3-18</td>
</tr>
<tr>
<td>Tabelle 4-1: Eigenschaften des PEM-Brennstoffzellenstapels</td>
<td>4-2</td>
</tr>
<tr>
<td>Tabelle 5-1: Parametervariation am Rückgeführten System</td>
<td>5-28</td>
</tr>
<tr>
<td>Tabelle 5-2: Verteilung der Verluste am Gesamtsystem gemäß der Parametervariation</td>
<td>5-29</td>
</tr>
<tr>
<td>Tabelle 5-3: Energiebilanz am Reformer bezogen auf den Brennwert</td>
<td>5-31</td>
</tr>
<tr>
<td>Tabelle 5-4: Wärmeproduktion in der SelOx bei Volllast</td>
<td>5-31</td>
</tr>
<tr>
<td>Tabelle 5-5: Energiebilanz am Zellstapel bezogen auf den Heizwert</td>
<td>5-32</td>
</tr>
<tr>
<td>Tabelle 5-6: Energiebilanz des Gesamtsystems ohne elektrische Verbraucher bezogen auf den Heizwert</td>
<td>5-33</td>
</tr>
<tr>
<td>Tabelle 5-7: Abschätzung der elektrischen Verluste</td>
<td>5-33</td>
</tr>
<tr>
<td>Tabelle 5-8: Leistungsbilanz mit Abschätzung des Verbesserungspotentials des Gesamtsystems</td>
<td>5-35</td>
</tr>
<tr>
<td>Tabelle 6-1: Sensorik im Vorserienmodell</td>
<td>6-4</td>
</tr>
<tr>
<td>Tabelle C-1: Normen und Regeln mit Relevanz für das Brennstoffzellenheizgerät</td>
<td>c-2</td>
</tr>
</tbody>
</table>
NOMENKLATUR

Symbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fläche</td>
</tr>
<tr>
<td>AB</td>
<td>Air-Bleed-Volumenstrom</td>
</tr>
<tr>
<td>C₁₂</td>
<td>Strahlungsaustauschzahl</td>
</tr>
<tr>
<td>cₚ</td>
<td>Spez. Isobare Wärmekapazität</td>
</tr>
<tr>
<td>e</td>
<td>Elementarladung</td>
</tr>
<tr>
<td>F</td>
<td>Faradaysche Konstante</td>
</tr>
<tr>
<td>G</td>
<td>Freie Enthalpie</td>
</tr>
<tr>
<td>h</td>
<td>Spezifische Enthalpie</td>
</tr>
<tr>
<td>H</td>
<td>Enthalpie</td>
</tr>
<tr>
<td>I</td>
<td>Stromstärke</td>
</tr>
<tr>
<td>k</td>
<td>Reaktionsgeschwindigkeitskonstante</td>
</tr>
<tr>
<td>M</td>
<td>Molmasse</td>
</tr>
<tr>
<td>m</td>
<td>Masse</td>
</tr>
<tr>
<td>n</td>
<td>Stoffmenge</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>Nₐ</td>
<td>Avogadro Konstante</td>
</tr>
<tr>
<td>p</td>
<td>Druck</td>
</tr>
<tr>
<td>P</td>
<td>Leistung</td>
</tr>
<tr>
<td>Q</td>
<td>Wärme</td>
</tr>
<tr>
<td>Q̇</td>
<td>Wärmestrom</td>
</tr>
<tr>
<td>R</td>
<td>Allgemeine Gaskonstante</td>
</tr>
<tr>
<td>R</td>
<td>Ohmscher Widerstand</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds Zahl</td>
</tr>
<tr>
<td>S</td>
<td>Entropie</td>
</tr>
<tr>
<td>t</td>
<td>Zeit</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
</tr>
<tr>
<td>U</td>
<td>Spannung</td>
</tr>
<tr>
<td>u</td>
<td>Umsatz</td>
</tr>
<tr>
<td>v</td>
<td>Geschwindigkeit</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
</tr>
<tr>
<td>Ṽ</td>
<td>Volumenstrom</td>
</tr>
<tr>
<td>X</td>
<td>Konzentration</td>
</tr>
<tr>
<td>y</td>
<td>Koordinate</td>
</tr>
<tr>
<td>Z</td>
<td>Zellenzahl</td>
</tr>
<tr>
<td>Δ</td>
<td>Differenz</td>
</tr>
<tr>
<td>η</td>
<td>Wirkungsgrad</td>
</tr>
<tr>
<td>λ</td>
<td>Luftzahl</td>
</tr>
</tbody>
</table>

Tiefgestellte Indizes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Standardzustand</td>
</tr>
<tr>
<td>AA</td>
<td>Anodenabgas</td>
</tr>
<tr>
<td>AB</td>
<td>Airbleed</td>
</tr>
<tr>
<td>AC</td>
<td>Wechselstrom</td>
</tr>
<tr>
<td>aus</td>
<td>Austretend</td>
</tr>
<tr>
<td>BG</td>
<td>Brenngas</td>
</tr>
<tr>
<td>Br.</td>
<td>Brenner</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Zur Brennstoffzelle

Das Prinzip der Brennstoffzelle wurde 1839 von Sir William Robert Grove (1811-1896) untersucht und dokumentiert. In einer Brennstoffzelle reagieren kontinuier-
lich Wasserstoff und Sauerstoff an einem Katalysator kontrolliert zu Wasser. Bei dieser Reaktion werden durch den Elektronenübergang mit hohem Wirkungsgrad Strom und Wärme erzeugt. Wasserstoff ist zwar das häufigste Element im Universum, aber auf der Erde gibt es so gut wie keine natürlichen Wasserstoffvorkommen. Daher gehört der Prozess der Wasserstoffgewinnung immer zu einem Brennstoffzellengesamtsystem mittelbar oder unmittelbar dazu, auch wenn im System nur Wasserstoff in entsprechenden Tanks gespeichert wird.

1.2 Ziel der Arbeit

Über 30% der Endenergie wird in privaten Haushalten verbraucht [BMWA03]. Der Verbrauch an Endenergie ist in Haushalten höher als der Energieverbrauch des Verkehrs oder der Industrie. Der Bereich Hausenergieversorgung stellt daher einen großen Massenmarkt da.

Brennstoffzellensystem bietet sich für die Hausenergieversorgung an, da die in der Zelle neben dem Strom produzierte Wärme zum Heizen (Kraft-Wärme-Kopplung) des Gebäudes genutzt werden kann. Ein solches System ist sehr effizient.
Kapitel 1 Einleitung

und kann als Mikrokraftwerk betrachtet werden. In anderen Anwendungen (z.B. Mobileanwendungen) muss die produzierte Wärme aufwändig abgeführt werden. Bei den Hausenergiesystemen ist der Kostendruck durch die existierende Technologie nicht so groß wie z.B. in der Automobilindustrie, er ist jedoch immer noch erheblich. Man geht davon aus, dass ein System mit einem elektrischen Wirkungsgrad von ca. 30 % bei einem Preis von etwa 1500 Euro/kW wirtschaftlich ist. Eine besondere Herausforderung für Brennstoffzellensysteme zur Hausenergieversorgung stellt die zu erreichende Lebensdauer von ca. 5 Jahren dar, die nötig ist um mit der bestehenden Heizkesseltechnologie mithalten zu können.

Aus der Literatur z.B. [Ledjeff-Hey] ist des Weiteren bekannt, dass etwa 1 kW\textsubscript{el} Leistung benötigt wird um die Grundlast (ca. 400 W – 1000 W) eines mittleren Einfamilienhauses zu decken. Diese Arbeit beschreibt die Entwicklung eines Brennstoffzellensystems das den Grundbedarf eines Einfamilienhauses an Strom und Wärme decken kann.

Als Wasserstofflieferant für ein solches System bietet sich in Hinblick auf eine fehlende Wasserstoffinfrastruktur Erdgas an. Erdgas ist ein schwefelarmer Energieträger, der auf Grund seines niedrigen H/C-Verhältnisses (Anzahl der Wasserstoffmoleküle pro Kohlenstoffmolekül) eine große Energiedichte und eine geringe Umwelt- bzw. CO\textsubscript{2}-belastung aufweist. Hinzu kommt, dass die Mehrheit der deutschen Haushalte an das Gasnetz angeschlossen ist.

Kapitel 2 soll einen Überblick über Brennstoffzellensysteme und ihre Komponenten geben. Dabei werden vor allem die Themen intensiv behandelt, die für die Entwicklung des hier vorgestellten Brennstoffzellensystems von besonderem Interesse sind. Die Vorstellung von aktuellen Brennstoffzellenprodukten, Entwicklungs- oder Demonstrationsobjekten soll den Stand der Entwicklung dokumentieren und aufzeigen, in welchen Märkten mit dem Durchbruch der Brennstoffzellentechnologie zu rechnen ist und wie die Randbedingungen die Auswahl der Komponenten beeinflussen.

Nachdem die Eigenschaften der Hauptkomponenten bekannt sind, werden Dampfreformer und Zellstapel schrittweise miteinander gekoppelt. Dafür wird zunächst ein Systemplan für das 1kW\textsubscript{el.} Brennstoffzellensystem entworfen, der dann schrittweise realisiert wird. Um das so entstandene System vermessen zu können wird ein entsprechender Versuchstand mit einer Systemsteuerung aufgebaut. Die Systemsteuerung kann als eine eigenständige Komponente des Brennstoffzellensystems betrachtet werden. Sie ist für Betrieb und Sicherheit des
Kapitel 2: Einführung in die Grundlagen der Brennstoffzellensysteme

Wasserstoff kann mit elektrischem Strom der aus regenerativen Energie Quellen, z.B. Solarenergie, gewonnen wurde mittels Elektrolyse besonders umweltfreundlich aus Wasser erzeugt werden. Da die Elektrolyse verlustbehaftet ist, macht dies jedoch nur Sinn, wenn die regenerativ gewonnene Energie nicht direkt verwendet werden kann. Beim Einsatz von Wasserstoff aus regenerativen Energiequellen emittiert ein Brennstoffzellensystem nur Wasser bzw. Wasserdampf. Es gibt jedoch auch Untersuchungen, die vor den Auswirkungen des in der Atmosphäre freigesetzten Wasserstoffs und des von der Zelle produzierten Wasserdampfs auf das Klima und auf das ökologische Gleichgewicht warnen [Schnei03], wenn die Energieversorgung weitgehend auf Brennstoffzellensysteme umgestellt wird.

Brennstoffzellensysteme bieten auf Grund ihrer hohen Effizienz Energieeinsparungspotential und können so die Umwelt schützen und die Kosten für den Betreiber senken. Das Kostenreduktionspotential besteht allerdings nur, wenn die Systeme in ihrer Anschaffung nicht wesentlich teurer als die derzeit am Markt befindliche Technik bzw. entsprechend effizienter sind.

Abbildung 2-1 gibt einen Überblick über den prinzipiellen Aufbau von Brennstoffzellensystemen. Die dort abgebildeten Komponenten und verfahrenstechnischen Schritte sind prinzipiell in jedem Brennstoffzellensystem zu finden.

Abbildung 2-1: Schematische Darstellung eines Brennstoffzellengesamtsystems

Das Rohedukt, ein Gemisch aus wasserstoffreichen Molekülen, wird so aufbereitet, dass es keine Komponenten mehr enthält, die die nachfolgenden Prozessschritte schädigen können. Anschließend wird der Wasserstoff von den anderen Komponenten des Moleküls (Beispielweise vom Kohlenstoff bei Kohlenwasser-
stoffen) mit Hilfe eines entsprechenden Reinigungsschrittes getrennt. Nach einer oder mehreren Reinigungsstufen, die entsprechend den Anforderungen der Brennstoffzelle Schadstoffe entfernen, wird der Wasserstoff oder das wasserstoffreiche Gasgemisch auf die Zelle geleitet.

In der Brennstoffzelle reagiert der Wasserstoff mit Sauerstoff in einer so genannten kalten Verbrennung zu Wasser. Dabei entsteht Strom und Wärme (Die Vorgänge in der Brennstoffzelle sind in Kapitel 2.1 detailliert beschrieben.).

Da die bei der Reaktion auftretende elektrische Spannung für die technische Nutzung nicht ausreicht, werden die Brennstoffzellen elektrisch in Reihe zu Stapeln und diese ggf. zu Clustern zusammengeschaltet. Das Spannungsniveau eines Brennstoffzellenstapels ist neben der Zellenzahl vor allem von der elektrischen Last abhängig, die am Stapel anliegt. Die vom Brennstoffzellenstapel erzeugte Spannung wird mit Hilfe eines elektrischen Wandlers, dem Hochsetzsteller, auf ein konstantes Spannungsniveau gebracht und ggf. mittels eines Wechselrichters in Wechselstrom umgewandelt und dem Netz bzw. den Verbrauchern zur Verfügung gestellt. Hochsetzsteller und Wechselrichter werden in einer Einheit auch als Umrichter bezeichnet.

Die Wärme wird über einen Wärmetauscher ausgekoppelt und wenn möglich für weitere Aufgaben wie z.B.: zum Heizen eines Hauses eingesetzt.

In mobilen Anwendungen ist die Wasserstofferzeugung oft vom System getrennt. Der produzierte Wasserstoff wird dann entweder als Druckwasserstoff, Flüssigwasserstoff oder an Metallhydriden gebunden gespeichert.

2.1 Brennstoffzellen

Die in Brennstoffzellen ablaufende chemische Reaktion wird oft auch als kalte Verbrennung bezeichnet. Sie stellt eine Umkehrung der Elektrolyse von Wasser dar. Der Zelle werden an der Anode Wasserstoff oder ein wasserstoffhaltiges
Kapitel 2: Einführung in die Grundlagen der Brennstoffzellensystem

Am Katalysator der Kathode verbindet sich der Sauerstoff exotherm mit den Elektronen und den Protonen zu einem neuen Wassermolekül. In der Brennstoffzelle läuft also eine Redoxreaktion ($\Delta_R G<0$, spontane Reaktion) ab. An der Kathode findet die Reduktion und an der Anode die Oxidation statt. Die Elektronen der Oxidation werden über einen externen Stromkreis von der Anode zur Kathode geleitet. Dieser Strom kann genutzt werden. Abbildung 2-2 stellt diesen Vorgang für die verschiedenen Brennstoffzellentypen im Überblick dar.

Abbildung 2-2: Reaktionen in den Elektrolyten der Brennstoffzellentypen [BZNRCW]
Kapitel 2 Einführung in die Brennstoffzellensysteme

Tabelle 2-1: Übersicht über die Brennstoffzellentypen

<table>
<thead>
<tr>
<th>Name</th>
<th>Niedertemperatur Brennstoffzellen (BZ)</th>
<th>Hochtemperatur Brennstoffzellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AFC alkalische BZ</td>
<td>PEMFC Polymerlektrolyt Membran BZ</td>
</tr>
<tr>
<td>Betriebs-temperatur</td>
<td>70 °C - 85 °C</td>
<td>50 °C - 80 °C</td>
</tr>
<tr>
<td>Elektrolyt</td>
<td>Kalilauge 30% KOH</td>
<td>Polymermembrane</td>
</tr>
<tr>
<td>Elektrode</td>
<td>Ni (Anode) / Ag (Kathode)</td>
<td>Kohlenstoff (Pt, Ru)</td>
</tr>
<tr>
<td>Oxidant</td>
<td>Sauerstoff</td>
<td>Wasserstoff, Luft</td>
</tr>
<tr>
<td>Brenngas</td>
<td>Wasserstoff</td>
<td>Wasserstoff, Reformatgas</td>
</tr>
<tr>
<td>Reaktion Anode</td>
<td>H₂ + 2OH → 2H₂O + 2e</td>
<td>H₂ → 2H⁺ + 2e</td>
</tr>
<tr>
<td>Reaktion Kathode</td>
<td>H₂O + ½O₂ + 2e → 2OH</td>
<td>2H⁺ + 2e + ½O₂ → H₂O</td>
</tr>
<tr>
<td>Wirkgrad BZ/System</td>
<td>60-70% / ~ 60 %</td>
<td>50-60% / 30-45%</td>
</tr>
<tr>
<td>Schadstoffgrenzen</td>
<td>S < 1ppm</td>
<td>S < 1ppm</td>
</tr>
<tr>
<td>[Krabbe01]</td>
<td>CO₂ < 1ppm</td>
<td>CO < 10-100 ppm</td>
</tr>
</tbody>
</table>
Die Brennstoffzellentypen weisen zusätzlich unterschiedliche Betriebscharakteristiken auf und können derzeit nur in bestimmten Leistungsklassen sinnvoll bzw. relativ wirtschaftlich gebaut werden. Tabelle 2-2 gibt einen Überblick über diese wichtigen Aspekte für den Einsatz der Brennstoffzellen in entsprechenden Gesamtsystemen.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Leistungsbereich</th>
<th>Anwendungsbereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC</td>
<td>1 W – 100 kW</td>
<td>hauptsächlich Raumfahrt und Militär, gute Dynamik</td>
<td>Aufwändige Gasversorgung</td>
</tr>
<tr>
<td>PEMFC</td>
<td>1 W – 250 kW</td>
<td>mobile und stationäre Anwendungen, gute Dynamik</td>
<td>Nahezu marktreif</td>
</tr>
<tr>
<td>DMFC</td>
<td>1 W – 500 W</td>
<td>mobile Anwendungen Batterieersatz, Elektroantriebe</td>
<td>Nahezu marktreif</td>
</tr>
<tr>
<td>PAFC</td>
<td>50 kW -250 kW</td>
<td>stationäre Anwendungen (BHKW), u. U. Schiffe; Start 3-5 Std.</td>
<td>Entwicklung zurück gestellt</td>
</tr>
<tr>
<td>MCFC</td>
<td>200 kW – 500 kW</td>
<td>stationäre Anwendungen (klein BHKW mit Dampfturbine); Start ca. 1 Tag</td>
<td>Marktreife (z.B. MTU)</td>
</tr>
<tr>
<td>SOFC</td>
<td>1 kW – 1 MW</td>
<td>Stationäre Anwendungen (BHKW mit Gasturbine); geringe Dynamik</td>
<td>Entwicklungsstadium</td>
</tr>
</tbody>
</table>

Im Folgenden werden zunächst die thermodynamischen Grundlagen und die Wirkungsgrade der Brennstoffzellen kurz beschrieben. Für tiefer gehende Informationen zu diesem Thema sei auf [Ledjeff01] und [FCBook00] verwiesen.

Die thermoneutrale Spannung U_{th} einer Zelle bestimmt sich zu

$$U_{th} = -\frac{\Delta H^0}{n \cdot F} = 1.48 \text{ V} \quad \text{Gl. 2-1}$$

mit

$$\Delta H^0 = -285.8 \text{ kJ mol}^{-1} \quad \text{oberer Heizwert des Wasserstoffs bei Normalbedingungen}$$

$n = 2 \quad \text{(Anzahl der beteiligten Elektronen pro H}_2\text{-Molekül)}$ und

$$F = e \cdot N_A \quad \text{Gl. 2-2}$$

mit

$$e = 1.6022 \cdot 10^{-19} \text{ C} \quad \text{(elektrische Ladung eines Elektrons)}$$

$$N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1} \quad \text{(Avogadro-Konstante)}.$$
Die reversible Zellspannung U_{rev}^0 lässt sich mit

$$U_{\text{rev}}^0 = -\frac{\Delta G_0^0}{n \cdot F} = 1,229 \text{ V}$$ \hspace{1cm} \text{Gl. 2-3}$$

bestimmen. Dabei ist $\Delta G_0^0 = -237,3 \frac{\text{kJ}}{\text{mol}}$ die freie Gibsche-Reaktionsenthalpie. ΔG_0^0 ist auch als elektrische Arbeit zu betrachten, die eine Zelle maximal abgeben kann. Im Verhältnis zur Reaktionsenthalpie ΔH_0^0 erhält man den idealen Wirkungsgrad η_{max}:

$$\eta_{\text{max}} = -\frac{\Delta G_0^0}{\Delta H_0^0} = -\frac{U_{\text{rev}}^0 \cdot n \cdot F}{\Delta H_0^0} = 83,3 \%$$ \hspace{1cm} \text{Gl. 2-4}$$

Dieser ideale Wirkungsgrad wird durch Verluste reduziert. Diese führen zu einem Spannungsverlust ΔU. Dieser setzt sich aus der reversiblen Spannungsdifferenz ΔU_{rev} und unterschiedlichen Überspannungen zusammen:

$$\Delta U = \Delta U_{\text{rev}} + \Delta U_D + \Delta U_R + \Delta U_{\text{Diff}}$$ \hspace{1cm} \text{Gl. 2-5}$$

Die Durchtrittsspannung ΔU_D entsteht durch die endliche Geschwindigkeit des Elektronendurchtritts durch die Phasengrenzfläche zwischen Elektrode und Elektrolyt. Die Widerstandsspannung ΔU_R wird hervorgerufen durch ohmsche Verluste und erhöht sich mit zunehmender Stromstärke.

Verantwortlich für die Konzentrationsspannung ΔU_{Diff} ist die Diffusionsüberspannung und die Reaktionsüberspannung. Die Diffusionsüberspannung stellt sich ein, wenn die Reaktionspartner nicht schnell genug zu- bzw. abgeführt werden. Die Reaktionsüberspannung beschreibt den Spannungsverlust durch Reaktionen, die an der Elektrode stattfinden.

In Abbildung 2-3 sind die Überspannungen in einer Strom-Spannungskennlinie schematisch dargestellt.
Kapitel 2 Einführung in die Brennstoffzellensysteme

Abbildung 2-3: Strom-Spannungskennlinie einer Brennstoffzelle [Ledjeff01]

Der Zusammenhang für die reversible Zellspannung zwischen Druck Gl. 2-7 und Temperatur Gl. 2-6 kann über die folgenden Gleichungen beschrieben werden. Wenn das Gas in der Brennstoffzelle als ideales Gas betrachtet werden kann, so gilt die Nernst-Gleichung (Gl. 2-8) für den Zusammenhang zwischen Druck und Temperatur.

Temperaturabhängigkeit:

\[
\left(\frac{\partial U_{\text{rev}}}{\partial T}\right)_p = -\frac{1}{n_e F} \left(\frac{\partial \Delta^R G}{\partial T}\right)_p = \frac{\Delta^R S}{n_e F} < 0 \tag{Gl. 2-6}
\]

Druckabhängigkeit:

\[
\left(\frac{\partial U_{\text{rev}}}{\partial p}\right)_T = -\frac{1}{n_e F} \left(\frac{\partial \Delta^R G}{\partial p}\right)_T = \frac{\Delta^R V}{n_e F} < 0 \tag{Gl. 2-7}
\]

Reversible Zellspannung nach NERNST:

\[
U_{\text{rev}}(T,p) = -\left(\frac{\Delta^R G^0(T^0,p^0)}{2F}\right) - \frac{RT}{n_e F} \ln \left[\frac{p_{H_2} p_{O_2}^{0.5}}{p_{H_2O}} \right] < 0 \tag{Gl. 2-8}
\]

Dabei ist \(\Delta^R G\) die freie Enthalpie.
Aus Gleichung Gl. 2-8 geht hervor, dass U_{rev} mit steigender Temperatur sinkt und mit steigendem Druck zunimmt. Dies gilt jedoch nur im unbelasteten Zustand der Zelle. Unter Last steigt die Spannung mit der Temperatur, da unter Last die Kinetik der Elektrodenreaktionen bestimmend ist. Ist die an die Zelle angelegte Last zu groß, so bricht die Zellspannung zusammen.

Um die Güte einer Brennstoffzelle bestimmen zu können ist die Definition von Wirkungsgraden hilfreich. Allgemein wird unter einem Wirkungsgrad das Verhältnis von Aufwand zu Nutzen verstanden.

Der Spannungswirkungsgrad η_U wird definiert als:

$$\eta_U = \frac{U}{U_{\text{rev}}} \quad \text{Gl. 2-9}$$

Der elektrische Wirkungsgrad η_{el} einer Brennstoffzelle am Arbeitspunkt, ist von Druck, Temperatur und Gasnutzungsgrad abhängig.

$$\eta_{el} = \eta_{\text{max}} \cdot \eta_u = \frac{P_{el}}{\hat{n}_{H_2,\text{um}} \cdot \Delta^\eta h} = \frac{U}{U_{\text{th}}} \quad \text{Gl. 2-10}$$

Der Umsatzwirkungsgrad des Wasserstoffs in der Brennstoffzelle wird oft auch als Gasnutzungsgrad (GNG) oder als Fuel Utilization (FU) bezeichnet und wird definiert als

$$\eta_{um} = \frac{\hat{n}_{H_2,\text{um}}}{\hat{n}_{H_2,\text{ein}}} = \frac{\hat{n}_{H_2,\text{um}}}{\hat{n}_{H_2,\text{ein}}} \quad \text{Gl. 2-11}$$

Das Verhältnis von gewonnener elektrischer Leistung zu in Form von Wasserstoff zugeführter Leistung stellt eine andere Möglichkeit dar den elektrischen Wirkungsgrad der Zelle zu definieren. Diese Definition wird im Folgenden als elektrischer Wirkungsgrad verwendet.

$$\eta_{\text{BZ,el}} = \frac{P_{el}}{\hat{n}_{H_2,\text{ein}} \cdot \Delta^\eta h} = \eta_{\text{ges}} \cdot \eta_{um} \quad \text{Gl. 2-12}$$

Davon lässt sich auch der thermische Wirkungsgrad der Zelle ableiten.

$$\eta_{\text{BZ,th}} = \frac{\dot{Q}}{\hat{n}_{H_2,\text{ein}} \cdot \Delta^\eta h} \quad \text{Gl. 2-13}$$

Da eine einzelne Brennstoffzelle keine technisch verwertbare Spannung liefert, werden wie bereits erwähnt, mehrere Zellen elektrisch in Reihe geschaltet.
(gestapelt, Stapel bedeutet auf Englisch Stack), damit sich die Spannung addiert. Hydraulisch werden die einzelnen Zellen meist parallel durchströmt. Die meisten Brennstoffzellenstapel werden in Plattenbauweise aufgebaut. Nur SOFC-Brennstoffzellen gibt es auch in Röhrenbauweise. Im Folgenden wird der Aufbau von Brennstoffzellen beispielhaft am Aufbau von PEM-Brennstoffzellen beschrieben:

In der bei PEM-Brennstoffzellen verwendeten Plattenbauweise wird der Elektrolyt mit der Elektrode und dem Katalysator (Membran Elektroden Einheit (MEE)) von der Gasdiffusionsschicht (GDS) eingefasst, die das Reaktionsgas an die Membran heranführt.

Um die Komponenten des Brennstoffzellenstapels gasdicht abzuschließen wird der Stapel über die Endplatte mit Zugankern verspannt und Dichtungen in entsprechende Nuten gepresst. Abbildung 2-4 zeigt den schematischen Aufbau der einzelnen Komponenten eines PEM-Brennstoffzellenstapels (ohne Dichtung).

Für den Aufbau des hier zu entwickelnden Brennstoffzellensystems wurde die Polymermembranbrennstoffzelle (PEM-BZ) ausgewählt, da sie über eine hohe Leistungsdichte, eine gute Dynamik, eine vergleichsweise hohe Zuverlässigkeit
und über eine für die Hausenergieversorgung brauchbare Betriebstemperatur verfügt.

Elektrolyt in einer PEM-Brennstoffzelle ist eine perfluorierte, sulfonierte Polymermembran, die im feuchten Zustand protonenleitend ist. Die Membran wird mit der Gasdiffusionsschicht, die auch als Elektrode dient, zur Membran-Elektroden-Einheit (MEE, engl. MEA) verbunden. Auf der Membran oder auf der Elektrode ist der Katalysator, meist Platin oder eine Platinlegierung, aufgebracht.

2.2 Wasserstoff erzeugungsverfahren

Tabelle 2-3 gibt einen Überblick über einige gängige Verfahren zur Gewinnung von Wasserstoff aus Kohlenwasserstoffen.
Für das hier betrachtete System wird die Dampfrefor-
merierung zur Wasserstoff-

erzeugung eingesetzt, da sie über einen guten Wirkungsgrad, einen hohen Was-

serstoffpartialdruck (gut für die Zellperformance) und über ein gut zu regelndes

Betriebsverhalten verfügt.

2.2.1 Dampfrefor-

merierung

Da die Wasserstoffversorgung des hier vorgestellten Brennstoffzella-

ngesamtsystems mittels eines Dampfreformers realisiert werden soll, werden hier die

Grundlagen der Dampfrefor-

merierung näher erläutert.

Bei der Dampfrefor-

merierung wird das Kohlenwasserstoffmolekül, in Gl. 2-14 - Gl.

2-16 Methan, meist an einem Katalysator mit Wasser zu Kohlenmonoxi-

d und in einem zweiten Schritt, der auch unter der Bezeichnung Wasser-Gas-Shift-

1 Die Informationen für diese Tabelle entstammen hauptsächlich dem Internet [www.hydrogen.org]
Reaktion bekannt ist, zu Kohlendioxid umgesetzt. Produkt dieser beiden Reaktionen ist Wasserstoff. Die exotherme Wasser-Gas-Shift-Reaktion (Gl. 2-15) läuft auch in der Shift-Stufe des Reformers ab.

\[
\begin{align*}
\text{Gl. 2-14} & \quad \text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2 \quad \Delta h_0 = +205,6 \text{ kJ/mol} \\
\text{Gl. 2-15} & \quad \text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \quad \Delta h_0 = -41,2 \text{ kJ/mol} \\
\text{Gl. 2-16} & \quad \text{CH}_4 + 2\text{H}_2\text{O} \rightarrow \text{CO}_2 + 4\text{H}_2 \quad \Delta h_0 = +164,4 \text{ kJ/mol}
\end{align*}
\]

Das Gleichgewicht der Reaktion im Reformer hängt von der Temperatur, vom Druck, vom zu reformierenden Kohlenwasserstoffmolekül und vom Verhältnis der Anzahl der Wasserdampfmoleküle zur Anzahl der Kohlenstoffmoleküle (Steam to Carbon Ratio; S/C) ab. Ist das S/C-Verhältnis zu gering kann es zu Kohlenstoffabscheidungen am Katalysator kommen, die diesen schädigen.

Unter Umsatz versteht man bei Dampfreformern das Verhältnis vom umgesetzten Kohlenwasserstoff zum zugeführten Kohlenwasserstoff, also

\[u_{Ref} = \frac{n_{\text{CH}_4,\text{Ein}} - n_{\text{CH}_4,\text{Aus}}}{n_{\text{CH}_4,\text{Ein}}} \].

\[\text{Gl. 2-17} \]

Der Dampfreformer besteht aus drei Reaktionsstufen. Im Prereformer wird ein Großteil der Kohlenwasserstoffmoleküle entsprechend den Gleichungen (Gl. 2-14 und Gl. 2-16) endotherm umgesetzt. Der restliche Umsatz erfolgt in der Schützung des eigentlichen Reformerkatalysators bei einem höheren Temperaturniveau (ca. 700 °C). In der Shift-Stufe wird das im Gasstrom verbliebene Kohlenmonoxid mit dem noch im Gasstrom enthaltenen Wasserdampf nach Gl. 2-15 bei ca. 200°C bestmöglich exotherm umgesetzt. Grenze für den Umsatz in den Reaktoren ist das thermodynamische Gleichgewicht und die Reaktionskinetik.

Die für die Reformierung benötigte Wärme muss extern bereitgestellt werden. Auf Grund unterschiedlicher Temperaturniveaus der Reaktionen besteht die Möglichkeit, die Stoffströme miteinander zu verschalten und so den Wärmebedarf des Dampfreformers gering zu halten. Das Verhältnis von Reformerleistung zur benötigten Brennerleistung ist ein Maß für die Güte der Wärmeintegration.

\[
\eta_{\text{Ref}} = \frac{n_{\text{H}_2, \text{Aus}}}{n_{\text{CH}_4, \text{Ref}} + n_{\text{CH}_4, \text{Br.}}} \cdot \frac{H_{\text{U,H}_2}}{H_{\text{U,CH}_4}} = \frac{P_{\text{th,H}_2, \text{Prod.}}}{P_{\text{Ein}}}.
\]

Gl. 2-18

Abbildung 2-5: Thermodynamische Gleichgewichtsrechnung für die Dampfreformierung und für die Wasser-Gas-Shift-Reaktion.
Beim Wasserstoffwirkungsgrad des Reformers steht der produzierte Wasserstoff \(\hat{n}_{H2,Aus} \) bzw. die in ihm enthaltene chemische Leistung als Nutzen in Relation zu dem aufzuwendenden Methanströmen (repräsentativ für die chemischen Leistungen der Stoffströme) für die Beschickung (\(\hat{n}_{CH4,Ref} \)) und die Beheizung (\(\hat{n}_{CH4,Br} \)) des Reformers (s. Gl. 2-18). Die Wärmeintegration und der erzielte Umsatz sind im Reformer somit maßgeblich für dessen Wirkungsgrad.

Das Verhältnis \(\frac{P_{th,Ref}}{P_{th,Br}} \), der chemischen Leistungen die in den Reformer (th.,Ref.) und in den Brenner (th.,Br.) eingespeist werden, stellt eine wichtige Kenngröße zur Charakterisierung des Betriebspunktes eines Dampfreformers dar. In Abbildung 2-6 wurde für das thermodynamische Gleichgewicht der Dampfreformierung und für die Wasserdampfshiftreaktion der Umsatz und der Wirkungsgrad in Abhängigkeit des Leistungsverhältnisses \(\frac{P_{th,Ref}}{P_{th,Br}} \) einge-
tragen. Wärmereluste, Temperaturgradienten im Reformer und andere Realitäts-
effekte blieben bei dieser idealisierten Berechnung unberücksichtigt. Die in Abbildung 2-6 dargestellten Ergebnisse entstammen einer mit Aspen Plus durch-
geführten Parametervariation in der der Dampfreformer entsprechend seiner thermischen Verschaltung abgebildet wurde.

Abbildung 2-6: Zusammenhang von Umsatz, \(\frac{P_{th,Ref}}{P_{th,Br}} \) und dem Wasserstoffwirkungsgrad

Mit Hilfe von Abbildung 2-6 lässt sich ausgehend von einem Restmethangehalt der Umsatz ermitteln. Ebenso lässt sich mit Hilfe des Umsatzes und einem
gegebenen Leistungsverhältnis $\frac{P_{th,Ref}}{P_{th,Br}}$ (hier dargestellt von 1,8-2,2) der Wirkungsgrad des Dampfreformers bestimmen.

2.3 Peripherie von Brennstoffzellensystemen

Um den Betrieb der Brennstoffzelle und ggf. auch des Wasserstoffzeugers zu ermöglichen ist eine Vielzahl von Komponenten notwendig, um die Edukte und Produkte im System geregelt zu führen. Dabei stellt die Brennstoffzelle, aber auch der Wasserstoffzeuger, besondere Anforderungen an die Edukte bzw. Produkte. Diese müssen meist für den Prozess aufbereitet werden, was weitere verfahrenstechnische Schritte erforderlich macht.

2.3.1 Eduktaufbereitung

Je nach verwendetem Brennstoffzellentyp (Kapitel 2.1) und eingesetztem Wasserstoffzeuger (Kapitel 2.2) ist eine entsprechende Aufbereitung der Edukte bzw. Produkte notwendig um Schäden zu vermeiden. Die Anforderung der einzelnen Komponenten an die Qualität der Betriebsstoffe soll im Folgenden näher beleuchtet werden.

2.3.1.1 Sauerstoffversorgung des Systems

Sofern der Wasserstoffzerzeuger Luft benötigt, so ist auch hier zumindest ein Partikelfilter nötig, um die Lebensdauer des Systems nicht durch Staubpartikel zu verkürzen. Aber auch für die Lebensdauer der Luftgebläse ist eine Filterung hilfreich. Filterung bedeutet aber auch immer ein Strömungshindernis und somit einen Druckunterschied, für den Leistung aufgebracht werden muss.

2.3.1.2 Wasseraufbereitung

Auch die Qualität des Kühlwassers der Zelle oder des Eduktwassers für die Wasserstoffzerzeugung unterliegt speziellen Anforderungen. Auf die Anforderungen des Systems an die Edukte soll im Folgenden noch genauer eingegangen werden.

Für Wasserstoffzerzeuger wie die Dampfreformierung, die bei hohen Temperaturen arbeiten und Wasser als Edukt benötigen, kann davon ausgegangen werden, dass sie dieselben Anforderungen an die Wasserqualität stellen wie ein entsprechender Heizkessel nach der Durchlaufkesselverordnung TRD 611 (s. Tabelle 2-4). In der Spalte Überwachung wird angegeben, wie die jeweilige Größe zu kontrollieren ist. Daraus lässt sich der Sensoraufwand ableiten.
Tabelle 2-4: Anforderungen an salzfreies Speisewasser für Durchlaufkessel nach TRD 611

<table>
<thead>
<tr>
<th>Anforderung</th>
<th>Richtwerte</th>
<th>Grenzwerte</th>
<th>Überwachung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitfähigkeit bei 25°C / µS/cm</td>
<td>< 0,2</td>
<td>< 1</td>
<td>kontinuierlich, registrierend</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>> 7</td>
<td>> 6,5</td>
<td>registrierend, ggf. über Hilfsgrößen</td>
</tr>
<tr>
<td>Sauerstoff / mg/l</td>
<td>0,05 bis 0,25</td>
<td>0,05 bis 0,50</td>
<td>diskontinuierliche Messungen möglich</td>
</tr>
</tbody>
</table>

Die in Tabelle 2-4 beschriebene Wasserqualität wird von Leitungswasser nicht erfüllt. Daher muss für entsprechende Wasserstoffzeuger das Wasser aufbereitet werden. Tabelle 2-5 gibt einen Überblick über einige Verfahren, die zur Wasserreinigung zur Verfügung stehen.

Tabelle 2-5: Wasseraufbereitungsverfahren [Benz00]

<table>
<thead>
<tr>
<th>Name</th>
<th>Methode</th>
<th>Beurteilung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destillierung</td>
<td>Verdampfung des Wassers</td>
<td>+ hohe Wasserqualität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− aufwändig & teuer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− hoher Energiebedarf</td>
</tr>
<tr>
<td>Umkehrsomose</td>
<td>Membranreinigungsverfahren</td>
<td>+ einfaches Handling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− teure Komponenten</td>
</tr>
<tr>
<td>Mischbettfilter</td>
<td>Ionentauscherharz + Partikelfilter</td>
<td>+ gute Wasserqualität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ einfaches Handling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− u.U. großvolumig</td>
</tr>
</tbody>
</table>

Die Aufbereitung des Leitungswassers ist somit immer mit Kosten verbunden. Um die Betriebskosten des Systems gering zu halten ist die Verwendung des Produktwassers der Brennstoffzelle sinnvoll. Wenn der Wasserkreislauf nicht geschlossen werden kann, stellen Mischbettfilter eine Möglichkeit dar um das zusätzlich benötigte Wasser aus Leitungswasser zu produzieren.

2.3.1.3 Wasserstoffqualität

Schwefelverbindungen können allgemein als Gefahr für die Zelle betrachtet werden. Vor allem Schwefelwasserstoff (H\textsubscript{2}S) kann in der Zelle, aber auch an den anderen Komponenten eines Brennstoffzellensystems Schäden anrichten. Schwefelwasserstoff ist in Wasser schwach löslich und bildet dort eine schwache Säure. Besonders in der PEM-FC sollte die Konzentration an Schwefelwasserstoff im Anodenzustrom so gering wie möglich sein, da es sich an den aktiven Zentren des Katalysators anlagert. Schon kleinste Mengen vergiften den Katalysator langfristig und irreversibel [Benz02].

Air-Bleeding bezeichnet die kontinuierliche oder stoßweise Zugabe von Luft oder Sauerstoff zum Reformatgasstrom vor der Brennstoffzelle um angelagerte CO-Moleküle am Brennstoffzellenkatalysator der Anode zu oxidieren und so zu reinigen. Dieses Verfahren stellt eine gängige Methode zum Schutz der Membran vor Vergiftung durch Kohlenmonoxid dar. Allerdings kann die bei der Oxidation des Kohlenmonoxids freigesetzte Wärme zu lokalen Temperaturmaxima führen, die die Alterung der Zellmembran beschleunigen.

Brennstoffzellen mit einer hohen Betriebstemperatur (ab ca. 500 °C) haben bzgl. des Kohlenmonoxids den Vorteil, dass sie diesen umsetzen und die Wärme und die Reaktionsenergie der Oxidation von CO zu CO$_2$ nutzen können ohne Schaden zu nehmen.

Ein Schadstoff für die Brennstoffzellen ist auch Ammoniak (NH$_3$). In Gegenwart von Luft bildet Ammoniak ein explosionsfähiges Gemisch. In wässriger Lösung bildet sich eine ätzende mittelstarke Base, die die Zelle angreift.

Tabelle 2-6 soll einen Überblick über die Brennstoffzellentypen und ihre Anforderungen an die Eduktgasqualität geben. Die AFC ist hier nicht aufgeführt, da sie nur hochreinen Wasserstoff und Sauerstoff umsetzen kann. Die DMFC ist der PEMFC ähnlich. Sie setzt Methanol statt Wasserstoff um.

Tabelle 2-6: Brennstoffzellentypen und ihre Anforderungen an das Eduktgas [Weind96]

<table>
<thead>
<tr>
<th>Typ</th>
<th>Betriebstemperatur</th>
<th>Spezifikation (Anodengas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEMFC</td>
<td>50 – 90°C</td>
<td>CO < 10-100 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH$_2$O < 0,5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH$_3$OH < 0,5%</td>
</tr>
<tr>
<td>PAFC</td>
<td>160 – 220°C</td>
<td>CO < 1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N$_2$ < 4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NH$_3$ < 0,2 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cl < 1,0 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S < 1 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH$_3$OH < 500 ppm</td>
</tr>
<tr>
<td>MCFC</td>
<td>600 - 660 °C</td>
<td>Cl < 1 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S < 1 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO-verträglich</td>
</tr>
<tr>
<td>SOFC</td>
<td>800 - 1.000 °C</td>
<td>S < 1 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cl < 1 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO-verträglich</td>
</tr>
</tbody>
</table>
Kapitel 2 Einführung in die Brennstoffzellensysteme

2.3.2 Gasreinigung

Aufgabe der Gasreinigung ist es alle Schadstoffe aus den Edukt- und Produktgasströmen zu entfernen, die die Komponenten der einzelnen Prozessschritte schädigen können.

2.3.2.1 Schwefel

Die Entschwefelung von Flüssigkeiten in kleinen Anlagen ist beim heutigen Stand der Technik schwierig und nicht so effektiv wie die Entschwefelung von Gasen. Daher werden Flüssigkeiten meist erhitzt und verdampft um dann die gasförmige Phase zu entschwefeln. Tabelle 2-7 gibt einen Überblick über die gängigsten Entschwefelungsverfahren.
<table>
<thead>
<tr>
<th>Verfahren</th>
<th>Temp.</th>
<th>Reinigungsleistung</th>
<th>Eignung</th>
<th>Beschreibung</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claus Prozess</td>
<td>Verbr. 1200 °C</td>
<td>94 %</td>
<td>Gering, da komplex</td>
<td>Katalytische Reinigung SO₂ + 2H₂S → 3S + 2 H₂O</td>
<td>[Kohl97]</td>
</tr>
<tr>
<td>LO-CAT</td>
<td>k.A.</td>
<td>99,8 %</td>
<td>Gering, da komplex</td>
<td>Adsorption in wässriger Lösung H₂S + 0,5 O₂ → H₂O + S</td>
<td>[Otto00]</td>
</tr>
<tr>
<td>MDEA</td>
<td>k.A.</td>
<td>4 ppm</td>
<td>Bedingt geeignet</td>
<td>Entschwefelung mit Aminen (Auswaschen des Schwefels)</td>
<td>[Kohl97]</td>
</tr>
<tr>
<td>Bakterien</td>
<td>30 °C</td>
<td>95 % (10 - 100 ppm)</td>
<td>Nicht ausreichende Reinheit</td>
<td>Entschwefelung durch Bakterien</td>
<td>[Riepe90]</td>
</tr>
<tr>
<td>HDS</td>
<td>ca. 400 °C</td>
<td>Wandlung zu H₂S und Adsorption an ZnO</td>
<td>Geeignet</td>
<td>Katalytische Reaktion aller S-Moleküle zu H₂S und Reinigung mit Zinkioxid</td>
<td>[Otto00]</td>
</tr>
<tr>
<td>EisenIlloxid</td>
<td>45 °C</td>
<td>k.A.</td>
<td>Komplizierte Handhabung, gefährlich</td>
<td>2Fe₂O₃+6H₂S → 2FeS₃ + 6 H₂O</td>
<td>[Otto00]</td>
</tr>
<tr>
<td>Kalziumoxid</td>
<td>850 °C</td>
<td>99,7 %</td>
<td>Hohe Temp.</td>
<td>CaO + H₂S → CaS + H₂O</td>
<td>[Kluge84]</td>
</tr>
<tr>
<td>Aktivkohle</td>
<td>30-100 °C</td>
<td>96 %</td>
<td>Geeignet</td>
<td>Verschiedene Adsorptionsmechanismen</td>
<td>[Henning83]</td>
</tr>
<tr>
<td>Molsieb</td>
<td>110 °C</td>
<td>k.A.</td>
<td>Geeignet</td>
<td>Adsorptive Reinigung</td>
<td>[Henning83]</td>
</tr>
<tr>
<td>Zinkoxid</td>
<td>20-400 °C</td>
<td>1 - 0,1 ppm</td>
<td>Geeignet</td>
<td>ZnO + H₂S → ZnS + H₂O</td>
<td>[Kluge84], [Henning83]</td>
</tr>
</tbody>
</table>

2.3.2.2 Kohlenmonoxid

Kohlenmonoxid stellt für viele Arten von Brennstoffzellen bzw. deren Katalysatoren ein Gift dar (s. auch Kapitel 2.3.1.3).

Wenn durch das Wasserstoffzeugungsverfahren viel Kohlenmonoxid entsteht, so kann das Kohlenmonoxid durch die Wasser-Gas-Shift-Reaktion zu Kohlendioxid oxidiert werden. Bei diesem exothermen Prozess reagiert das Kohlenmonoxid mit dem Wasserdampf. Dabei entsteht als Nebenprodukt Wasserstoff. Die Bruttoreaktionsgleichung dafür lautet:

\[
\text{pU} = \text{Umbgebungsdruck / k.A. = keine Angabe}
\]
Kapitel 2
Einführung in die Brennstoffzellensysteme

\[CO + H_2O \rightarrow CO_2 + H_2 \]

Gl. 2-19

Tabelle 2-8: Gängige Shift-Typen, -katalysatoren und Temperaturbereiche.

<table>
<thead>
<tr>
<th>Temperaturbereich</th>
<th>Katalysator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedertemperatur Shift</td>
<td>190 °C bis 280 °C</td>
</tr>
<tr>
<td>Kupfer-Zink Katalysator</td>
<td></td>
</tr>
<tr>
<td>Mitteltemperatur Shift</td>
<td>250 °C bis 330 °C</td>
</tr>
<tr>
<td>Edelmetallkatalysatoren</td>
<td></td>
</tr>
<tr>
<td>Hochtemperatur Shift</td>
<td>330 °C bis 500 °C</td>
</tr>
<tr>
<td>Eisen-Chrom-Katalysator</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2-9: CO-Gasfeinreinigungsverfahren

<table>
<thead>
<tr>
<th>Name</th>
<th>Erklärung</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selektive Oxidation</td>
<td>Katalytisches exothermes Verfahren: H.R.: (2CO + O_2 \rightarrow CO_2)</td>
<td>+ regelungstechnisch einfach und Robust</td>
</tr>
<tr>
<td>(SelOx)</td>
<td>N.R.: (2H_2 + O_2 \rightarrow 2H_2O)</td>
<td>• ca. 30 ppm</td>
</tr>
<tr>
<td></td>
<td>Zugabe von Luft bzw. Sauerstoff nötig</td>
<td>– (H_2)-Verbrauch</td>
</tr>
<tr>
<td></td>
<td>Betriebstemperatur 100 °C – 180 °C</td>
<td>– theoretisch Explosionsgefahr</td>
</tr>
<tr>
<td>Selektive Methanisierung</td>
<td>Katalytisches exothermes Verfahren: H.R.: (CO + 3H_2 \rightarrow H_2O + CH_4)</td>
<td></td>
</tr>
<tr>
<td>(SelMet)</td>
<td>N.R.: (CO_2 + 4H_2 \rightarrow 2H_2O + CH_4)</td>
<td>+ gut für den System</td>
</tr>
<tr>
<td></td>
<td>Betriebstemperatur</td>
<td>Wirkungsgrad da nutzbare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH_4 entsteht</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– je nach Katalysator enges</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperaturfenster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– (H_2)-Verbrauch</td>
</tr>
<tr>
<td>Membranreinigungs-</td>
<td>Trennverfahren: Wasserstoff wird mittels einer hohen Druckdifferenz</td>
<td>+ sehr reiner Wasserstoff als Produkt</td>
</tr>
<tr>
<td>verfahren</td>
<td>durch eine Membran gedrückt</td>
<td>– hohe Drücke nötig</td>
</tr>
<tr>
<td>Druckwechsel-</td>
<td>Adsorptive diskontinuierliche</td>
<td></td>
</tr>
<tr>
<td>adsorption (DWA)</td>
<td>Reinigung: Verunreinigungen werden bei Druck an Aktivkohle adsorbiert</td>
<td>– hohe Drücke</td>
</tr>
<tr>
<td></td>
<td>und drucklos desorbiert.</td>
<td>– großer Aufwand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ hohe Reinheit erzielbar</td>
</tr>
</tbody>
</table>

In vielen derzeit in Entwicklung befindlichen Brennstoffzellensysteme zur Hausenergieversorgung kommt als Gasfeinreinigung die selektive Oxidation auf Grund ihrer guten und zuverlässigen Reinigungsleistungen zum Einsatz.

\(^2\) H.R. Hauptreaktion

\(^3\) N.R. Nebenreaktion
2.3.2.3 Ammoniak (NH₃)

Ammoniak entsteht bei der Dampfreformierung nur in vernachlässigbaren Mengen wie Messungen zeigten.

2.3.3 Die Umrichtereinheit

- einem Hochsetzsteller (DC/DC-Wandler), der die lastabhängige, niedrige Gleichspannung des Brennstoffzellenstapels in eine höhere und konstante Gleichspannung (von z.B. 60 V) umsetzt,
- einem Gleichspannungs-Zwischenkreis konstanter Spannung mit Kondensator und
- einem Wechselrichter (DC/AC-Wandler), der die aus dem Gleichspannungskreis entnommene Leistung durch periodisches Schalten in das Wechselstromnetz einspeist.

Bei einem *Hochsetzsteller* ist eine Induktivität L in Reihe mit einer Freilaufdiode D geschaltet, hinter der ein Ladekondensator C die Ausgangssspannung aufsummiert, siehe Abbildung 2-8.

Die Spule wird zyklisch durch einen Schalter (Transistor) S gegen Masse geschaltet. An der Spule fällt dann die Spannung $U_L = U_{\text{ein}} = L \cdot (dI_L/dt)$ ab, der Strom durch die Spule und mit ihm die gespeicherte Energie des Magnetfeldes steigen an. Wird der Transistor wieder geöffnet, steigt die Spannung am sekundären Ende der Spule sehr schnell an, bis sie die am Kondensator anliegende Spannung $U_C = U_{\text{aus}}$ übersteigt und die Diode öffnet. Der Strom fließt im ersten Moment unverändert weiter und lädt den Kondensator weiter auf. Das Magnetfeld bricht dabei zusammen und gibt seine Energie ab, indem es den Strom über die Diode in den Ladekondensator und zur Last treibt. Durch entsprechende Ansteuerung des Transistors ist es möglich, die Kondensatorspannung $U_C = U_{\text{aus}}$ auf einen konstanten Wert zu regeln, der deutlich größer als derjenige der (nicht notwendigerweise konstanten) Eingangssspannung U_{ein} sein kann.

Wechselrichter sind leistungselektronische Schaltungen, die heute üblicherweise als auf der IGBT (Insulated Gate Bipolar Transistor)-Technik basierende Brückenschaltungen mit Pulsweiten-Modulation ausgeführt sind [Jäger00].
Abbildung 2-9 zeigt oben die prinzipielle Schaltung einer IGBT-Brücke mit netzseitigem Transformator zur Potentialentkopplung; wie aus dem unteren Teilbild hervorgeht, entsteht am Ausgang durch die Pulsweiten-Modulation eine in erster Näherung sinusförmige Spannung, so dass ein ebenfalls sinusförmiger Strom mit \(\cos \varphi \approx 1 \) ins Netz abgegeben wird, sofern die Schaltung mit dem Netz verbunden und die Taktung an der Netzspannung orientiert wird. Die Einhaltung der Toleranzen für die vom Wechselrichter gelieferte Nennspannung von 230 V \(+10\% / -15\% \) sowie ihre Abweichung vom Sinuswert von max. 10\% [DVGW119] stellt somit kein Problem dar.

Abbildung 2-9: IGBT-Wechselrichter-Brücke.

Der \textit{Wirkungsgrad} des aus Hochsetzsteller und Wechselrichter bestehenden gesamten Umrichters wirkt sich direkt auf den elektrischen Wirkungsgrad des Brennstoffzellen-Systems aus. Bei als sinusförmig angenommenem Ausgangsstrom mit \(\cos \varphi \approx 1 \) kann er näherungsweise berechnet werden zu

\[
\eta_{\text{DC/AC}} = \frac{U_{\text{AC eff}} \cdot I_{\text{AC}}}{U_{\text{DC}} \cdot I_{\text{DC}}}
\]

Materialkosten für den Stack über den Nutzen durch den höheren Wirkungsgrad des Systems über die Betriebsdauer abzuwagen um eine Optimum zu finden.

2.3.4 Kriterien für Pumpen, Ventile und andere Peripheriekomponenten

Das Diagramm in Abbildung 2-10 gibt einen Überblick über die verschiedenen Kriterien, die je nach Blickwinkel an eine Komponente gestellt werden können.

Zu berücksichtigen bei den Peripheriekomponenten ist vor allem auch deren elektrische Versorgung. So machen z.B. unterschiedliche Versorgungsspannungen der Pumpen und Ventile zusätzliche Transformatoren und Netzteile notwendig, durch welche sich Anschaffungs- und Betriebskosten (ungünstige Wirkungsgrade) erhöhen.

Wie Kapitel 5.1 zeigen wird, ist der Leistungsbedarf der Peripheriekomponenten des hier unter Verwendung von vorhandenen Laborkomponenten erstellten prototypischen Systems erheblich, was seinen Wirkungsgrad wesentlich reduziert. Daher ist für ein späteres Vorserienmodell eine sorgfältige Auswahl der Peripheriekomponenten unbedingt notwendig um die Effizienz des Gesamtsystems zu erhöhen. Des Weiteren sind bei der Auswahl und bei der Bestimmung der Peripheriekomponenten Sicherheit und Zuverlässigkeit von entscheidender Bedeutung.

Hinsichtlich einer Vereinheitlichung des Niveaus der Versorgungsspannung von Peripheriekomponenten bieten sich die Möglichkeiten

a) Gleichspannung des Gleichspannungs-Zwischenkreises (ca. 60 V DC)

b) Netzspannung (230 V AC)

an. Grundsätzlich wäre Möglichkeit a) bei laufendem System hinsichtlich des Gesamtwirkungsgrades vorteilhaft, da hier die elektrische Leistung für die Peripherie verwendet wird, die vom System selbst produziert wurde und sich somit allein die Verluste des Hochsetzstellers, nicht jedoch die des Wechselrichters auf den Wirkungsgrad der Peripherie auswirken. Andererseits wäre es für den Anlauf des Systems erforderlich, dass der Wechselrichter auch mit umgekehrter Leistungsrichtung (d.h. als netzgespeister Gleichrichter) betrieben
werden kann, um vor dem Start des Betriebes des Brennstoffzellenstapels bereits die Versorgung ihrer Peripherie sicherzustellen, was Aufwand und Kosten für den Wechselrichter beträchtlich erhöht. Außerdem sind direkt für dieses Spannungsniveau nahezu keine Pumpen und Ventile am Markt erhältlich, und eine spezifische Umformung auf deren individuelle Betriebsspannungen (z.B. 15 V DC) wäre ebenfalls aufwändig und teuer.

Daher erscheint Variante b) mit einheitlicher Versorgung aller Peripheriekomponenten aus dem Netz 230 V AC sinnvoller: hier ist bereits eine gewisse Auswahl an Peripheriekomponenten verfügbar, die direkt mit dieser Spannung gespeist werden können, und der Start des Systems kann unabhängig erfolgen. Nachteilig ist, dass es auch bei dieser Lösung Komponenten gibt, die nur für eine niedrigere Betriebsspannung (z.B. 15 V DC) erhältlich sind und somit einer entsprechenden Anpassung (Netzteil) bedürfen.

Auf Grund des Wirkungsgradvorteils sollte langfristig versucht werden, die Hersteller zu motivieren, eine einheitliche Spannungsebene für die Versorgung der Peripherie von Brennstoffzellsystemen festzulegen und dafür alle benötigten Komponenten anzubieten.
2.3.5 Steuerung

Auch die Fehlerbehandlung sowie die Erkennung von Wartungs- und Reparaturbedarf, das Vorgehen bei Lastwechseln oder das Ab- und Anfahren des Systems im normalen Betriebsfall oder im Störfall obliegen der Steuerung.

Entsprechend gefährlich ist ein Fehlverhalten oder ein Ausfall der Steuerung. Es ist sicherzustellen, dass das System beim Ausfall der Steuerung automatisch in einen sicheren Zustand gebracht wird.

Die Steuerung kann prinzipiell realisiert werden

- Als speicherprogrammierbare Steuerung (SPS) auf Basis von verfügbaren Industriekomponenten
- Als spezifische Hardware-Lösung auf einer eingens hierzu entwickelten Platinenenschaltung
- Als Rechnerprogramm, welches auf einem Controller abläuft, der darüber hinaus auch andere Aufgaben (z.B. Steuerung des Umrücker) wahrnimmt
t

entweder in einer gewöhnlichen Industriesteuerung, in einer eigens entwickelten Platine oder in der Rechnereinheit des Wechselrichters integriert werden. Da die Steuerung für die Sicherheit des Systems entscheidend ist werden an ihre Zuverlässigkeit, ihre Störempfindlichkeit und an ihre Lebensdauer besonders hohe Anforderungen gestellt.

Die Entwicklung einer derart komplexen Steuerung ist aufwändig und es bedarf einer ausgiebigen Testphase (auch Feldtests), um sicherzustellen, dass die Steuerung unter allen Umständen einen fehlerfreien Betrieb des Systems gewährleistet und das System nicht in kritische Zustände geraten kann.

Weitere Informationen zum Thema Steuerungen finden sich im Anhang B und in Kapitel 5.2.2. Dort wird der Aufbau der Steuerung für das im Rahmen dieser Arbeit entwickelte Brennstoffzellen-Heizgerät beschrieben.
2.4 Anodenabgasnutzung

Abbildung 2-11: Interne thermische Anodenabgasrückführung
In Kapitel 5.1 werden diese beiden Arten der Anodenabgasrückführung in Hinblick auf ihr Wirkungsgradpotential näher untersucht.

2.4.1 Flammformen

Eine Flammen brennt stöchiometrisch (\(\lambda = 1 \)), wenn Brennstoff und Oxidationsmittel sich gegenseitig vollständig verbrauchen. Dabei entsteht im Ideal lediglich Kohlendioxid und Wasser. Fette Verbrennung bezeichnet den Überschuss von...
Brennstoff ($\lambda < 1$). Überwiegt im Gemisch der Oxidant, so spricht man von einer mageren Verbrennung ($\lambda > 1$). Unter der Flammengeschwindigkeit versteht man die Geschwindigkeit, mit der sich eine Flammenfront in einem unverbrannten Brennstoff-Luft-Gemisch fortbewegt.

Laminare Vormischflammen: Bei Vormischflammen sind Brennstoff und Oxidationsmittel vor der Entzündung bereits gemischt. Ist die Strömung in der Flamme laminar, so spricht man von einer laminaren Vormischflamme.

Die laminare Flammgeschwindigkeit ist eine Funktion des Druckes, der Temperatur und der Zusammensetzung des unverbrannten Gases.

Ist bei einer laminaren Flamme die Flammgeschwindigkeit v_L kleiner als die Anströmgeschwindigkeit des Brenngasgemisches v_{BG}, so hebt die Flamme ab. Aus diesem Grund muss für die Flamme immer die Ungleichung $v_L \geq v_{BG}$ gelten. Kurz vor dem Abheben der Flamme ist $v_L = v_{BG}$, auf diese Weise lässt sich die laminare Flammgeschwindigkeit eines Gases messen [Warnatz01].

Die Flammgeometrie einer laminaren Vormischflamme ist eine Folge der Geschwindigkeitsverteilung wie Abbildung 2-13 zeigt. Hier ist die Flammfront an einem Brennerrohr verzerrt dargestellt. Sie ergibt sich aus der Überlagerung der Brenngasaustrittsgeschwindigkeit v_{BG} am Rohraustritt und der lokalen laminaren Flammgeschwindigkeit v_L:

![Abbildung 2-13: Flammgeometrie und Geschwindigkeiten am Brenner](Renz04)
Kapitel 2 Einführung in die Brennstoffzellensysteme

In Abbildung 2-14 ist die Gasgeschwindigkeit \(v_{BG} \) über den Abstand vom Brennerrand zur Brennermitte \(dy \) für ein Erdgas - Luftgemisch aufgetragen. \(dv_{BG}/dy \) entspricht also dem Geschwindigkeitsprofil am Brenneraustritt.

Abbildung 2-14: Stabilitätsbereich einer laminaren Erdgasflamme [Renz04]

Kapitel 2

Einführung in die Brennstoffzellensysteme

Abbildung 2-15: Flammgeschwindigkeit in H₂-Luft Gemischen von der Zusammensetzung des unverbrannten Gases für $p = 1$ bar, $T_u = 298$ K \[\text{Warnatz01}\]

Abbildung 2-16 zeigt, dass für die einfachen Kohlenwasserstoffe die Flammgeschwindigkeit im stöchiometrischen Bereich maximal wird und zu fetten wie zu mageren Gemischen hin abnimmt. Die laminare Flammgeschwindigkeit liegt beispielsweise für Methan bei stöchiometrischen Bedingungen etwa bei 0,4 m/s und ist damit um den Faktor 5 geringer als bei Wasserstoff.

Abbildung 2-16: Konzentrationsabhängigkeit von v_L in verschiedenen Brennstoff - Luft - Gemischen für $p = 1$ bar, $T_u = 298$ K \[\text{Warnatz01}\]

Aus Abbildung 2-15 und Abbildung 2-16 lässt sich ableiten, dass man durch Erhöhung der Luftzahl das Ausblasen der Flamme bei Vollast verstärkt (Reduktion der Flammgeschwindigkeit) und bei Teillast durch Erhöhung der Luftzahl dem Einwandern der Flamme entgegenwirken kann.
Abbildung 2-17 zeigt die Abhängigkeit der Flammgeschwindigkeit von Druck und Temperatur für ein CH$_4$–Luft Gemisch. Es zeigt sich, dass die Geschwindigkeit mit zunehmendem Druck abnimmt und mit zunehmender Temperatur steigt.

Abbildung 2-17: Druck- und Temperaturabhängigkeit der Flammgeschwindigkeit für $T_u = 298$ K (links) und für $p_a = 1$ bar (rechts) in stöchiometrischen CH$_4$–Luft Gemischen [Warnatz01]

Die Flammgeschwindigkeit des Wasserstoff-Luftgemisches ist etwa 4-mal größer als die des Methan-Luftgemisches. Demzufolge ist die Gefahr, dass eine Wasserstoffflamme bei gleichem Düsendurchmesser in den Brennermund wandert bei Wasserstoff entsprechend höher. Wandert sie in den Brenner hinein, so ist die Flamme nicht mehr unter Kontrolle und es kann zu Schäden am Brenner und an dessen Leitungen kommen, so dass es zur Freisetzung von Gas in die Umgebung und im schlimmsten Fall zu einem Brand oder einer Explosion kommen kann.

Turbulente Vormischflammen: Ist die Strömungsgeschwindigkeit in der Flamme ausreichend groß ($Re > 2320$), so schlägt die Strömung von laminar auf turbulent um. Bei Vormischflammen mit geringer Turbulenz bilden sich lokal laminare Vormischflammen aus, so dass turbulente Vormischflammen für Modelle oft auch als eine Vielzahl von laminaren Vormischflammen betrachtet werden können. Turbulente Flammgeschwindigkeiten v_T sind stets größer als laminare Flammgeschwindigkeiten. In einfachen Flammmodellen von turbulenten Flammen wird die Relation zur laminaren Flammgeschwindigkeit über den Turbulenzgrad ν (Gl. 2-20) hergestellt. Dabei handelt es sich um eine vereinfachte Annahme, der
experimentell ermittelte Zusammenhang wird in Abbildung 2-18 qualitativ wiedergegeben.

\[v_T = v_L + v' = v_L \left(1 + \frac{v'}{v_L} \right) \]

Gl. 2-20

Die turbulente Verbrennungsgeschwindigkeit durchläuft ein Maximum und nimmt anschließend wieder ab, bis schließlich Flammenlösung auftritt. Mit zunehmender Turbulenz nehmen die Konzentrationsgradienten und somit die Diffusionsprozesse in der Flamme zu. Dies hat unter Umständen zur Folge, dass der Stofftransport der chemischen Reaktionsprodukte (und damit auch die Reaktionswärme) langsamer abläuft als die Verteilung der Edukte durch Diffusion. Die Temperatur sinkt dabei ab und somit verringert sich zusätzlich die Reaktionsgeschwindigkeit. Die Flamme erlischt bei einer Temperatur von 1700 K, da die Reaktionsgeschwindigkeit ab dieser Temperatur schnell sehr klein wird. Die durch das plötzliche lokale Löschen verursachten Kontraktionen des Gases sind als Quelle der Flammengeräusche (zusammen mit durch die Geometrie bedingten entsprechenden Resonanzen) anzusehen. [Warnatz01]

Abbildung 2-18: Quantitative Abhängigkeit der turbulentes Flammgeschwindigkeit \(v_T \) von der Turbulenzintensität \(v' \) [Warnatz01]

Aufgrund der höheren Flammgeschwindigkeit gegenüber laminaren Flammen führen turbulente Vormischflammen zu einer intensiveren Wärmefreisetzung [Warnatz01]. Dies hat Auswirkungen auf die Schadstoffbildung in der Flamme.
Auswirkungen der Anodenabgasrückführung

Der größere Brenngasvolumenstrom des Wasserstoffs (1,67 l/min = 1 kWth,CH4; 5,56 l/min =1 kWth,H2), zu dem sich durch die Dampfreformierung noch der Volumenstrom der Inertgase (In Summe ca. 5 l/min für 2,5 kWth,H2, ausgehend von einer typischen Reformerproduktzusammensetzung (inkl. Air-Bleed) von H2 73 Vol.-%; CH4 0,96 Vol.-%; CO2 19,0 Vol.-% und N2 7,1 Vol.-%) addiert, wirkt zwar der höheren Flammgeschwindigkeit der Wasserstofflamme entgegen, jedoch nicht im ausreichenden Maß, um die hohe Flammgeschwindigkeit des Wasserstoffs zu kompensieren, wie die folgenden Rechnungen verdeutlichen:

- Wasserstoff verbrennt entsprechend der Knallgasreaktion \(H_2 + 0,5O_2 \rightarrow H_2O \). Daraus folgt ein stöchiometrischer Sauerstoffbedarf von 2,8 l/min und bzw. ein Luftbedarf von 13,3 l/min für 1 kWth,H2.

- Methan verbrennt mit 2O2 zu CO2 und 2H2O. Daraus ergibt sich ein stöchiometrischer Sauerstoffbedarf von 3,34 l/min bzw. 15,9 l/min Luft für 1 kWth,CH4.

Bei gleichem Luftverhältnis (1,1) und bei gleicher Leistung der Flammen (Methan und Wasserstoff) ergibt sich daher ein ähnlich großer Volumenstrom am Brenneraustritt:

Für die Anodenabgasverbrennung

\[V_{BG,Anodenabgas} = V_L + V_{H_2} + V_{CH_4} + V_{CO_2} + V_{N_2} \]

\[= 14,53 \text{ l/min } + 5,6 \text{ l/min } + 5 \text{ l/min } = 25,13 \text{ l/min} \]

und
Kapitel 2 Einführung in die Brennstoffzellensysteme

\[V_{BG,CH4} = V_L + V_{CH4} \]
\[= 17,52 \ l/min + 1,67 \ l/min = 19,19 \ l/min \]

Gl. 2-22

für die Verbrennung einer Methanflamme.

Der Volumenstrom bei Anodenabgasrückführung ist maximal 31 % größer als bei der Verbrennung von Methan wie Gl. 2-23 zeigt.

\[X = \frac{V_{BG,Anodenabgas}}{V_{BG,CH4}} = \frac{25,13 \ l/min}{19,19 \ l/min} = 1,31 \]

Gl. 2-23

Dieses mehr an Volumenstrom reicht nicht aus um die vierfach höhere Flammentgeschwindigkeit der Wasserstoffflamme zu kompensieren. Durch die erhöhte Flammentgeschwindigkeit des wasserstoffreichen Anodenabgases steigt die Gefahr, dass die Flamme in den Brennermund wandert, was die Modulation (Leistungs spreizung) des Brenners beim Betrieb mit Anodenabgas reduziert.

2.4.2 Flammenionisation

Der eigentliche Flammenionisationsstrom rührt von dem Primärion COH\(^+\) her. Daher ist der eigentliche Ionisationsstrom direkt proportional zur Anzahl der C-Atome im Brenngas. Das Methyldinradikal CH\(^-\), das bei der Verbrennung von Kohlenwasserstoffen entsteht, bildet mit einem Sauerstoffatom dieses Primärion.

\[\text{CH}^- + \text{O} \rightarrow \text{CHO}^+ + \text{e}^- \]

Aus dem Primärion entsteht in Verbindung mit Wasser das am häufigsten zu messende Hydroniumion

\[\text{CHO}^+ + \text{H}_2\text{O} \rightarrow \text{CO} + \text{H}_3\text{O}^+ \]

Das Hydroniumion wird in der Flamme durch ein einzelnes Elektron zu Wasser und Wasserstoff abgebaut.

2-39
H$_3$O$^+$ + e$^-$ → H + H$_2$O

Das Radikal CH$^-$ ist auch für die Bildung von HCN zuständig, ein Reaktionsprodukt von HCN kann wiederum NOX sein. Im Weiteren entstehen noch zahlreiche andere Ionen in der Flamme (CH$_3^+$, C$_3$H$_3^+$, C$_2$H$_3$O$^+$), die größtenteils der Anzahl der C-Atome proportional sind. Abbildung 2-19 zeigt das Reaktionsflusssschema nach Goodings, Bohme und Sugden [Rusche01].

Abbildung 2-19: Reaktionsflusssschema der Flammionisation nach Goodings, Bohme und Sugden [Rusche01]

Eine wichtige Einflussgröße für die Flammionisation ist die Luftzahl der Verbrennung. Der Ionisationsstrom ist nahe einer Luftzahl von 1 (stöchiometrische Verbrennung) am größten. So kann der Ionisationsstrom bei Gasgemischen mit nahezu konstanten Mengen an Kohlenstoffatomen im Brenngas eingesetzt werden, um die Luftzahl zu regeln (Scott-Regelung). Auf Grund der stark schwankenden Qualität des Anodenabgases ist dies beim Brennstoffzellensystem jedoch nicht möglich. Der Ionisationsstrom kann allerdings weiterhin zu Flammenüberwachung eingesetzt werden, wenn ein ausreichend großer Anteil an Kohlenstoffatomen in der Flamme enthalten ist, so dass ein messbarer Ionisationsstrom entsteht.

Weitere Einflüsse wie Position, Größe und Material der Elektrode, Flammenform, Flammwurzel, Brenneraufbau, Niveau und Art der Spannung haben ebenfalls Auswirkungen auf den gemessenen Flammenionisationsstrom [Rusche01].
2.4.3 Schadstoffbildungsmechanismen in der Brennerflamme

Die Schadstoffgrenzwerte werden durch den Gesetzgeber zum Schutze der Umwelt immer weiter gesenkt. Um die Schadstoffbildung im Brenner beeinflussen zu können, müssen die Bildungsmechanismen bekannt sein.

NO\textsubscript{x} - Bildung

Stickstoffmonoxid (NO) und Stickstoffdioxid (NO\textsubscript{2}) werden oft zusammengefasst als Stickoxide (NO\textsubscript{x}) betrachtet. Quelle für die Bildung von NO\textsubscript{x} ist der molekulare Stickstoff, der in der für die Verbrennung verwendeten Luft oder im Brennstoff gebunden ist.

Stickoxide begünstigen in Bodennähe die Entstehung von für den Menschen schädlichem Ozon und photochemischem Smog. NO vernichtet auch das Ozon (O\textsubscript{3}) in der Stratosphäre (NO + O\textsubscript{3} → NO\textsubscript{2} + O\textsubscript{2}).

In Abhängigkeit von der Stickstoffquelle und dem Entstehungsort lässt sich die NO-Bildung in vier Mechanismen unterteilen:

- *Brennstoff-NO-Bildung*: Die im Brennstoff gebundenen organischen Stickstoffverbindungen reagieren mit Kohlenwasserstoffen in der primären Reaktionszone.
- *Prompt-NO-Bildung*: Der Luftstickstoff reagiert mit Kohlenwasserstoffen in der primären Reaktionszone.
- *Thermische NO-Bildung*: Der Luftstickstoff reagiert aufgrund hoher Temperaturen in der sekundären Reaktionszone.
- *Nitrose NO-Bildung*: Aus dem Luftstickstoff wird in der primären Reaktionszone N\textsubscript{2}O gebildet, das weiter zu NO reagiert.

Dominierend für die NO-Bildung bei der Verbrennung von Erdgas sind die Prompt-NO und die thermische NO-Bildung, auf die im Folgenden etwas näher eingegangen werden soll.
Prompt-NO-Bildung: Bei der Prompt-NO-Bildung wird die stabile Dreifachbindung des Stickstoffmoleküls in der Flammenfront durch die Reaktion mit dem Methylidinradikal aufgebrochen. Als Startreaktion wird in der Literatur die Reaktionsgleichung angegeben:

\[
\text{CH}^* + \text{N}_2 \rightarrow \text{N} + \text{HCN}
\]

Die HCN-Verbindungen reagieren anschließend weiter zu Aminen \((\text{NH}_X)\). Wichtig für die weitere Umsetzung der Amine zu NO ist die lokale Konzentration von atomarem Sauerstoff. Liegt lokal ein luftarmes Gemisch vor, werden Amine bevorzugt zu molekularer Stickstoff umgewandelt. Bei luftreichen Verbrennungsbedingungen wird mit dem in der Flammenfront entstandenen atomaren Sauerstoff NO gebildet.

Für die Prompt-NO-Bildung gibt es drei Einflussfaktoren:

- Die Reaktionstemperatur \(T_R\) (geringer Einfluss)
- Der Partialdruck \(p_i\) der Reaktionspartner (großer Einfluss)
- Die Verweilzeit \(t_v\) (großer Einfluss)

Thermische NO-Bildung: Die erforderlichen hohen Temperaturen von 1200 – 1300 °C bzw. eine hohe Aktivierungsenergie zum Aufbrechen der stabilen Dreifachbindung des molekularen Stickstoffs herrschen in der sekundären Reaktionszone. Als Reaktionspartner dient atomarer Sauerstoff.

Die Oxidation des Stickstoffs läuft über Elementarreaktionen ab, in denen die Reaktionspartner des Stickstoffs O- und OH-Radikale sowie der molekulare Sauerstoff \(\text{O}_2\) sind. Entsprechend dem in der Literatur als „erweiterter Zeldovich-Mechanismus“ bezeichneten Kettenmechanismus läuft die NO-Bildung mit N- und O-Radikalen als Kettenträger über folgende Reaktionsschritte ab:

\[
\begin{align*}
\text{O} + \text{N}_2 & \rightarrow \text{NO} + \text{N} \\
\text{N} + \text{O}_2 & \rightarrow \text{NO} + \text{O} \\
\text{N} + \text{OH} & \rightarrow \text{NO} + \text{H}
\end{align*}
\]

Aus den Gleichungen folgt mit den Geschwindigkeitskoeffizienten der Einzelreaktionen unter folgenden Annahmen die NO-Bildungsgeschwindigkeit:

- quasistationärer Zustand des atomaren Stickstoffs aufgrund der um Größenordnungen höheren Bildungsgeschwindigkeit von N gegenüber NO,
• Vernachlässigung der Reaktion \(N + OH \rightarrow NO + H \), die nur bei sehr fetter Gemischbildung zu berücksichtigen ist,
• geringe NO-Konzentration
• eine im Verhältnis zur NO-Konzentration hohe \(O_2 \)-Konzentration.

Die NO-Bildungsgeschwindigkeit lässt sich durch die folgende Gleichung beschreiben:

\[
\frac{d[NO]}{dt} = 2k_1[I][N_2]
\]

Es ist zu erkennen, dass die NO-Bildungsgeschwindigkeit durch ein hohes Sauerstoffangebot begünstigt wird. Der Geschwindigkeitskoeffizient \(k_1 \) [mol/(kg s)] wird mit Hilfe des Arrhenius - Ansatzes bestimmt:

\[
k_1 = 1,8 \cdot 10^{14} \cdot e^{\frac{-318}{RT}} \]

[Lucka96]

Da sich die Temperaturen im Flammenfeld exponentiell auf die NO- Bildungsrate auswirken, sind Temperaturmaxima hauptsächlich für die Bildung von thermischen \(NO_X \) verantwortlich. Ihr Einfluss ist größer als der des Temperaturmittels der Flamme [Lucka96].

Die Verweilzeit der Reaktanden in einem Gebiet hoher Temperatur bestimmt das Ausmaß der thermischen NO-Bildung.

Die thermische NO-Bildung lässt sich also durch Senken der Flammtemperatur vor allem der Temperaturmaxima reduzieren. Da die Inertgase des Anodenabgases bei der Anodenabgasrückführung mit erhitzt werden müssen, ist die Flamme beim Betrieb mit Anodenabgas kälter als die des Erdgases. Dies dürfte sich positiv auf die NO-Bildung auswirken, so dass weniger \(NO_X \) im Betrieb mit Anodenabgas entsteht.

CO - Bildung

Die Bildung von CO hängt in erster Linie von der Luftzahl \(\lambda \) und der damit gekoppelten Verbrennungsstemperatur ab. Bei lokalem Luftmangel (\(\lambda < 1 \)) läuft die CO-Oxidation wegen des \(O_2 \)-Mangels in Konkurrenz zur H\(_2\)-Oxidation. Dort sind das Hydroxylradikal OH\(^{-} \) und der atomare Wasserstoff H\(^{-} \) für die ablaufenden Reaktionen maßgeblich.

\[
CO + OH^{-} \rightarrow CO_2 + H^{-} \\
H_2 + OH^{-} \rightarrow H_2O + H^{-}
\]
Mit steigendem Luftverhältnis und steigernder Temperatur wird die Abweichung vom thermodynamischen Gleichgewicht geringer. Die CO-Konzentration nimmt daher mit steigendem Luftverhältnis auf ein Minimum ab.

Im stöchiometrischen Bereich (\(\lambda = 1 \)) lassen sich die Reaktionen in sehr guter Nähung als Bruttovorgang durch die Wasser-Gas-Shift-Reaktion beschreiben.

\[
\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2
\]

Im überstöchiometrischen Bereich sind auf Grund des Ungleichgewichts der Reaktion

\[
\text{CO} + \text{OH}^- \rightarrow \text{CO}_2 + \text{H}^-
\]

mehr H^\text{-} als OH^- -Radikale vorhanden und die Oxidation läuft gebremst ab. In extrem mageren Gemischen (\(\lambda > 1,4 \)) entsteht vermehrt CO auf Grund des niedrigen Temperaturniveaus [Merker99].

Abbildung 2-20 zeigt den Verlauf des bei der Verbrennung entstehenden Kohlenmonoxids über der Luftzahl \(\lambda \) für den überstöchiometrischen Bereich (mageres Gemisch):

Abbildung 2-20: Qualitativer Verlauf der CO Konzentration über der Luftzahl \(\lambda \) [Merker99]

2.4.4 Brennertypen

Die Brennertypen unterscheiden sich im baulichen Aufwand, in der Flammenform, in der Temperatur und demzufolge auch in der Abgasqualität. Neben der gebildeten Menge an Stickoxiden und an Kohlenmonoxid ist vor allem die Rußarmut ein Maß für die Qualität der Verbrennung von Kohlenwasserstoffen. Die Menge der Schwefeldioxide im Rauchgas hängt lediglich von der zugeführten
Schwefelmenge im Brenngas ab. Das Anodenabgas ist frei von Schwefelverbindungen.

Beim Betrieb eines Brenners mit Anodenabgas verbleibt hauptsächlich das Problem der NO\(_X\)-Bildung; da im Anodenabgas nur wenige C-Atome enthalten sind, kann prozentual nur wenig Ruß oder CO gebildet werden. Die folgende Tabelle gibt einen Überblick über die gängigsten Brenntypen.

Besonders Interessant für den Einsatz im Brennstoffzellensystem erscheinen die katalytische Verbrennung und der Flächenbrenner auf Grund ihrer niedrigen Flammtemperatur und der damit verbundenen geringen NO\(_X\)-Bildung. Da katalytische Brenner relativ teuer sind, eine geringe Modulation aufweisen und in Bezug auf langfristige Betriebssicherheit noch im Entwicklungsstadion sind [istm03], wird der katalytische Brenner für die Entwicklung des Systems hier nicht weiter betrachtet, aber in Zukunft kann er eine interessante Alternative sein.

<table>
<thead>
<tr>
<th>Name</th>
<th>Beschreibung</th>
<th>NO(_X) Bildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebläsebrenner</td>
<td>Die Luft wird dem Brenngas über ein Gebläse zugeführt, mit ihm vermischt und verbrannt.</td>
<td>Mäßig</td>
</tr>
<tr>
<td>atmosphärischer Brenner</td>
<td>Die benötigte Luft wird durch Sogwirkung des Brenngases von selbst angesaugt (inhomogene Flamme). Durch Kühlstäbe wird die Flammtemperatur herabgesetzt und die NO(_X)-Bildung reduziert (LowNO(_X)).</td>
<td>Stark</td>
</tr>
<tr>
<td>atmosphärischer Vormischbrenner</td>
<td>Brenngas und Luft mischen sich schon vor der Flamme (homogene Flamme, niedrigere Verbrennungstemperatur).</td>
<td>Mäßig</td>
</tr>
<tr>
<td>Katalytischerbrenner</td>
<td>Exotherme Oxidation von Brenngas und Luft an einem Katalysator, dadurch geringe Temperatur und nahezu frei formbarer Körper.</td>
<td>Schwach</td>
</tr>
</tbody>
</table>

Zunächst wird jedoch der im Reformer bereits integrierte Gebläsebrenner (Pilotbrenner) auf Grund seiner geringen Anschaffungskosten bzgl. seiner Eignung für die Verbrennung von Anodenabgas untersucht bzw. modifiziert (Kapitel 3.2.2).
2.5 Wirkungsgraddefinitionen im Brennstoffzellensystem und ihre Auswirkungen

Der Wirkungsgrad wird allgemein definiert als das Verhältnis von Nutzen zu Aufwand bzw. nutzbarer Leistung oder Energie zu aufgewendeter Leistung oder Energie:

\[\eta = \frac{P_{\text{Nutz}}}{P_{\text{Aufwand}}} \]
Gl. 2-24

Kinetische oder potentielle Energien spielen bei der Betrachtung von stationären Brennstoffzellensystemen selten eine Rolle. Wärmeenergie, chemisch gebundene Energie, Kompressionsarbeit und elektrische Energie sind hingegen zu berücksichtigen.

Wasserstofferzeuger

Für einen Wasserstofferzeuger ist der Nutzen die im produzierten Wasserstoffstrom enthaltene chemische Energie \(P_{\text{th,H2}} \). Wird bei der Wasserstofferzeugung zusätzlich Wärme \(Q \) oder Strom \(P_{\text{el.}} \) gewonnen, so kann auch dies entsprechend als Nutzen berücksichtigt werden. Zählt man die nutzbaren Energien im Quotienten zusammen, so spricht man von einem Nutzungsgrad.

Im Aufwand sollte neben der chemischen Leistung des Eduktes \(P_{\text{th,Edukt}} \) die zur Produktion des Wasserstoffes notwendige Leistung (\(P_{\text{el.}} \) und/oder \(P_{\text{th.}} \)) berücksichtigt werden.
Dabei stehen im Zähler von Gl. 2-25 die nutzbaren Leistungen, wie der produzierte Wärmestrom, der produzierte Wasserstoff und ggf. produzierter elektrischer Leistung. Ggf. ist die thermische oder die elektrisch aufgewendete Leistung neben der chemischen Leistung des Eduktvolumenstroms zu berücksichtigen. Es hängt vom Wasserstoffergätsungsverfahren ab welcher Aufwand bzw. welcher Nutzen zu berücksichtigen ist.

Der Wirkungsgrad für den im hier betrachteten System zur Wasserstoffergätsung benutzten Dampfreformer kann aus Gl. 2-25 abgeleitet werden. Dabei ist die im Wasserstoff enthaltene, produzierte chemische Leistung als Nutzen zu sehen und der Aufwand besteht aus den chemischen Leistungen der Stoffströme die in den Brenner bzw. in den Reformer eingehen. Für ein reales System ist noch zusätzlich die benötigte elektrische Leistung für die Peripheriekomponenten zu berücksichtigen. Somit ergibt sich der Nettowasserstoffwirkungsgrad (inkl. Peripherieleistung) zu:

\[
\eta_{H_2,Netto} = \frac{P_{th,H_2}}{P_{el,Peripherie} + P_{th,Br} + P_{th,Edukt}} = \frac{\dot{n}_{H_2} \cdot H_{u,H_2}}{P_{el,Peripherie} + \dot{n}_{Br} \cdot H_{u,Br} + \dot{n}_{Ref,Edukt} \cdot H_{u,Edukt}}
\]

Oft wird auch der Bruttowasserstoffwirkungsgrad (System ohne Peripherieverluste) zum Vergleich von Wasserstoffergätsern herangezogen:

\[
\eta_{H_2,Brutto} = \frac{P_{th,H_2}}{P_{th,Br} + P_{th,Edukt}} = \frac{\dot{n}_{H_2}}{\dot{n}_{Br} + \dot{n}_{Ref,Edukt}} \cdot \frac{H_{u,H_2}}{H_{u,Edukt}}
\]

Es empfiehlt sich, nicht das Restmethan im Nutzen zu berücksichtigen, da dies zu einem Wirkungsgrad von 100 % führen würde, wenn kein Umsatz im Reformer stattfindet. Je nach Wahl der Systemgrenzen ist der produzierte Wasserstoff noch um die Verluste in der Gasfeinreinigung z.B. SelOx oder Membranreinigung, zu reduzieren. Für Gl. 2-27 ergibt sich so

\[
\eta_{H_2,Netto} = \frac{P_{th,H_2}}{P_{el,Peripherie} + P_{th,Br} + P_{th,Edukt}} = \frac{(\dot{n}_{H_2,Prod} - \dot{n}_{H_2,Verlust}) \cdot H_{u,H_2}}{P_{el,Peripherie} + \dot{n}_{Br} \cdot H_{u,Br} + \dot{n}_{Ref,Edukt} \cdot H_{u,Edukt}}
\]
Ein zum Schutz der Zelle eingesetzter Air-Bleed (die Zugabe von Luft zum Brenngas um die Zellen vor CO-Verunreinigungen aus dem Reformatgas im ppmv Bereich zu schützen) sollte ebenfalls zu den Wasserstoffverlusten und somit zum Reformer gerechnet werden um die Vergleichbarkeit der Zellleistung gegenüber dem Betrieb mit reinem Wasserstoff sicherzustellen.

Bestimmend für den Wirkungsgrad eines Dampfreformers sind somit:
- die Wärmeintegration (bzw. die Wärmein- und -verluste z.B. über das Rauchgas),
- der Umsatz (Katalysatorcharakteristik),
- die Verluste durch die Gasfeinreinigung und
- die benötigten Peripherieleistungen.

Brennstoffzelleneinheit

\[
\eta_{BZE,\text{el.,Netto}} = \frac{P_{\text{el,Nutz}}}{P_{\text{th,H2,Ein}}} \quad \text{Gl. 2-29}
\]

\[
\eta_{BZE,\text{th.,Netto}} = \frac{Q}{P_{\text{th,H2,Ein}}} \quad \text{Gl. 2-30}
\]

Befinden sich im System Peripheriekomponenten mit entsprechenden elektrischen Verbrauchern, so wird rechnerisch der Nutzen geschmälert und nicht der Aufwand erhöht. Würde man den Aufwand erhöhen, so könnte der Wirkungsgrad nicht null werden, wenn der Nutzen gleich dem Aufwand ist. Der Nettonutzungsgrad folgt demnach zu

\[
\eta_{BZE,\text{Netto}} = \frac{P_{\text{el,Prod}} - P_{\text{el,Periph.}} + Q_{\text{Nutz}}}{P_{\text{th,H2,Ein}}} \quad \text{Gl. 2-31}
\]

Spezielle Wirkungsgrade der Zelle wie z.B. der Gasnutzungsgrad oder Spannungswirkungsgrad wurden in Kapitel 2.1 bereits definiert.

Brennstoffzellensystem

Abbildung 2-21 verdeutlicht die Systemgrenzen eines Brennstoffzellensystems wie es in dieser Arbeit betrachtet wird und hilft somit den Wirkungsgrad zu bestimmen. $P_{\text{el, Aufwand}}$ bezieht alle elektrischen Verbraucher (Steuerung, Pumpe, Ventile, Sensoren) mit ein. Der elektrische Aufwand wird von der produzierten elektrischen Leistung abgezogen. Dies ergibt die elektrisch nutzbare Leistung. Die nutzbare Wärme entspricht der produzierten Wärme nach Abzug der Wärmeverluste. Der Gesamtsystemwirkungsgrad (auch Energienutzungsgrad genannt) ergibt sich somit zu:

$$\eta_{\text{BZE, el., Brutto}} = \frac{P_{\text{el, Prod.}}}{P_{\text{th, H2, Ein}}}$$ \hspace{1cm} \text{Gl. 2-32}

Abbildung 2-21: Energieflüsse am Brennstoffzellensystem

Die thermischen und elektrischen Wirkungsgrade und der Nutzungsgrad ohne Verluste ergeben sich analog zu:

$$\eta_{\text{BZS, Netto}} = \frac{P_{\text{el, Nutz}} + \dot{Q}_{\text{Nutz}}}{P_{\text{th, Br.}} + P_{\text{th, Edukt}}}$$ \hspace{1cm} \text{Gl. 2-33}
Kapitel 2 Einführung in die Brennstoffzellensysteme

\[\eta_{BZS, \text{Brutto}} = \frac{\dot{Q}_{\text{Prod.}}}{P_{\text{th, Br}} + P_{\text{th, Edukt}}} \quad \text{Gl. 2-35} \]

\[\eta_{BZS, \text{Brutto}} = \frac{P_{\text{el, Prod.}} + \dot{Q}_{\text{Prod.}}}{P_{\text{th, Br}} + P_{\text{th, Edukt}}} \quad \text{Gl. 2-36} \]

Um die Nettowirkungsgrade zu erhalten, wird für den elektrischen Nettowirkungsgrad die Stackleistung an den Klemmen um den Leistungsbedarf der Peripheriekomponenten und für den thermischen Nettowirkungsgrad die im Zellkühlwasser enthaltene Wärmeleistung um die Wärmeverluste reduziert.

Da die Zellen den vom Reformer produzierten Wasserstoff nicht vollständig verbrauchen kann, wird das Anodenabgas weiter verwertet. Möglichkeiten der Anodenabgasnutzung wurden in Kapitel 2.4 bereits ausführlich diskutiert. Für eine interne Anodenabgasrückführung auf den Reformerbrenner kann das Anodenabgas wie folgt berücksichtigt werden:

\[\eta_{BZS, \text{el, Netto}} = \frac{P_{\text{el, Prod.}} - P_{\text{el, Aufwand}}}{P_{\text{th, Br}} + P_{\text{th, Edukt}} - P_{\text{th, H2, AA}} - P_{\text{th, CH4, AA}} + P_{\text{th, EG}}} \quad \text{Gl. 2-37} \]

\[\eta_{BZS, \text{th, Netto}} = \frac{\dot{Q}_{\text{Prod.}} - \dot{Q}_{\text{Verluste}}}{P_{\text{th, Br}} + P_{\text{th, Edukt}} - P_{\text{th, H2, AA}} - P_{\text{th, CH4, AA}} + P_{\text{th, EG}}} \quad \text{Gl. 2-38} \]

\[\eta_{BZS, \text{th, Netto}} = \frac{P_{\text{el, Prod.}} - P_{\text{el, Aufwand}} + \dot{Q}_{\text{Prod.}} - \dot{Q}_{\text{Verluste}}}{P_{\text{th, Br}} + P_{\text{th, Edukt}} - P_{\text{th, H2, AA}} - P_{\text{th, CH4, AA}} + P_{\text{th, EG}}} \quad \text{Gl. 2-39} \]

Gl. 2-37 und Gl. 2-38 geben den elektrischen und den thermischen Nettowirkungsgrad für ein Gesamtsystem mit Anodenabgasrückführung auf den Brenner des Reformers wieder. Gl. 2-39 gibt den Nutzungsgrad des Systems nach Abzug aller Verluste wieder. Bei den Berechnungen wird berücksichtigt, dass die Inertgase des Anodenabgases mit erhitzt werden müssen, was zusätzliche Brennerleistung erfordert (P_{\text{th, EG}}), um denselben Wärmestrom innerhalb des Reformers zu gewährleisten. Alternativ kann auch der Heizwert des Anodenabgases berechnet werden um die für den Betrieb des Brenners notwendige Leistung zu ermitteln.

Mit den getroffenen Definitionen lässt sich der Gesamtsystemwirkungsgrad auch ausdrücken als

\[\eta_{BZS, \text{Brutto}} = \eta_{BZE} \cdot \eta_{H2, \text{Erzeuger}} \quad \text{Gl. 2-40} \]
2.6 Überblick über die Brennstoffzellensysteme

Brennstoffzellensysteme lassen sich unter verschiedenen Gesichtspunkten kategorisieren z.B.:

- **Einsatzbedingungen:**
 - Netz-parallel
 - Netz-autark
 - mobil
 - tragbar
 - stationär

- **Gasversorgung / Wasserstoffträger:**
 - Wasserstoff als industrielles Nebenprodukt oder aus der Elektrolyse
 - Druckwasserstofftank
 - Flüssigwasserstoffspeicher
 - Metallhydridspeicher
 - Wasserstoffproduktion aus kurzkettigen Kohlenwasserstoffen
 - Dampfreformer
 - Partielle Oxidation
 - Autotherme Reformierung
 - Direkt- Methanol, Ethanol, Natriumbohrhydrid etc.
 - Benzin, Diesel (langkettige Kohlenwasserstoffe)
 - Katalytisches Cracken

- **Leistungsklasse**

- **Typ der Brennstoffzelle**

Aus den Einsatzbedingungen bzw. den Randbedingungen lässt sich der Aufbau des Systems ableiten. Im Folgenden soll ein Überblick über aktuelle Entwicklungen, Projekte und Produkte gegeben werden.
Kapitel 2 Einführung in die Brennstoffzellensysteme

Mobile Systeme:

Bei den mobilen Systemen wird vor allem durch die Automobilhersteller die Entwicklung bei den Brennstoffzellensystemen vorangetrieben. Der eingesetzte Brennstoff, die Leistung und die Peripherie (Pufferkondensatoren, Batterien etc.) hängen bei mobilen Systemen im besonderen Maße von der jeweiligen Anwendung ab. Oft kann die produzierte Wärme im System nicht genutzt werden und muss an die Umgebung abgegeben werden, was den Gesamtsystemwirkungsgrad reduziert.

Von Vorteil sind bei den Zielanwendungen meist der emissionslose Betrieb und die Effizienz der Brennstoffzellensysteme. So dass diese Fahrzeuge in...
touristisch attraktiven Altstädten, in Naturschutzgebieten oder auch in Arbeitshallen eingesetzt werden.

Tragbare Systeme

Bei den tragbaren Systemen wird zuerst der kommerzielle Durchbruch der Brennstoffzellsysteme erwartet. Eingesetzt werden hier vor allem PEMFC und DMFCs. Entsprechend variiert die Brennstoffversorgung von Wasserstoff über Methanol bis hin zu Propan oder Butan für Druckreformersysteme für den Campingbereich. Entsprechend der Größe bzw. der Leistung werden die tragbaren Brennstoffzellsysteme (BZS) unterteilt nach:

- **Micro BZS (bis 20 W):** Camcorder, Notebook, Handy, Cordless Tools
- **Midi BZS (20 W – 200 W):** Laptops, tragbare Steckdosen, Batterieersatzsysteme (z.B.: Smart Fuel Cell)
• Mini BZS (200 W - 1 kW) Notstromaggregate, Generatoren (z.B. Campingbedarf)

Die Brennstoffzellensysteme fungieren hier meist als Batterieersatzsysteme. Ihre Stärke ist bei diesem Einsatz die Lebensdauer und die Zuverlässigkeit im Vergleich zur Batterien. Auch ist der Platzbedarf geringer.

Stationäre Systeme

Bei stationären Systemen besteht ein wesentlicher Vorteil darin, dass oftmals die Abwärme der Zellen genutzt werden kann.

• **Hausenergieversorgung:** Die Hausenergieversorgung stellt für Brennstoffzellensysteme ein viel versprechendes Einsatzgebiet dar. Durch Kraftwärme-Kopplung kann vor allem im Winter der Nutzungsgrad eines Brennstoffzellenheizgerätes besonders hoch liegen. Über die DEC-Technik (Desiccant Evaporative Cooling) besteht die Möglichkeit vor allem bei größeren Systemen für Institutionen, Hotels, öffentliche Gebäude oder Mehrfamilienhäuser die Wärme der Brennstoffzellen in einer bestehenden Klimaanlage umzusetzen und so die meiste Zeit des Jahres die Abwärme der Zellestapel sinnvoll zu nutzen, was den Gesamtnutzungsgrad solcher Systeme aufs Jahr gesehen weiter erhöht.

Für die Wasserstoffversorgung von Brennstoffzellenheizgeräten bieten sich die im Haus vorhandenen Kohlenwasserstoffe an (Heizöl, Erdgas, Propan, LPG). Eine direkte Versorgung der Systeme mit Wasserstoff ist auf Grund der derzeit fehlenden Infrastruktur nicht möglich.

Eine Vielzahl von deutschen und internationalen Firmen arbeitet augenblicklich an der Entwicklung von Brennstoffzellenheizgeräten. Die Entwicklungsspanne geht dabei von Einheiten für Einfamilienhäuser mit etwa 1 kWel (PEM-FC) über Einheiten für Mehrfamilienhäuser mit etwa 5-10 kWel (PEM-FC) bis hin zu Blockheizkraftwerken mit 250 kWel (MCFC).

Kapitel 2 Einführung in die Brennstoffzellensysteme

Im Bereich der Blockheizkraftwerke ist in Deutschland vor allem MTU-Friedrichshafen zu nennen, die ein MCFC–System unter der Bezeichnung Hot-Module (mit 245 kW_{el} und einem elektrischen Systemwirkungsgrad von ca. 47%) in Deutschland bereits in zahlreichen Projekten eingesetzt bzw. vertrieben haben. Auch „Siemens-Westinghouse“ entwickelt auf Hochtemperaturbrennstoffzellen (SOFC) basierte Blockheizkraftwerke (100kW).

Notstromversorgung und Stromgeneratoren:

3 Vermessung und Optimierung eines Dampfreformers

3.1 Ursprüngliche Parameter des Dampfreformers

Der Wirkungsgrad in Abbildung 3-1 wurde berechnet ohne die reale Gaszusammensetzung bzw. den realen Umsatz im Dampfreformer zu kennen, da eine Bestimmung des Restmethangehaltes im Produktgas zu dem Zeitpunkt nicht möglich war. Daher wurde folgende Gleichung zur Berechnung des Wasserstoffwirkungsgrades verwendet:

\[
\eta_{\text{Ref,Mathiak}} = \frac{P_{H2,\text{Simuliert}}}{P_{CH4,\text{Ref,Simuliert}} + P_{CH4,\text{Br}}},
\]

Abbildung 3-1: Stationäre Messpunkte am Reformersystem nach [Mathiak03]

Zur Gasfeinreinigung soll eine SelOx verwendet werden (s. Kapitel 2.3.2). Sie gilt als leichter zu kontrollieren, hat jedoch Nachteile für den Systemwirkungsgrad, da durch sie als Nebenreaktion zur CO-Oxidation ein Teil des Wasserstoffs zu Wasser umgesetzt wird, der somit für die Stromerzeugung in der Brennstoffzelle nicht mehr zur Verfügung steht. Alternativ zur SelOx hätte z.B. eine selektive Methanisierung gewählt werden können, zum Zeitpunkt der Systementwicklung stand jedoch kein befriedigend zu kontrollierender SelMeth-Katalysator zur Verfügung, der über ein ausreichend großes Temperaturfenster verfügt um unter Systembedingungen einsatzfähig zu sein. Da das hier entwickelte System ohne großen Überdruck operieren sollte, kommen CO-Reinigungsverfahren, die Druck benötigen, für dieses System nicht in Frage. Die zur Erzeugung des Drucks benötigte Leistung schmälert den Wirkungsgrad des Systems nach überschlägigen Rechnungen derart, dass die durch den reinen Wasserstoff erzielte höhere Leistung der Brennstoffzelle dies nicht kompensieren kann.
3.1.1 Erstmalige Vermessung des Dampfreformers

$$\sigma = \sqrt{n \sum x^2 - (\sum x)^2 \over n^2}$$

Gl. 3-2

Ziel der Vermessung des Dampfreformers war zunächst die Identifikation optimaler Betriebsparameter. Die folgenden Werte wurden zur Optimierung der
Betriebsparameter variiert: R/B, S/C und die Brennerfußposition X\textsubscript{Br}. Tabelle 3-1 gibt nähere Informationen über diese Betriebsparameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stellgröße</th>
<th>Erklärung</th>
<th>Grenzen</th>
<th>Auswirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/B</td>
<td>V\textsubscript{CH4,Br.}</td>
<td>Verhältnis der Brennerleistung zur Eduktleistung des Reformers</td>
<td>Überhitzung oder Auskühlung des Reformers</td>
<td>Geringere Brennerleistung sorgt prinzipiell für einen besseren Wirkungsgrad. Mehr Wärme sorgt für einen besseren Umsatz.</td>
</tr>
<tr>
<td>S/C</td>
<td>V\textsubscript{H2O}</td>
<td>Molares Verhältnis der Wassermoleküle zu der Anzahl der Kohlenstoffatome</td>
<td>Auskühlung der Shift oder katalytisches Cracken im Reformer</td>
<td>Bei weniger Wasser wird weniger Wärme im Reformer benötigt. Mehr Wasser führt zu einem besseren Umsatz.</td>
</tr>
<tr>
<td>X\textsubscript{Br.}</td>
<td>X\textsubscript{Br.}</td>
<td>Vertikale Brennerposition im Reformer</td>
<td>bauliche Grenzen</td>
<td>Veränderung des Temperaturprofils im Reformer führt zu unterschiedlichen Umsätzen.</td>
</tr>
</tbody>
</table>

Abbildung 3-5 zeigt den von einer Thermokamera aufgenommenen Temperaturverlauf (rechts) und eine 3D-Temperaturverteilung (links) über einer, mit einem Brenner beheizten, zylindrischen Brennraumgeometrie. Unter Betriebsbedingungen verändert sich dieses Temperaturprofil jedoch noch, entsprechend der Katalysatoraktivität, da die im Reformer ablaufenden Reaktionen überwiegend endotherm sind. Des Weiteren heizt sich das Reformerumfeld ebenfalls auf, was Auswirkungen auf die Temperaturverteilungen im Reformer und die Strömung in der Brennkammer hat.

Abbildung 3-5: Thermographieaufnahme der Reformergeometrie

Abbildung 3-6 zeigt den Zusammenhang zwischen Wirkungsgrad und Brennerfußposition. Der Wirkungsgrad des Reformers ist wie folgt definiert:

\[\eta_{H_2,Erzeuger} = \frac{P_{th,H_2}}{P_{th,Br.} + P_{th,Edukt}} \] (S. Gl. 2-27)

Abbildung 3-6 zeigt, dass sich der Wirkungsgrad bzw. der Umsatz im Reformer verbessert, wenn der Brenner näher am Reformerboden sitzt. Aus den Messungen lässt sich schlussfolgern, dass eine höhere Temperatur im Hauptreformerkatalysator für dessen Kinetik und damit den Umsatz entscheidend ist. Der Abstand der Brennerspitze zum Reformerboden wurde auf Grund dieser Versuche auf 10 mm festgelegt.
Abbildung 3-6: Auswirkung der Variation der Reformerbrennerfußposition auf den Wirkungsgrad des Dampfreformers

Der Wasserstoffwirkungsgrad bleibt dabei auf Grund des geringeren Wärme- eintrags ab 60% der Nennlast von 2,5 kW_{th,H2} in etwa konstant. Der Grund hierfür ist die begrenzte Modulation des Brenners. Dieser verfügt im Serienzustand nur über eine Modulation von 2 (100 % - 50%) so dass am 30% Lastpunkt der Brenner mehr Wärme liefert als für den Prozess benötigt wird. Um ein Überhitzen zu vermeiden wird am 30% Lastpunkt das S/C erhöht, was aber negativen Einfluss auf den Wirkungsgrad hat. Der Einfluss des S/C-Verhältnisses auf das
Reaktionsgleichgewicht wurde idealisiert berechnet und ist in Abbildung 3-7 dargestellt.

Abbildung 3-7: Einfluss des S/C-Verhältnisses auf die Gleichgewichtslage (wasserfrei, 1 bar; dargestellt sind S/C-Verhältnisse von 1 – 4)[Wriske98]

Da der Wasserstoffwirkungsgrad hier anders als bei [Mathiak03] (vergleiche Gl. 2-27 und Gl. 3-1) definiert ist und der reale Umsatz berücksichtigt wird, fällt der Wirkungsgrad in der Vermessung des unveränderten Dampfreformers geringer aus. Der Wasserstoffwirkungsgrad liegt bei dieser Vermessung auf Grund des schlechten Umsatzes (s. Abbildung 2-6) bei 72,5 % im Maximum.
3.1.2 Entwicklungsziele (Soll)

Um eine Kopplung des Reformers mit der Zelle zu ermöglichen und ein effizientes Systems zu entwickeln, werden zunächst die folgenden Ziele definiert, andere wichtige Entwicklungsziele wie Zuverlässigkeit oder Betriebssicherheit werden zunächst noch nicht betrachtet.

- Die Steigerung des Wirkungsgrades gilt als vordringliches Entwicklungsziel um ein wirtschaftliches System zu erhalten.
- Kohlenmonoxid ist ein Zellgift. Die Kohlenmonoxidkonzentration hinter dem Dampfreformer ist für die Kopplung mit einer Brennstoffzelle zu hoch. Daher ist ein entsprechendes Gasreinigungsverfahren nötig. Die in Kapitel 4.1 beschriebene und im System verwendete Brennstoffzelle erlaubt maximal 50 ppm Kohlenmonoxidkonzentrationen, bei Lastwechseln sind kurzzeitig 100 ppm zulässig. Es ist daher wichtig die Kombination aus Reformer, Shift-

Abbildung 3-8: Anfängliche Konzentrationen und Wirkungsgrad am Dampfreformer (inkl. der berechneten Standardabweichung)
Kapitel 3 Vermessung und Optimierung eines Dampfreformers

- Stufe, Kohlenmonoxid-Feinreinigung und Zelle so abzustimmen und zu betreiben, dass die erlaubten Konzentrationen nicht überschritten werden.
- Kopplung von Brennstoffzelle und Dampfreformer
- Die Kombination von Dampfreformer und Brennstoffzelle zu einem Brennstoffzellsystem macht die Entwicklung von speziellen Betriebsstrategien notwendig. Lastschwankungen können zwar vom öffentlichen Stromnetz abgefangen werden, da das System netzparallel betrieben werden soll, aber je schneller das System dem Lastbedarf folgen kann, um so besser amortisiert es sich.
- Das System sollte schnell z.B. am Morgen auf Betriebstemperatur gebracht werden können, um schnell Strom produzieren zu können. Daher sollte es über einen Energie sparenden Ruhebetrieb verfügen oder über eine kurze Aufheizzeit.
- Ein weiterer wichtiger Faktor für den wirtschaftlichen Betrieb des Systems ist die Modulation. Eine Steigerung der derzeitigen Modulation (30 % - 100 %; 0,75 kW\textsubscript{H2} - 2,5 kW\textsubscript{H2}) ist daher wünschenswert. Die Modulation hängt hauptsächlich vom Brenner ab. Hier besteht die Gefahr des Einwanderns der Flamme ins Brennerrohr (s. Kapitel 2.4) bei zu geringer Brennerleistung bzw. zu hoher Flammgeschwindigkeit.

In Kapitel 3.2 wird die Umsetzung dieser Entwicklungsziele detailliert beschrieben, soweit sie nicht nur im Gesamtsystemkontext zu untersuchen sind wie z.B. die Betriebsstrategien - in diesem Fall sei auf Kapitel 5 verwiesen.
3.2 Weiterentwicklungen und Optimierungen des Dampfreformers

Die Weiterentwicklung des Reformers dient in erster Linie der Anpassung des bestehenden Reformers an die Anforderungen, die aus dem kombinierten Betrieb des Dampfreformers mit der Brennstoffzelle entstehen. Zusätzlich zu den in 3.1.2 definierten Entwicklungszielen sind Betriebssicherheit, Zuverlässigkeit und Kosten bei der Entwicklung zu berücksichtigen.

Neben den in den folgenden Kapiteln detailliert beschriebenen Änderungen am Dampfreformer wurden auch kleinere Änderungen durchgeführt, die hier kurz erläutert werden sollen.

3.2.1 Hülle und Isolierung

In Kapitel 3.1.2 wurde die Verbesserung des Wirkungsgrads als wichtiges Entwicklungsziel definiert. Die in Abbildung 3-3 gezeigte alte Isolierung ist nur als
Kapitel 3 Vermessung und Optimierung eines Dampfreformers

Der ursprüngliche Reformer verfügte über mehrere Edukteingänge um ein schnelleres Aufheizen zu ermöglichen. Untersuchungen ergaben, dass der Prozess durch die zusätzlichen Zugänge nicht wesentlich verkürzt werden kann (>10min. bei gleichem Inertgasvolumenstrom und gleicher Brennerleistung). Um eine einfache für spätere Massenproduktion geeignete und gut geschlossene Hülle konstruieren zu können, wurde auf diese zusätzlichen Eingänge verzichtet und somit eine etwas längere Aufheizzeit des Dampfreformers in Kauf genommen.

Abbildung 3-9: Draufsicht und Seitenansicht der Reformerhülle

Durch die Veränderungen bei der Hülle und der Isolierung wurde die Temperaturverteilung im Reformer wesentlich verbessert. Druckstöße durch Schlagverdampfung konnten nach diesen Änderungen nicht mehr beobachtet werden.
Der Restmethangehalt ist deutlich von 1,8 Vol.-% auf 1 Vol.-% zurückgegangen. Folglich ist der Wasserstoffwirkungsgrad durch den verbesserten Umsatz und durch die geringeren Wärmeverluste deutlich angestiegen und liegt nun bei ca. 76%. Die Verbesserung im Methanumsatz ist auf das durch die Isolierung veränderte Temperaturprofil im Reformer zurück zu führen. Auch die Kohlenmonoxidkonzentration ist gesunken. Die Modulation hat sich durch die verbesserte Isolierung und durch die parallel am Brenner durchgeführten Modifikationen (s. Kapitel 3.2.2) ebenfalls erhöht, was man an der Skalierung der Abszisse bis 20 % erkennen kann.

Der Grund für die Reduktion der Kohlenmonoxidkonzentration kann zum einen in der Veränderung des Temperaturprofils im Reformer und somit des Reaktionsgleichgewichtes zu Gunsten der CO₂-Reaktion (Gl. 2-16) liegen, zum anderen wurde die Shift-Stufe im Rahmen der baulichen Modifikationen leicht vergrößert, so dass sie 4% mehr Katalystatorvolumen aufnehmen konnte.

Abbildung 3-11: Schematischer Aufbau des im Reform er verwendeten Zündbrenners

In Kapitel 3.1.2 wurden mehrere Entwicklungsziele bestimmt, die direkt oder indirekt den Brenner betreffen:

1. Realisierung einer Anodenabgasrückführung zur Verbesserung des Systemwirkungsgrades.
2. Erhöhung der Modulation der Brennerleistung und somit die des Reformers, um die Wirtschaftlichkeit des Systems zu erhöhen.
3. Sicherer Betrieb durch eine Flammüberwachung des Brenners ist trotz des wasserstoffreichen Anodenabgases zu gewährleisten (Flammionisation s. auch Kapitel 2.4).

4. Einhalten der gesetzlichen Grenzwerte an Schadstoffen im Rauchgas.

Tabelle 3-2 gibt einen Überblick über die für CO und NO\(_X\) gültigen Emissionsgrenzwerte. Die hier aufgeführten Grenzwerte gelten für gasbefeuerte Heizkessel. Es ist zu erwarten, dass sich die Emissionsgrenzwerte für Brennstoffzellenheizgeräte an die Grenzwerte für Heizkessel anlehnen. Das Erzielen der Werte des Umweltschutzabzeichens „Blauer Engel“, welches Emissionsgrenzwerte unter den gesetzlichen vorschreibt und so besonders umweltfreundlich Produkte auszeichnet, ist für ein Brennstoffzellensystem empfehlenswert, da bei diesen Systemen der Umweltaspekt als Verkaufsargument mit im Vordergrund stehen dürfte. Rechtlich bindend für das System sind jedoch die Werte der Bundes-Immissions-Schutz-Verordnung (BImSchV).

<table>
<thead>
<tr>
<th>Tabelle 3-2: Emissionsgrenzwert verschiedener Gesetze und Verordnungen für gasbefeuerte Heizkessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/kWh</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>NO</td>
</tr>
</tbody>
</table>

Um diese Entwicklungsziele zu erreichen, wurden am Brenner die folgenden Modifikationen ausgeführt:

auch bei geringen Volumenströmen zu verhindern. Sie stellen somit eine zusätzliche Sicherheitssperre da.

Abbildung 3-12: Originaler und modifizierter Brennerfuß mit Düsen

Abbildung 3-13: Vergleich von Erdgas- und Stadtgasdrallscheibe

In Abbildung 3-13 ist der Unterschied zwischen der Erdgas- und der Stadtgasdrallscheibe zu sehen. Die Stadtgasdrallscheibe hat wesentlich tiefere und stärker verwundene Nuten, was zu einer stärkeren Verwirbelung und einer höheren Strömungsgeschwindigkeit des austretenden Gases führt. Dadurch wird
verhindert, dass die Flamme durch die als FlammbARRIERE fungierende Drallscheibe zurückschlägt und somit der höheren Flammgeschwindigkeit des Wasserstoffs entgegen gewirkt. Als Folge der stärkeren Verwirbelung des Brenngases durch die Stadtgasdrallscheibe wird das Flammbild etwas kompakter wie Abbildung 3-14 beim Vergleich zweier identischer Brenngasgemische zeigt.

Abbildung 3-14: Vergleich der Flammbilder der Stadtgasdrallscheibe und der Erdgasdrallscheibe bei gleichen Bedingungen.

Die stärkere Verwirbelung der Flamme durch die Stadtgasdrallscheibe führt zu einer besseren Durchmischung des Brenngasgemisches, was auch beim Betrieb mit Methan zu einer Reduzierung der CO-Bildung in der Flamme führt (s. Kapitel 2.4.3). Da die Flamme aber auch etwas heißer ist, wird die NO\textsubscript{X}-Bildung geringfügig begünstigt wie Abbildung 3-15 zeigt. (Bildungsmechanismen CO und NO\textsubscript{X} s. Kapitel 2.4). In den Abbildungen werden die mit einem Abgas-Referenz-Messsystem der Firma Testo (350 M/XL) an einem speziellen Brennerteststand gemessenen CO- (Abbildung 3-16) und NO\textsubscript{X}-Konzentrationen (Abbildung 3-15) über den Lastbereich von 30 – 100 % für die Stadtgasdrallscheibe (SGDS) und die Erdgasdrallscheibe (EGDS) verglichen. Die Drallscheiben werden im Betrieb mit Anodenabgasrückführung bei einem Gasnutzungsgrad (GNG) von 80 % und bei der Verbrennung von reinem Methan (o.Rückf.) miteinander verglichen.
Kapitel 3 Vermessung und Optimierung eines Dampfreformers

Abbildung 3-15: Einfluss der Drallscheibe auf die NO\textsubscript{X}-Bildung

Abbildung 3-16: Einfluss der Drallscheibe auf die CO-Bildung
Durch die stärkere Verwirbelung des Brenngases am Ausgang der Stadtgasdrallscheibe kann wie erhofft die Modulation des Brenners erhöht werden. Die Versuche zeigten, dass die Flamme später ausgeblassen wird und dass sie auch bei kleinen Lastpunkten länger über der Drallscheibe brennt. Es konnte eine Modulation von 3 (100 % - 33 %) statt von 2 (100 % - 50 %) erreicht werden. Dies verbessert auch den Wasserstoffwirkungsgrad des Reformers im 30% Lastpunkt um 8% absolut. Dies wird deutlich, wenn man die Abbildung 3-8, die mit dem nicht modifizierten Brenner aufgenommen wurde mit Abbildung 3-10 vergleicht, die mit dem modifizierten Brenner erstellt wurde.

Kapitel 3 Vermessung und Optimierung eines Dampfreformers

zu 4. Der modifizierte Brenner wurde ins System implementiert und die Schadstoffkonzentrationen des Rauchgases beim Betrieb des Brenners mit Anodenabgas im Reformer wurden mit Hilfe des Abgas-Referenz-Messsystems (Testo 350 M/XL) gemessen. Wie Abbildung 3-18 zeigt, liegen die Grenzwerte für NO\textsubscript{X} und CO unter den in Tabelle 3-2 aufgeführten Grenzwerten der BImSchV. Beim Betrieb mit 30 % Teillast des Systems (~40 % Brennerleistung) kommt es zu einer verstärkten NO\textsubscript{X}-Bildung. Kühlt
man die Flamme durch Erhöhung der Luftzahl auf $\lambda \approx 1,4$ ab, so können die Grenzwerte jedoch eingehalten werden. Entsprechende Versuche haben dies gezeigt. Die NO$_X$-Reduktion beruht dabei lediglich auf der Absenkung der Flammtemperatur (s. Kapitel 2.4.3, NO$_X$-Bildung), da die Schadstoffkonzentrationen im Rauchgas rechnerisch gemäß BlmSchV immer auf das trockene, stöchiometrisch verbrannte Gas pro Kilowattstunde Brennerleistung berechnet werden. Verdünnungseffekte durch die zusätzlich zugeführte Luft werden durch diese Art der Schadstoffmessung nicht berücksichtigt. Durch die Erhöhung der Luftzahl wird in diesem Punkt auch die Austrittsgeschwindigkeit erhöht und die Gefahr des Einwanderns der Flamme in die Drallscheibe reduziert, was der Modulation zu Gute kommt. Für den Wirkungsgrad ist die Erhöhung der Luftzahl jedoch von Nachteil, da zum einen die Rauchgasverluste erhöht werden und zum anderen der Wärmeeintrag in den Reformer geringer wird, was sich negativ auf den Umsatz im Reformer auswirkt.

Abbildung 3-18: CO und NOX-Immissionen des Brenners bei Betrieb mit Anodenabgasrückführung.
3.2.3 Gasfeinreinigung

Die Reinigungsleistung der Shift-Stufe reicht nicht aus um die vom Zellhersteller geforderte Kohlenmonoxidkonzentration von 50 ppm zu erzielen (vgl. Abbildung 3-10). Daher ist als weiterer verfahrenstechnischer Schritt eine Gasfeinreinigung nötig. Auf Grund der Erfahrungen am Institut für Energie- und Umweltverfahrenstechnik der Universität Duisburg-Essen wird auf eine selektive Oxidation (SelOx) zurückgegriffen, die gemäß der Vermessung des Katalysators eine gute Reinigungsleistung erzielen dürfte. Bei der selektiven Oxidation wird Kohlenmonoxid an einem Edelmetallkatalysator mit Luftsauerstoff zu Kohlendioxid entsprechend der Reaktionsgleichung

\[\text{CO} + 0,5\text{O}_2 \rightarrow \text{CO}_2 \quad \Delta h_b = +283,0 \text{kJ/mol} \]

umgewandelt. Diese Reaktion ist exotherm.

Der Nachteil der SelOx besteht darin, dass, auf Grund des für eine gute Reinigungsleistung benötigten Luftüberschusses, nicht nur Kohlenmonoxid sondern auch Wasserstoff am Katalysator zu Wasser reagiert und der Gesamtsystemwirkungsgrad somit reduziert wird. Charakteristisch für die Güte einer selektiven Oxidation sind somit die Reinigungsleistung und der dafür benötigte Luftüberschuss \(\lambda \), der wie folgt definiert werden kann.

\[\lambda = \frac{2 \cdot n_{\text{O}_2}}{n_{\text{CO}}} \]

Zum Erzielen möglichst geringer CO-Konzentrationen hinter der SelOx werden oft mehrere SelOx-Reaktoren hintereinander geschaltet. Dadurch lassen sich die
Reaktoren besser auf die Eingangsbedingungen wie CO-Konzentration und Raumgeschwindigkeit abstimmen, was zu einer besseren Reinigungsleistung führt. Man spricht in solchen Fällen von einer mehrstufigen SelOx. Für dieses System wurde jedoch nur eine einstufige SelOx entwickelt um das System einfach zu gestalten. Als Reaktor wurde zunächst ein Ringspaltreaktor entworfen, der mit Luft gekühlt werden kann. Der Vorteil des Ringspaltreaktors besteht in der relativ großen Oberfläche. Da die in der SelOx ablaufenden Reaktionen (Tabelle 2-9) exotherm sind, muss Wärme abgeführt werden.

Die luftgekühlte SelOx besitzt im Inneren des Ringspaltreaktors ein Rohr, welches am unteren Ende zugeschweißt und ringsum mit kleinen Austrittsdüsen versehen ist, so dass die SelOx durch Verschieben dieses Rohrs gezielt an der heißesten Stelle mit kalter Luft gekühlt werden kann.

Die Wärmeübertragung der Luft erwies sich als nicht optimal. Der Luftbedarf, um bei Vollast optimale Betriebstemperaturen (< 160 °C) zu ermöglichen, war mit ca. 100 l/min sehr hoch. Dieser Luftstrom hätte später von einem Gebläse aufgebracht werden müssen, welches eine entsprechend hohe elektrische Leistung benötigt hätte. Dieses Gebläse hätte sich negativ auf die Betriebskosten, den elektrischen Wirkungsgrad, die akustische Signatur und auf die Zuverlässigkeit des Systems ausgewirkt. Daher erschien es besser die in der SelOx produzierte Wärme (ca. 60 W bei Volllast, s. Tabelle 5-4) durch Kopplung mit dem Kühlwasserkreislauf des Brennstoffzellen stapels zu nutzen. Daher wurde die SelOx weiter entwickelt und mit einer Wasserkühlung versehen, die mit einem Teilstrom des Brennstoffzellenkühlwassers (ca. 70 °C) temperiert wird. Eine zusätzliche Pumpe ist somit nicht mehr nötig und die in der SelOx produzierte Wärme kann beim Start zur Erwärmung des Stapels und im Betrieb des Systems mit für die Erwärmung des Hauses oder des Warmwasserspeichers genutzt werden.

Beim Betrieb der luftgekühlten SelOx im unteren Teillastbereich kam es auf Grund des geringen Umsatzes nur zu einer sehr geringen Wärmeentwicklung. Diese war geringer als die Wärmeverluste über die Oberflächen der SelOx und der Leitungen, so dass es trotz Abschaltens der Kühlung zur Auskühlung der SelOx kam. Dadurch sank die Temperatur des Produktgases unter die Taupunktstemperatur des Gases und es kam zur Kondensation in der SelOx. Das Kondensat benetzte die Oberfläche des Katalysators und deaktivierte ihn so. Die SelOx kühlte immer mehr aus und wurde mit Wasser geflutet. Die Wasserkühlung hatte durch das warme Wasser des Zellstapels (ca. 70 °C) den Vorteil, dass die „Kühlung“ im Teillastbereich die Wärmeverluste sehr gering hält (geringes ΔT), und es so kaum noch zur Auskühlung der SelOx unter den Taupunkt kommen
kann. So wurde das Betriebsverhalten der SelOx im Teillastbereich unproblematisch und es wurde kein überhöhtes Lambda mehr benötigt, um die SelOx im Teillastbereich zu wärmen, was den Wirkungsgrad im Teillastbereich weiter verbessert.

Lastwechsel gelangen mit der wassergekühlten SelOx besser als mit der luftgekühlten. Auf Grund der guten Wärmeleitfähigkeit des Wassers kann Wärme schnell aus der SelOx abgeleitet werden, was Überhitzungen des SelOx-Katalysators verhindert. Die SelOx kann durch eine entsprechende Regelung des Kühlwasservolumenstroms immer in einem optimalen Temperaturbereich betrieben werden. Abbildung 3-19 zeigt die wassergekühlte SelOx. Der große Pfeil zeigt die Stelle, an der der Kühlkern in die SelOx eingeführt wird.

Abbildung 3-19: Die wassergekühlte SelOx.
Abbildung 3-20 zeigt das Verhalten der wassergekühlten SelOx im Dauerbetrieb bei Vollast hinter dem Dampfreformer. Die CO-Konzentration liegt dauerhaft unter 30 ppm und somit unter dem vom Brennstoffzellenhersteller geforderten Grenzwert von 50 ppm für den Dauerbetrieb.

Die thermische Verschaltung von wassergekühlter SelOx und Brennstoffzellenstapel ist in Abbildung 3-21 zu sehen. Der Durchfluss des Kühlwassers durch die SelOx wird durch Androsseln des Zellkühlwasserstroms im Hauptkühlwasserstrom geregelt.

Abbildung 3-20: Dauerbetrieb von SelOx und Reformer.

Abbildung 3-21: Integration der wassergekühlten SelOx in den Kühlwasserkreislauf
3.2.4 Vermessung und dynamisches Verhalten des optimierten Systems

Um die in den vorangegangenen Kapiteln beschriebenen Modifikationen (Brennermodifikationen, Isolation, Hülle, SelOx) auf ihre Wirksamkeit zu untersuchen und um einen ersten Eindruck vom Betriebsverhalten des Dampfreformers im Gesamtsystem zu erhalten wurde der Dampfreformer mit synthetischem, trockenem Anodenabgas ($X_{H_2} = 48,4$ Vol.-%; $X_{CO_2} = 37$ Vol.-%; $X_{CH_4} = 1,9$ Vol.-%, $X_{N_2} = 12,8$ Vol.-%) entsprechend einer Gaskonzentration hinter dem Reformer von ($X_{H_2} = 79,1$ Vol.-%; $X_{CO_2} = 19,4$ Vol.-%; $X_{CH_4} = 1$ Vol.-%, $X_{CO} = 0,5$ Vol.-%, mit Air-Bleed = 5 %; $\lambda_{SelOx} = 3$) und einem konstanten Gasnutzungsgrad des Brennstoffzellenstapels von 0,66 zunächst stationär vermessen. Ziel dieser Vermessung war es den Einfluss der Verbrennung des Anodenabgases über den Brenner des Dampfreformers auf die Temperaturverteilung und den Umsatz im Reformer zu erkennen. Abbildung 3-22 zeigt das Ergebnis dieser Vermessungen.

Es ist zu erkennen, dass wesentlich weniger Methan umgesetzt und somit auch weniger Wasserstoff, aber auch weniger CO produziert wird. Grund dafür ist die schlechtere Wärmeinbringung und das durch das Anodenabgas veränderte Temperaturprofil (s. auch Abbildung 3-17). Der Wirkungsgrad ist hier für den Reformer gemäß Gl. 2-27 definiert:

$$\eta_{BZH,el.Netto} = \frac{P_{H_2,Prod.}}{P_{th,Edukt} + P_{th,Br.,CH_4,e.R.}}$$

und berücksichtigt nur den extern zugeführten Methanzustrom, nicht aber die durch das synthetische Anodenabgas zugeführte Leistung.

Abbildung 3-23 zeigt die wichtigsten Volumenströme und die resultierenden Konzentrationen und Temperaturen bei einem Lastwechsel von 30-100%. Es ist

Abbildung 3-22: Statische Vermessung des Reformers mit synthetischem Anodenabgas (inkl. Standardabweichungen)
zu erkennen, dass die CO-Konzentration hinter der SelOx etwa 200 Minuten nach dem Start des Versuchs 60 ppm überschreitet. Der Grund dafür ist jedoch sehr wahrscheinlich die Tatsache, dass die SelOx zu stark gekühlt wurde (ein Anstieg der CO-Konzentration hinter der Shift-Stufe ist zu diesem Zeitpunkt nicht zu erkennen, wohl aber ein Auskühlen des SelOx-Reaktors). Durch die Implementierung einer Temperaturregelung in der SelOx können solche Fehler vermieden werden. Bei der hier vorgenommenen manuellen Durchführung von Lastwechseln können solche Fehler jedoch auf Grund der Komplexität des Systems kaum vermieden werden.

Die durch den Lastwechsel beeinflussten Volumenstromänderungen sind bereits nach 2 Minuten abgeschlossen (s. v.CH4 Ref. in Abbildung 3-23). Die Shift-Stufe erreicht jedoch erst nach 30 Minuten ein konstantes Temperaturniveau. Während des Lastwechsels ist ein Überschwingen der CO-Konzentration hinter der Shift-Stufe zu erkennen. Die CO-Konzentration erreicht dabei fast 0,9 Vol.-%. Dies kann jedoch offensichtlich von der SelOx kompensiert werden, da die CO-Konzentration während und in der Zeit nach der CO-Konzentrationsspitze sich nicht wesentlich erhöht. Konzentrationsspitzen von bis zu 1,2 Vol.-% konnten bei Lastwechseln von der SelOx kompensiert werden, so dass eine CO-Konzentration von 100 ppm nicht überschritten wurde. Verantwortlich sowohl für die Reinigungsleistung der SelOx, als auch der Shift-Stufe sind vor allem die Temperaturen in den Reaktoren. Bei der SelOx ist die Luftzahl zusätzlich von Bedeutung. Sie wurde für die Lastwechsel auf den maximal verfügbaren Volumenstrom von 1 l/min gesetzt um die CO-Konzentrationsspitze zu kompensieren.

Im Reformer kommt es bei Laststeigerungen auf Grund des größeren Wärmebedarfs für die Reaktion und durch die Erhöhung des Eduktvolumenstroms zu einer Abkühlung. Auf Grund der großen thermischen Trägheit des Reformers dauert es einige Zeit, bis die Temperaturen im Reformer ein stabiles, dem Lastpunkt entsprechendes Temperaturniveau erreicht haben.
Abbildung 3-23: Lastsprung des Reformers im Methanbetrieb von 30 % - 100 %

Abbildung 3-24 zeigt einen Lastwechsel von 100 % auf 30 %. Die Volumenstromänderungen sind wie auch in Abbildung 3-23 nach 2 Minuten abgeschlossen. Es kommt hier jedoch zu einem CO-Peak hinter der SelOx. Der Grund für die Kohlenmonoxid-Konzentrationsspitze ist die Temperatur der SelOx, die zunächst noch zu hoch ist. Dies führt zu einer Verschlechterung des Reaktionsgleichgewichtes bzw. der Reinigungsleistung der SelOx, wie Abbildung 3-25 erkennen lässt.

Betreibt man die SelOx, was sinnvoll ist, bei einer bestimmten Raumgeschwindigkeit zunächst im Minima, und ändert dann die Raumgeschwindigkeit (Lastwechsel; z.B. von 7500 auf 5000), so kommt es zu einer fast sprunghaften Erhöhung der CO-Konzentration. Durch Absenken der SelOx-Betriebstemperatur erreicht man dann wieder das neue Betriebsoptimum.
Abbildung 3-24: Lastsprung des Reformers im Methanbetrieb von 100 % - 30 %.

Abbildung 3-25: Umsatzverhalten des SelOx-Katalysators bei verschiedenen Luftzahlen, Temperaturen und Raumgeschwindigkeiten.
Abbildung 3-25 macht deutlich, dass jeder Lastwechsel zu einer Erhöhung der CO-Konzentration hinter der SelOx führen muss, wenn die SelOx zuvor im optimalen Betriebspunkt betrieben wurde. Der optimale Betriebspunkt ist abhängig von der eingehenden CO-Konzentration und von den im Reaktor herrschenden thermodynamischen Zustandsgrößen: Raumgeschwindigkeit, bestimmt durch die Katalysatormasse und den Lastpunkt, Druck und Temperatur. Um einen optimalen Betrieb der SelOx zu ermöglichen können die Luftzahl und die Temperatur in der SelOx verändert werden. Der Druck wird über die Druckverluste der Systemkomponenten bzw. vom Lastpunkt bestimmt und ist für gewöhnlich nicht regelbar, hat aber auch einen Einfluss auf die Kinetik der Reaktion in der SelOx.

Das Betreiben der SelOx im optimalen Betriebspunkt ist aber in Hinblick auf die Lebensdauer der Brennstoffzellen wünschenswert. Es ist also wichtig, die Lastwechsel so durchzuführen, dass sie möglichst entlang der Minima, also entlang der optimalen Betriebspunkte stattfinden (vgl. Abbildung 3-25). Die Entwicklung einer optimalen Lastwechselstrategie für die SelOx wird durch das Lastwechselverhalten der Shift-Stufe erschwert, da bei Lastwechseln die CO-Konzentrationen hinter der Shift-Stufe stark schwanken können. Ein Überschwingen der Shift-Stufe kann von der SelOx nur in gewissen Grenzen (bis ca. 1,2 Vol.-% CO am Eingang der SelOx kompensiert werden.

Zur Entwicklung einer optimalen Lastwechselstrategie der SelOx wird neben einem bekannten Lastwechselprofil des Reformers vor allem eine kontrollierte Luftzudosierung und eine Temperaturregelung benötigt. In Kapitel 5.2.3 werden Lastwechsel des Laborsystems mit Anodenabgasrückführung präsentiert. Diese weisen CO-Konzentrationen innerhalb der erlaubten Grenzwerte auf. Sie zeigen aber auch deutliche Konzentrationsspitzen bei der Kohlenmonoxidkonzentration auf, was auf ein noch vorhandenes Optimierungspotential beim Lastwechsel hinsichtlich der Kohlenmonoxidkonzentrationen hinweist. Dies ist durch einen langsameren Lastwechsel möglich.
4 Vermessung des Brennstoffzellenstapels des Systems

Ziel der Entwicklung dieses Systems ist der Einsatz zur Strom- und Wärme-
produktion in einem Einfamilienhaus mit Erdgasanschluss. Daraus lassen sich
die Anforderungen an den Zellstapel ableiten.

Auswahl des Zellstapels

Der durchschnittliche Bedarf an elektrischer Leistung eines Einfamilienhauses
liegt im Tagesmittel unter 1 kW\textsubscript{el}. Die Zellen sollte entsprechend beim Betrieb mit
Reformatgas eine etwas größere Bruttolistung besitzen um nach Abzug der
Peripherieverluste eine entsprechende Nettolleistung liefern zu können.

Des Weiteren sind folgende Kriterien bei der Auswahl des Brennstoffzellen-
stapels zu berücksichtigen:

- Reformatgasverträglichkeit (geringer Leistungsverlust bei Reformatgasbe-
 - trieb)
- Geringer Befeuchtungsaufwand um Komponenten einzusparen
- Geringer Druckverlust /Absolutdruck um Pumpenleistung einzusparen
- Geringe Luftzahl um Pumpenleistung einzusparen
- Hohe CO-Toleranz mit oder besser ohne Air-Bleed
- Hoher Gasnutzungsgrad beim Betrieb mit Reformatgas
- Wasserkühlung
- Zellenzahl min. 20 (je höher die Zellzahl, um so höher die Zellspannung
 um so besser ist der Wirkungsgrad des Umrichters)
- Ausreichend hohe Betriebstemperatur und große Temperaturdifferenz über
den Zellstapel um die Wärmeleistung auskoppeln zu können.
- Zuverlässiges Betriebsverhalten
- Möglichst großer Lastbereich
- Hohe Lebensdauer
- Geringer Preis

Auf Grund der Betriebstemperatur von ca. 70 °C, die sehr gut zu den Tempera-
turen in Niedertemperatur-Heizungssystemen passt, und der bereits weit fortge-
schrittenen Entwicklung bei den PEM-Brennstoffzellen wird auf diesen Zelltyp für
den Aufbau des Systems zurückgegriffen.
Ein Zellstapel mit Wasserkühlung und einer Leistung von 1,2 kW\textsubscript{th,\text{H}_2} wurde nach gründlicher Recherche für das System ausgewählt und bestellt. Im folgenden Kapitel wird dieser Stapel genauer untersucht und charakterisiert.

Vor der Präsentation der Versuchsergebnisse wird der Aufbau beschrieben und die vorab bekannten Eckdaten des Zellstapels aufgelistet um einen tieferen Eindruck zu vermitteln.

4.1 Aufbau und Eigenschaften des PM-Brennstoffzellenstapels

Aus Untersuchungen, Vermessungen und durch die Angaben des Herstellers konnten die folgenden Angaben gesammelt werden (s. Tabelle 4-1). Diese Daten vermitteln einen Eindruck von den Fähigkeiten des Zellstapels und dokumentieren auch die Anforderungen des Stapels an das System.

<table>
<thead>
<tr>
<th>Tabelle 4-1: Eigenschaften des PEM-Brennstoffzellenstapels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine Angaben</td>
</tr>
<tr>
<td>Nennleistung: H\textsubscript{2} / Reformatgas</td>
</tr>
<tr>
<td>Zellenzahl</td>
</tr>
<tr>
<td>Abmessung</td>
</tr>
<tr>
<td>Elektrisch aktive Fläche</td>
</tr>
<tr>
<td>Befeuchtung</td>
</tr>
<tr>
<td>Umsatzgrad (mit Reformatgas)</td>
</tr>
<tr>
<td>Air-Bleed</td>
</tr>
<tr>
<td>Druckverlust (beide Seiten)</td>
</tr>
<tr>
<td>CO-Toleranz</td>
</tr>
<tr>
<td>Betriebsdruck</td>
</tr>
</tbody>
</table>
Kapitel 4 Vermessung der Brennstoffzelle des Systems

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Anforderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebstemperatur (\frac{(T_{KW,\text{ein}}+T_{KW,\text{aus}})}{2})</td>
<td><75 °C</td>
</tr>
<tr>
<td>Bipolarplatten</td>
<td>Kunststoff, gefräst (Schunk, SGL, Uni.DU)</td>
</tr>
<tr>
<td>Maximale Druckdifferenz über der Membran</td>
<td>0,5 bar</td>
</tr>
<tr>
<td>Anschlüsse</td>
<td>DIN 7361 + ISO 261</td>
</tr>
</tbody>
</table>

Anodenseite

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Anforderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eintrittstemperatur</td>
<td>20 °C - 70 °C</td>
</tr>
<tr>
<td>Druckverlust</td>
<td>ca. 100 mbar</td>
</tr>
<tr>
<td>Mindestvolumenstrom (H_2)</td>
<td>8,3 l/min</td>
</tr>
<tr>
<td>(CH_4) Toleranz</td>
<td>Ja</td>
</tr>
<tr>
<td>Maximale CO-Konzentration</td>
<td>50 ppm (Peak 100ppm)</td>
</tr>
<tr>
<td>Air Bleed</td>
<td>1-10 % kontinuierlich</td>
</tr>
<tr>
<td>(H_2)-Gehalt</td>
<td>70 – 100 Vol.-%</td>
</tr>
<tr>
<td>Feuchte</td>
<td>100 %</td>
</tr>
<tr>
<td>Art der Befeuchtung</td>
<td>(optional intern) 0-30g/min</td>
</tr>
<tr>
<td>Wasserqualität (Befeuchtung)</td>
<td>10 µS</td>
</tr>
</tbody>
</table>

Kathodenseite

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Anforderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eintrittstemperatur</td>
<td>ab 20 °C</td>
</tr>
<tr>
<td>Eintrittsdruck</td>
<td>< 1,4 bar</td>
</tr>
<tr>
<td>Druckverlust</td>
<td>100 mbar</td>
</tr>
<tr>
<td>Mindestvolumenstrom</td>
<td>6,6 l/min</td>
</tr>
<tr>
<td>Feuchte</td>
<td>Raumfeuchte</td>
</tr>
<tr>
<td>Luftverhältnis (empf. Arbeitsbereich)</td>
<td>1,7-2,5</td>
</tr>
</tbody>
</table>

Kühlwasserkreislauf

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Anforderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühlwassereintrittstemperatur</td>
<td>40-70 °C</td>
</tr>
<tr>
<td>Kühlwasseraustrittstemperatur</td>
<td>40-80 °C</td>
</tr>
<tr>
<td>(\Delta) Temperatur</td>
<td>max. 20 °C</td>
</tr>
<tr>
<td>Druckverlust</td>
<td>0,25 bar</td>
</tr>
<tr>
<td>Eintrittsdruck</td>
<td>< 1,3 bar</td>
</tr>
<tr>
<td>Volumenstrom</td>
<td>0,3 – 3 l/min</td>
</tr>
<tr>
<td>Kühlwasserqualität</td>
<td>DI-Wasser >10 µS</td>
</tr>
<tr>
<td>Filter</td>
<td>Harz nötig</td>
</tr>
</tbody>
</table>

Spannung

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Anforderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einzelspannungsüberwachung</td>
<td>Ja</td>
</tr>
<tr>
<td>(U_{\text{min}}) einer Zelle</td>
<td>0,4 V</td>
</tr>
<tr>
<td>(U_{\text{min}}) aller Zellen (\bar{\Omega})</td>
<td>0,55 V</td>
</tr>
<tr>
<td>geringste Einzelzellspannung im Leerlauf</td>
<td>0,7 V</td>
</tr>
<tr>
<td>Einzelzellspannung bei Nennlast</td>
<td>< 600 mV</td>
</tr>
<tr>
<td>Ruhespannung</td>
<td>~ 0,85 V</td>
</tr>
</tbody>
</table>

Der Vergleich der geforderten Eigenschaften für den Einsatz im geplanten System aus der Einleitung von Kapitel 4 mit den Eigenschaften des PEM-Zellstapels aus Tabelle 4-1 zeigt, dass diese die Anforderungen gut trifft.
Kapitel 4 Vermessung der Brennstoffzelle des Systems

Abbildung 4-1: Draufsicht und Seitenansicht der PEM-Brennstoffzellenstapel

Die konstruktiven Details des Aufbaus des Zellstapel sind nicht bekannt. Durch Beobachtungen kann man jedoch teilweise auf den Aufbau des Stapels rückschließen. Der Aufbau des Stapels ist in Abbildung 4-2 dargestellt und wird im Folgenden erklärt:

Auf die Membran sind die Gasdiffusionsschichten (weiß) aufgeklebt. Die Gasdiffusionsschicht ist auf der Kathodenseite vermutlich hydrophil ausgeführt, um ein Austrocknen der Membran beim Betrieb mit trockener Luft zu verhindern. Dennoch muss nach dem Abfall der Last der Kathodenluftvolumenstrom reduziert werden um ein Austrocknen der Membran auf der Kathodenseite zu verhindern.

Die Endplatten (grün) sind so hergestellt worden, dass sie unverspannt eine sphärische Wölbung aufweisen. Durch das Verspannen des Zellstapel an den Rändern ergibt sich dann eine gleichmäßige Druckverteilung auf den Zellstapel. Die schwarzen Punkte in der Mitte der Platten symbolisieren die Einzelzellspannungsabgriffe.

Der Wasserstoff oder das Reformatgas werden beidseitig in den Stapel hinein- und aus ihm wieder herausgeleitet (links oben und rechts unten in der Seitenansicht Abbildung 4-1). Die Zellluft hat hingegen nur einen Einlass rechts unten. Das Kühlwasser hat seinen Einlass links unten (in der Seitenansicht in

Abbildung 4-2: Schematischer Aufbau des PEM-Zellstapels.

Um einen sicheren Betrieb des Stapels zu gewährleisten, muss nach dem Betrieb darauf geachtet werden, dass sich in den Zellen kein explosionsfähiges Gemisch bilden kann. Um dies sicherzustellen, wurden die Zellen nach dem Betrieb mit Inertgas gespült.

4.2 Vermessung des Zellstapels

Die zur Vermessung des Brennstoffzellenstapels gewählte Vorgehensweise weicht von der aus der Elektrochemie bekannten Vermessungsweise ab. Bei elektrochemischen Vermessungen wird meist Kathoden- und Anodenseitig das stöchiometrische Verhältnis relativ zum Umsatz konstant gehalten, was zu einem stetigen Anstieg der Volumenströme bei steigender Last führt.
Da beim Aufbau eines Brennstoffzellensystems nicht der Zellstapel allein betrachtet wird sondern vielmehr das Zusammenwirken des Stapels mit den Komponenten des Systems, wurde die Methode zur Vermessung des Zellstapels an die Betriebsbedingungen im System angepasst. Es wird ein konstanter Brenngasvolumenstrom entsprechend eines Reformerlastpunktes vorgegeben und die Last wird bis zum Erreichen des Abschaltkriteriums einer Einzelzelle erhöht. Der Kathodenluftvolumenstrom wird jedoch wie elektrochemisch üblich an den Umsatz mit einem konstanten Verhältnis über die Steuerung des Versuchsstandes angepasst.

Alle Randparameter wie Druck, Temperatur, Kathodenluftzahl etc. werden während des Versuches konstant gehalten um stationäre Betriebspunkte zu erhalten.

Die Vermessung des Zellstapels erfolgte zunächst mit reinem Wasserstoff um allgemeine Erkenntnisse hinsichtlich des optimalen Betriebsverhaltens und der Dynamik zu erhalten und die Betriebsparameter für die weiteren Versuche mit synthetischem Reformatgas einzugrenzen. Die Ergebnisse der Vermessung des Zellstapels mit synthetischem Reformatgas, die im nächsten Schritt erfolgt, werden dann später in Kapitel 5.2.1 (Abbildung 5-3) mit den Ergebnissen aus dem realen Betrieb verglichen.

4.2.1 Vermessung mit reinem Wasserstoff

Zur Bestimmung der optimalen Betriebsbedingungen für den Zellstapel im Gesamtsystem wurden die Betriebstemperatur, die Luftzahl, und die Eintrittstemperatur des Wasserstoffs variiert.

Bei der Vermessung wurde ein Wasserstoffvolumenstrom entsprechend einer Reformerleistung fest voreingestellt (z.B.: 14 l/min-H₂ ≈ 2,5 kWₜₜ = 100%-Systemlast). Die Vermessung des Zellstapels zielt also nicht auf eine Ermittlung der maximalen Leistung bei einem beliebigen Wasserstoffvolumenstrom ab sondern auf die Bestimmung der maximalen Leistung bei einem (vom Reformer) fest vorgegebenen Volumenstrom.
Im ersten Versuch wurde die optimale Betriebstemperatur ermittelt. Die Zelltemperatur ist definiert als Mittel zwischen Kühlwasserein- und Kühlwasseraustritt.

Abbildung 4-4: Spannungs- und Leistungskurven bei verschiedenen Temperaturen

In der nächsten Versuchsreihe wurde die Luftzahl variiert und für jede Luftzahl die maximale Leistung ermittelt. Dabei wurde eine Betriebstemperatur von 60 °C eingestellt und 2,5 kWth,H2 bei 60 °C auf den Anodeneingang geführt. Wie Abbildung 4-5 zeigt, konnte die größte Leistung bei einer Luftzahl (relativ zum umgesetzten Wasserstoff) von 2 gemessen werden. Die in Abbildung 4-5 eingelegte Trendlinie lässt jedoch vermuten, dass die optimale Luftzahl, mit \(\lambda_{\text{opt.}} = \)
2,15, geringfügig größer ist. In Versuchen konnte dies jedoch nicht bestätigt werden.

Die optimale Luftzahl wird bestimmt durch den Wasserhaushalt der Membran und durch den Partialdruck des Sauerstoffs. Das Sauerstoffüberangebot stellt sicher, dass sich an der Kathode jeweils zwei Wasserstoffionen mit einem Sauerstoffion verbinden können. Zum anderen bestimmt der Luftstrom aber auch wie viel Feuchte aus den Zellen ausgetragen wird, was wiederum den Feuchtegehalt der Zellmembran und damit ihre Protonenleitfähigkeit wesentlich beeinflusst.

Für die weiteren Versuche wird eine Luftzahl von zwei voreingestellt.

![Variation der Luftzahl λ zur Bestimmung der maximalen elektrischen Leistung](image)

Abbildung 4-5: Variation der Luftzahl λ zur Bestimmung der maximalen elektrischen Leistung

Für den folgenden Versuch wurde bei 60°C mittlerer Zelltemperatur, 14 l/min H_2 und konstantem Druck die Temperatur des Wasserstoffs über das Thermobad variiert. Der Wasserstoff wurde durch den Blasenbefeuchter annähernd vollständig befeuchtet.

Abbildung 4-6 zeigt, dass sich die Leistung des Zellstapels mit der Eintrittstemperatur des Anodengases erhöht. Die Leistungskurve fällt jedoch zum Ende des Versuches hin ab. Grund für diesen Leistungsverlust ist Tröpfchenbildung durch Kondensation in einzelnen Zellen, vor allem in den kälteren äußeren Zellen. Durch die Tröpfchen kommt es zur Unterversorgung einzelner Zellen, was zum

Abbildung 4-6: Leistung des Zellstapels in Abhängigkeit von der Wasserstoffeintrittstemperatur (T_{AG}=60°C; GNG=0,8; λ = 2)

Um die Zahl der Versuchsparameter einzugrenzen, wurden die weiteren Versuche mit den in den vorhergehenden Versuchen als optimal ermittelten Betriebsparametern (λ = 2, T_{BZ} = ca. 60 °C und T_{AG} ≈ 58 °C) durchgeführt.

Um eine Vergleichbarkeit dieses Brennstoffzellenstapels mit anderen Zellstapeln zu ermöglichen, wurde eine Strom-Spannungskurve nach elektrochemischen Messverfahren aufgenommen, bei der die Luftzahl auf der Kathodenseite zwei betrug und der Umsatzgrad auf der Anodenseite konstant bei 0,5 lag (s. Abbildung 4-7). Allerdings konnte auf Grund der Limitierung durch die verwendeten Massendurchflussregler nicht das Leistungsmimum des Zellstapels ermittelt werden.
Abbildung 4-7: Strom-Spannungs-Kurve des PEM-Brennstoffzellenstapels bei einem Nutzungsgrad von 0,5 und einer Luftzahl von 2 bei 58°C.

4.2.2 Dynamik der Zellen

Um die Dynamik des Zellstapels beim Betrieb mit reinem Wasserstoff zu untersuchen wurde der in Abbildung 4-3 beschriebene Zellteststand um ein „Scope-Meter“ der Serie 120 der Firma „Fluke“ erweitert. Dabei handelt es sich um eine Kombination aus Multimeter und Oszilloskop mit zahlreichen Datenlogfunktionen. Mit Hilfe des „ScopeMeters“ konnten die elektrischen, dynamischen Effekte des Zellstapels aufgezeichnet werden. Der im Teststand verwendete PXI-Rechner wäre dazu auf Grund seiner hohen Auslastung und der daraus resultierenden geringen Abtastrate nicht in der Lage gewesen. Die Messung der Zellströme er-
folgt mit Hilfe einer Stromzange, die das magnetische Feld um die Leitungen berührungslos misst. Die Versuche wurden mit reinem Wasserstoff durchgeführt.

Abbildung 4-8: Sprungantwort (50 A – 65 A) von Temperatur und Spannung

\(^4\) Der Stromsprung wurde durch die Stromsenke erreicht (s. Abbildung 4-3).
Kapitel 4 Vermessung der Brennstoffzelle des Systems

Aus Sicht der Systemsteuerung liefert dieser Versuch Hinweise auf die Anforderungen an den Regler des Stapels. Es ist zu erkennen, dass die Schwankungsbreite der Spannungen eine angepasste Regelung benötigt. Die Regelung darf jedoch nicht zu schnell eingreifen, so dass sich die Schwankungen einer Einzelzelle durch eingreifen des Reglers auf die anderen Zellen übertragen. Andererseits muss der Regler ausreichend schnell reagieren, um ein Unterschreiten der Grenzspannungen (s. Tabelle 4-1) zu vermeiden.

Abbildung 4-9: Einzelzellspannung während des Lastsprungs von 50 A – 65 A
Kapitel 4

Vermessung der Brennstoffzelle des Systems

Die in Abbildung 4-10 dargestellte Lastreduktion von 75 A auf 57 A bestätigt im Wesentlichen das Verhalten aus dem Aufwärtssprung. Auch hier reagiert die Zellspannung zunächst sofort und erst durch das Abkühlen der Zellen sinkt die Spannung des Zellstapels weiter.

Abbildung 4-10: Sprungantwort (75 A – 57 A) von Temperatur und Spannung

Dieses muss bei Lastwechseln berücksichtigt werden, es addieren sich die Totzeiten und Zeitkonstanten des Zellstapels zu den Reaktionszeiten des Dampfreformers hinzu kommt noch die Totzeit, die durch den Leitungsweg verursacht wird. Näherungsweise kann die Reaktionszeit des Systems mit den Totzeiten berechnet werden da diese dominierend sind: \[\tau_{ges} = \tau_{Zelle} + \tau_{Ref} + \tau_{Leitung}. \]

4.2.3 Vermessung mit synthetischem Reformatgas

Um den Einfluss der Komponenten im Reformatgas auf die Leistungsfähigkeit des Zellstapels zu untersuchen wurden zunächst die Komponenten CO\textsubscript{2} und N\textsubscript{2} des Reformatgases dem Wasserstoff (2,5 kW\textsubscript{th}) einzeln zugemischt, so dass ein
Konzentrationsverhältnis von $\frac{1}{4}$ Teilen entstand. Durch den Vergleich des Einflusses von Stickstoff mit dem Einfluss von Kohlendioxid auf die Ausgangsleistung des Zellstapels bei sonst gleichen Versuchsbedingungen lässt sich eine Aussage treffen, ob sich das Kohlendioxid in den Zellen innert verhält. Wenn CO$_2$ mittels der Retro-Shift-Reaktion (s. Gl. 4-1) zu CO reduziert wird so kommt es zur Vergiftung des Katalysators der Anodenseite. Dies würde sich nach längerer Zeit durch eine degradierende Spannung bemerkbar machen.

Zum Ende der Testreihe wurde ein synthetisches Reformgasgemisch mit 78 Vol.-% H$_2$; 0,5 Vol.-% N$_2$; 19,5 Vol.-% CO$_2$; 2 Vol.-% CH$_4$ mit einer Wasserstoffleistung von 2,5 kW$_{th}$ dem Zellstapel zugeführt. Kohlenmonoxid wurde bei diesen Versuchen noch nicht dem synthetischen Reformgas beigemengt.

In Abbildung 4-11 ist zu erkennen, dass die Leistung des Zellstapels beim Betrieb mit 20 Vol.-% CO$_2$ bzw. N$_2$ geringer ausfällt. Dies lässt sich durch die Reduktion des Wasserstoffpartialdrucks erklären. Die Zellleistung wird durch das CO$_2$ jedoch nicht stärker reduziert, als durch die Zugabe von N$_2$. Daraus lässt sich schließen, dass die Retrosiftreaktion (s. Gl. 4-1) (Aufspalten zweier CO$_2$-Moleküle zu zwei Kohlenmonoxidmolekülen und einem Sauerstoffmolekül) an der Zellmembran nicht stattfindet, also die Zellen nicht durch CO vergiftet wird.

\[
\text{CO}_2 + \text{H}_2 \rightarrow \text{CO} + \text{H}_2\text{O}
\]

Gl. 4-1

Das Kohlendioxid verhält sich also in der Zelle inert.

Beim Betrieb mit realem Reformgas wird der Partialdruck des Wasserstoffs durch das im Reformgas enthaltene Wasser und durch das ebenfalls enthaltene Methan weiter reduziert. Der Wasserstoffanteil im realen Reformgas liegt am Zelleintritt etwa bei 73 %, bedingt auch durch die Verluste an Wasserstoff in der SelOx und durch den Air-Bleed.
4.2.4 Einfluss des Air-Bleed auf die Zelleistung

Um das im Reformatgas enthaltene Kohlenmonoxid von der Memran abzureinigen wird dem Reformatgas am Zelleintritt ein kontinuierlicher Luftstrom beigemischt, der so genannte Air-Bleed.

Um den Einfluss des Air-Bleeds auf die Leistungsfähigkeit des Zellstapels zu untersuchen, wurde zunächst 10 % Air-Bleed-Luft (relativ zum Reformatgasvolumenstrom) dem Reformatgasvolumenstrom beigemischt. In einem zweiten Schritt wurde die CO-Konzentration in Abständen von 5 ppm bis 50 ppm erhöht. Abbildung 4-12 zeigt, dass sich auch hier nur der Einfluss des Partialdrucks bemerkbar macht. Durch die Erhöhung des CO-Anteils erfolgt keine messbare Reduktion der Leistung des Zellstapels.
Kapitel 4 Vermessung der Brennstoffzelle des Systems

Abbildung 4-12: Einfluss des Air-Bleeds und des Kohlenmonoxids auf die Leistung des Zellstapels

Der optimale Air-Bleed-Volumenstrom wurde ermittelt, in dem der Zellstapel unter Last eine zeitleng gezielt mit 50 ppm Kohlenmonoxid vergiftet wurde, was nach [VanZee] aber reversibel ist. Als die durchschnittliche Zellspannung um 10 % zurückgegangen war, wurde der Air-Bleed in Schritten von je 1 % bis zu einem maximal erlaubten Air-Bleed von 10 % zum synthetischem Reformatgasvolumenstrom dazugegeben. Dadurch erhöhte sich die mittlere Zellspannung wieder. Der Luftvolumenstrom, der gerade eben die maximal erreichbare durchschnittliche Zellspannung mit Air-Bleed wiederherstellte, wurde als optimal betrachtet. Abbildung 4-13 zeigt, dass mit einem Air-Bleed-Volumenstrom von 5 % die
Vergiftungen nahezu vollständig reversibel gemacht werden können. Der Verlust an Ruhespannung von etwa 0,003 V ist auf den durch den Air-Bleed veränderten Wasserstoffpartialdruck und auf den Wasserstoffumsatz durch den Sauerstoff des Air-Bleeds zurückzuführen.

5 Verschaltung der Systemkomponenten

Nachdem die Hauptkomponenten des Systems (Kapitel 3 und Kapitel 4) für den Aufbau charakterisiert und untersucht wurden, beschreibt dieses Kapitel den Schrittweisen Aufbau des Gesamtsystems.

5.1 Entwicklung des Systemplans

Prinzipiell gibt es mehrere Möglichkeiten die Komponenten miteinander zu verschalten. Daher wurde im Vorfeld ein Systemplan entwickelt.

Bei der Anodenabgasrückführung kann das Anodenabgas beispielsweise innerhalb des Systems oder extern verwendet werden (s. Kapitel 2.4).
Um zu entscheiden ob eine Anodenabgasrückführung auf den Brenner des Dampfreformers oder auf einen externen Brenner zur Warmwassererzeugung sinnvoller ist, wird folgende Vergleichsrechnung durchgeführt:

Vergleichsrechnung:

Allgemeine Annahmen: Zur Produktion von 1 kW$_{el}$ Leistung benötige der Brennstoffzellenstapel 2,5 kW$_{th}$ Wasserstoff. Dieser wird von den Zellen mit einem Gasnutzungsgrad von 80 % etwa je zur Hälfte zu Strom ($P_{el} = 1\text{kW}_{el}$) und zu Wärme ($Q = 1\text{kW}_{th}$) umgesetzt. Wärmeübergänge bleiben unberücksichtigt, da sie bei beiden Varianten nahezu gleichermaßen auftreten.

Ein Dampfreformer benötige zur Produktion dieser Wasserstoffmenge 2,18 kW$_{th}$ Methan (angenommene Gaszusammensetzung hinter der Shift-Stufe sei: CH$_4$ = 1 Vol.-% H$_2$ = 79 Vol.-%, CO$_2$ = 19,4 Vol.-%, CO = 0,6 Vol.-%). Für diesen Umsatz wird von einem Verhältnis von Reformerleistung zu Brennerleistung (ohne Anodenabgasrückführung) von zwei ($1,09\text{kW} = 1,823\text{l/min CH}_4$, $\lambda_{Br.} = 1,1$) ausgegangen. Die Peripherie für ein druckloses System benötige 250 W (Ermittlung der Peripherieleistungen s. Anhang D).

Der elektrische Nettowirkungsgrad des Systems ohne Rückführung berechnet sich zu:

$$\eta_{el.o.R.} = \frac{P_{el,BZE} - P_{el,Peripherie}}{P_{th,CH_4,Ref.} + P_{th,CH_4,Br.}}$$

Gl. 5-1

$$= \frac{1\text{kW} - 0,25\text{kW}}{2,18\text{kW} + 1,09\text{kW}} = 22,9\%$$

Interne Anodenabgasnutzung

Durch die Anodenabgasrückführung werden dem Brenner des Dampfreformers 479 W$_{th,H_2}$ Wasserstoff (GNG = 80 %) und 105 W$_{th,CH_4}$ Methan zugeführt. Die benötigte Brennerleistung für einen identischen Wärmeintrag in den Dampfreformer steigt, da die Inertgasanteile mit erhitzt werden müssen. Das Anodenabgas führt ca. 3,46 l/min CO$_2$, 1,3 l/min N$_2$ und 0,4 l/min Wasserdampf mit.

Bei der Verbrennung im Brenner kann die Energiebilanz wie folgt aufgestellt werden:

$$\bar{Q}_{Ein} = \bar{Q}_{RG} + \bar{Q}_{Strahlung}$$

Gl. 5-2

mit

$$\bar{Q}_{Ein} = \dot{n}_{AA} \cdot H_{U,AA}$$

Gl. 5-3

$$\bar{Q}_{RG} = m_{RG} \cdot c_p, RG \cdot (T_{Umgebung} - T_{Verbr.})$$

Gl. 5-4
und
\[Q_{Strahlung} = C_{12} \cdot A(T_{Verbr.}^4 - T_{Wand}^4) \]
Gl. 5-5

Für die detaillierte Bestimmung der Größen sei hier auf den Anhang A verwiesen.

Abbildung 5-1: Vereinfachte Energiebilanz im Brennraum

Mit dieser Berechnung (s. Anhang A) ergibt sich für die Verbrennung des inertgasreichen Anodenabgases eine benötigte Mehrleistung von 25,87 % für ein R/B von zwei, also 1,09 kW\cdot125,87 \%=1,37kW, für den Vollastpunkt mit der oben angegebenen Gaskonzentration hinter der Shift-Stufe.

Damit ergibt sich die dem Brenner in Form von Methan zuzuführende Leistung mit:
\[P_{th,CH4,Br} = P_{Br,mR} - P_{H2} - P_{CH4,Reslt} \]
\[=1,37kW - 0,479kW - 0,105kW = 0,79kW \]

Es ergibt sich damit ein Wirkungsgrad für das System mit Anodenabgasrückführung von:
\[\eta_{BZS,el.,i.R.} = \frac{P_{el,BZ} - P_{el,Peripherie}}{P_{th,CH4,Ref.} + P_{th,CH4,Br}} = \frac{1kW - 0,25kW}{2,18kW + 0,79kW} = 25,17\% \]
Gl. 5-6.

Dennoch ergibt sich eine Wirkungsgradzunahme gegenüber dem nicht rückgeführtem System von 2,3 % absolut bzw. 10 % relativ.
Anodenabgasnutzung auf einem externen Brenner

Die Nutzung des Anodenabgases durch einen externen Brenner wurde in Kapitel 2.4 bereits beschrieben. Die im Anodenabgas enthaltene Wärmeleistung kann über einen separaten Brenner oder über den Brenner des Warmwassersystems eines Hauses dem Warmwasserspeicher zugeführt werden (s. Abbildung 2-12). Bei der Verwendung des Brenners des Warmwasserspeichers hätte dies den Vorteil, dass z.B. im Falle eines sofortigen Not-Aus des Systems der Gasüberschuss über diesen Brenner abgeführt werden könnte, ohne dass das System überhitzt und unter einen gewissen Überdruck gesetzt wird, was bei einem separaten Brenner nicht schwer wäre, da hier eine Modulationsbreite des Brenners von 2,5 kW\(_{th}\) (Vollast und Zellstapel abgeschaltet) bis 0,15 kW\(_{th}\) (für einen 30 % Lastpunkt mit einer Gasausnutzung des Zellstapels von 80 %) nötig wäre. Vorteil eines separaten Zusatzbrenners ist, dass dieser auf ein einziges Gas abgestimmt werden kann, was dessen Betriebssicherheit erhöht.

Für den Vergleich mit der Anodenabgasrückführung auf den Brenner des Dampfreformers wird der elektrische Wirkungsgrad (Gl. 2-37) des System und der Gesamtnutzungsgrad (Gl. 2-39) betrachtet.

Der Warmwasserspeicher habe die folgenden Eckdaten: 18 kW; Wirkungsgrad = 0,9 (Wärmeverluste).

Der Nutzungsgrad des Gesamtsystems mit Rückführung auf den Brenner des Dampfreformers ergibt sich unter Berücksichtigung der Leistung des Heizkessels zu:

\[
\eta_{BZS,Netto,e.R.} = \frac{16,2 kW_{th,Kessel} + 1 kW_{th,BZ} + 1 kW_{el,BZ} - 0,25 kW_{Peripherie}}{2,18 kW_{Ref} + 0,79 kW_{Br} + 18 kW_{Kessel,Aufwand}} = 85,57\% \quad \text{Gl. 5-7}
\]

Parallel zu Gl. 5-6 ergibt sich die Nettoleistung für diesen Fall zu:

\[
\eta_{BZS,el.e.R.} = \frac{P_{el,BZ} - P_{el,Peripherie}}{P_{th,CH4,Ref} + P_{th,CH4,Br.}} = \frac{1 kW - 0,25 kW}{2,18 kW + 1,09 kW} = 22,9\% \quad \text{Gl. 5-8}
\]

Für die Rückführung auf den Brenner des Kessels wird davon ausgegangen, dass die gesamte Wärmeleistung des Anodenabgases (585 W) über die Brennwerttechnik ebenfalls mit einem Wirkungsgrad von 0,9 genutzt werden kann (585 W·0,9 = 526,5 W ≈ 0,53kW). Um diesen Betrag wird die zufließende Kesselleistung reduziert. Diese Rechnung gibt zwar nicht den realen Betrieb wieder, genügt aber für eine Wirkungsgradabschätzung:

\[
\eta_{BZS,Netto,e.R.} = \frac{16,2 kW_{th,Kessel} + 1 kW_{th,BZ} + 1 kW_{el,BZ} - 0,25 kW_{Peripherie}}{2,18 kW_{Ref} + 11 kW_{Br} + 17,47 kW_{Kessel,Aufwand}} = 86,51\% \quad \text{Gl. 5-9}
\]

Auf Grund der hier durchgeführten Abschätzungen empfiehlt sich also ein Aufbau mit interner Anodenabgasrückführung auf den Brenner des Dampfreformers. Für einen besseren Nutzungsgrad der Rückführung auf den Reformerbrenner kann aber auch Brennwerttechnik in den Reformer integriert werden, was jedoch die Material- und Fertigungskosten entsprechend erhöht.

Nachdem diese wichtige Frage der Systemverschaltung geklärt ist, müssen noch andere Aspekte beim Entwurf des Systemplans bzw. beim Aufbau des Systems berücksichtigt werden:

- Eine Entschwefelung ist optional für Versuche mit Erdgas vorzusehen.
- Ein 10 µm Partikelfilter wird zum Schutz des Zellstapels vor Katalysatorstäuben vor die Zelle geschaltet.
- Die Kopplung der SelOx mit dem Kühlwasserkreislauf des Brennstoffzellstapels wurde bereits in Kapitel 3 beschrieben. Sie wird im Systemplan aus Übersichtsgründen nicht eingezeichnet.

Es ergibt sich somit ein erster, vorläufiger, schematischer Systemplan (s. Abbildung 5-2)

5-5
5.2 Aufbau des Laborsystems

Der Aufbau eines komplexen Systems erfolgt am besten schrittweise, um Schäden an den Komponenten zu vermeiden, um möglichst viel über das Zusammenspiel der Komponenten zu erfahren und um die Interaktionen im System besser verstehen und erklären zu können.

Um möglichst zuverlässige Daten zu generieren und um Rückschlüsse und Bilanzen zu ermöglichen werden folgende Vereinfachungen gegenüber dem späteren realen Betrieb umgesetzt:

- Die Medienversorgung wird für exakte und pulsations freie Volumenströme mittels Massendurchflussreglern realisiert.
- Statt Erdgas wird, um möglichst exakte Massen- und Leistungsbilanzen zu ermöglichen, Methan bei den Tests verwendet.
- Statt eines Wechselrichters, der am Stromnetz angeschlossen ist, wird die Last mittels einer Stromsenke simuliert.
• Die Steuerung wird zunächst auf einem Industrierechner mit entsprechenden Ein- und Ausgängen realisiert. Im Laborsystem fallen 65 Messgrößen (Druck, Temperatur, Volumenstrom, Zellspannungen) an, die kontrolliert werden müssen, und es kann an 15 Stellen Einfluss (Ventile, Massendurchflussregler, Last, Pumpen) auf das System genommen werden.

• Zusätzlich befindet sich der Teststand in einem Laborabzug, um in Notfallsituationen freigesetztes Gas abführen zu können.

5.2.1 Prozesskette

Die Prozesskette wurde an vier verschiedenen Lastpunkten (30 %, 60 %, 80 % und 100 %) vermessen. Die Bedingungen bei den Versuchen waren so weit wie möglich identisch (Luftzahlen, Gasnutzungsgrad, Temperaturniveaus etc.) mit den Versuchen mit synthetischem Reformatgas bei der Zellstapelvermessung (s. Kapitel 4.2.3). Trotz der Vielzahl von möglichen Abweichungen bei den Randbedingungen des Versuches wie Luftdruck, Feuchte, Umgebungstemperatur, Eduktqualität, Systemdruck etc. konnten die Ergebnisse aus der Vermessung mit synthetischem Reformatgas nahezu reproduziert werden wie Abbildung 5-3 zeigt.
5.2.2 Steuerung des Laborsystems

In Vorversuchen wurde die Kopplung des Systems inklusive Anodenabgasrückführung auf den Brenner des Dampfreformers erfolgreich durchgeführt. Die Komplexität des Systems erfordert jedoch die Entwicklung einer Systemsteuerung, da es sonst für eine einzelne Person nicht möglich ist, das System zu betreiben bzw. zu charakterisieren oder dynamische Versuche durchzuführen.

Ein schrittweises Vorgehen war für den Aufbau der Systemsteuerung notwendig, da Daten aus der Vermessung des Systems benötigt wurden um die nächste Stufe der Steuerung programmieren zu können.

Die einzelnen Funktionen der Steuerung wurden als Module programmiert, um eine gute Übersichtlichkeit und Wartbarkeit zu gewährleisten und später die Module gegen andere Funktionsblöcke austauschen zu können.

Die Entwicklung von einer zunächst provisorischen hin zu einer vollwertigen Steuerung sollte in den folgenden Stufen erfolgen:
1. *Entwicklungsstufe (Grundfunktionen)*

- Vorgabe eines festen S/C oder Eingabe des Luftvolumenstroms.
- Lambdasteuerung des SelOx-Luftvolumenstroms oder Vorgabe eines Volumenstroms für die SelOx-Luft.
- Steuerung des Air-Bleeds prozentual zum errechneten Reformatgasvolumenstrom.
- Steuerung der Kathodenluft durch Vorgabe eines Luftverhältnisses relativ zum im Zellstapel umgesetzten Wasserstoff.
- Integration der Sicherheitsgrenzwerte nach Tabelle 1 Anhang C.

2. *Entwicklungsstufe (Teilautomatik)*

- Anoden-Purgen: Das System soll die Möglichkeit bieten, das Purgen (geringe Druckstöße, um Wasser aus den Zellen zu treiben) der Anode zunächst teilautomatisch zu ermöglichen (beim Überschreiten eines Grenzdrucks öffnet das Purge-Ventil). Dies ist ohne Druckausgleichs-
system auf Grund der Druckstöße nur im Betrieb ohne Anodenabgasrückführung möglich.

• Realisierung einer Zündautomatik, die im Störungsfall versucht, den Brenner wieder zu zünden und nach einer Anzahl von Fehlversuchen das System abschaltet.

• Alle auftretenden Fehlermeldungen sollen in einer Datei protokolliert werden und gleichzeitig in einer Art Historie auf dem Bildschirm sichtbar sein.

• Leistungssteuerung des Systems mittels Rampenfunktionen (teilautomatisierte Lastwechsel).

• Leistungsregelung des Systems: wenn der vorgegebene Leistungssollwert so klein ist, dass die Anodenabgasleistung über der benötigten Brennerleistung liegt, wird die eingehende Reformergeleistung reduziert (noch nicht realisiert).

Wichtige Funktionen der 1. Entwicklungsstufe:

Die komplexeste Aufgabe beim Aufbau der ersten Stufe der Steuerung war die Entwicklung der Brennerleistungssteuerung und das Abstimmen der Schaltvorgänge beim Wechsel von reinem Methan- bzw. Erdgasbetrieb hin zu einem Betrieb mit Anodenabgas und zurück. Dafür mussten unter Anderem die Totzeiten der Massendurchflussregler und der Leitungen berücksichtigt werden, um ein Erlöschen der Brennerflamme durch Ausblasen (zu geringer Brenngasvolumenstrom) oder Austragen (zu hoher Volumenstrom) zu verhindern.
Um zu garantieren, dass der Brenner trotz schwankendem Umsatz im Zellstapel und im Reformer mit einer konstanten Leistung (Vorgabe von $P_{Br,Soll}$ durch den Benutzer) brennt, war die Erstellung eines komplexen Gleichungssystems nötig, mit welchem der zuzuführende Methanvolumenstrom berechnet wird. Auch die zur Verbrennung des in seiner Konzentration schwankenden Brenngasgemisches benötigten Luftvolumenstroms bei einem vorgegebenen Luftverhältnis muss entsprechend aufwändig berechnet werden. In Gl. 5-10, Gl. 5-17 und Gl. 5-18 sind die wichtigsten Zusammenhänge zur Bestimmung des zuzuführenden Brennerluftvolumenstroms repräsentativ detailliert dargestellt. Diese und die anderen benötigten Gleichungen werden in Anhang B hergeleitet und erklärt.

\[
\dot{v}_{CH_4,Br.,m.R.} = 1,672 - \frac{\dot{v}_{CH_4,Ref.Ein} \cdot x_{CH_4} + l \cdot 0,042}{\sum x_C} - \frac{\dot{v}_{CH_4,Ref.Ein} \cdot 0,3}{\sum x_C} \left(1 - \sum x_C \right) - x_{CO} \cdot (\lambda_{SelOx} - 1) - AB \cdot 0,004 \cdot (1 + 0,995 \cdot x_{CO} + 0,88 \cdot \lambda_{SelOx} \cdot x_{CO}) \left(\frac{l}{\text{min}} \right)
\]

Gl. 5-10

Um Gl. 5-10 zu erklären, werden die Terme separat betrachtet (s. Gl. 5-11 und Gl. 5-12).

\[
\dot{v}_{CH_4,Br.,m.R.} = A - B + C - D
\]

Gl. 5-11

mit

\[
D = D1 \cdot [D2 - D3 - D4]
\]

Gl. 5-12

Dabei entspricht

A: der Leistungsvorgabe für den Brenner;
B: die Berechnung des Restmethans im Anodenabgas;
C+D: entsprechen der Wasserstoffreduktion entlang der Prozesskette.

Die Leistungsvorgabe für den Brenner (Term A in Gl. 5-11) $P_{Br,Soll}$ wird mit einem Umrechnungsfaktor für CH_4 in l/min multipliziert. Von diesem Wert wird der Anteil des Restmethans hinter dem Reformer abgezogen (Term B), da dies zum Befeuerung des Brenners über das Anodenabgas verwendet werden kann. Term D gibt den Wasserstoffstrom nach Abzug der Verluste durch Air-Bleed D4 und SelOx D3 an und berücksichtigt mit dem Term D2 den Umsatz im Dampfreformer. Der umgesetzte Wasserstoff im Zellstapel ist über die an der Reaktion beteiligten Elektronen direkt proportional zum produzierten elektrischen Strom (s. Gl. 5-13). Der in den Zellen umgesetzte Wasserstoff ($n_{H_2,umgesetzt}$) wird durch Term C berücksichtigt und von Term D „abgezogen“.
Kapitel 5
Verschaltung der Systemkomponenten

\[
\dot{n}_{H_2,\text{umgesetzt}} = \frac{J \cdot 60 \cdot Z}{2 \cdot e \cdot N_A}
\]
Gl. 5-13

Dies lässt sich auch als Volumenstrom im Normzustand beschreiben (Gl. 5-14):

\[
\dot{v}_{H_2} = \frac{I \cdot 300 \cdot V_{\text{mn},H_2}}{e \cdot N_A} = I \cdot 0,1395
\]
Gl. 5-14

Um den Wasserstoffvolumenstrom mit dem Methanvolumenstrom verrechnen zu können, wird über die Verhältnisse der Heizwerte der äquivalente Volumenstrom bestimmt.

\[
\dot{v}_{CH_4,H_2,\text{Equivalent}} = 0,1395 \cdot I \cdot \frac{H_{U,H_2}}{H_{U,CH_4}} = 0,042 \cdot I
\]
Gl. 5-15

Der für die Verbrennung des Gemisches aus Anodenabgas und zu dosiertem Methan benötigte Luftvolumenstrom berechnet sich mit

\[
\dot{v}_{Luft,Br,m.R.} = (\dot{v}_{Luft,CH_4,min} + \dot{v}_{Luft,H_2,min}) \cdot \dot{\lambda}_{Br}
\]
Gl. 5-16

Dabei ist

\[
\dot{v}_{Luft,H_2,min} = 2,384 \cdot \frac{\sum x_C}{\left[\left(1 - \sum x_C\right) - x_{CO} \cdot \left(\lambda_{SelOx} - 1\right)\right]} \cdot \frac{I}{\min}
\]
Gl. 5-17

und

\[
\dot{v}_{Luft,CH_4,min} = 9,6 \cdot \frac{P_{Br,Soll} \cdot 1,672 + I \cdot 0,042 - \dot{v}_{CH_4,Ref.,Ein} \cdot 0,3}{\sum x_C} \cdot \frac{I}{\min}
\]
Gl. 5-18

Die Teile der Gleichung und ihre Bedeutung sind denen aus Gl. 5-10 sehr ähnlich. Der Teil in den eckigen Klammern ist in beiden Fällen identisch. Gl. 5-18 entspricht Gl. 5-10, nur der Vorfaktor (9,6) ergibt sich aus dem Zusammenhang zwischen der zur Verbrennung des Methan im Brenngasgemisch benötigten Luft und dem im Brenngasgemisch enthaltenen Methans. Unter Brenngasgemisch ist die Summe aus Anodenabgas und dem auf den Brenner zudosierten Methan bzw. ggf. Erdgas zu verstehen. Gl. 5-17 berechnet den Luftbedarf für den im Brenngasgemisch enthaltenen Wasserstoff.
Wichtige Funktionen der zweiten Entwicklungsstufe:

In der zweiten Stufe wird der Brenner im Störfall (z.B. bei Überhitzung des Dampfreformers) abgeschaltet und das Brenngas ggf. freigesetzt. Dies wäre allerdings in einem endgültigen Brennstoffzellensystem, das den entsprechenden Normen und Gesetzen unterliegt, nicht mehr zulässig.

Als Qualitätskriterien für die Güte der Regelstruktur beim Einstellen des Reglers galten die Einregelzeit (die Zeit, die der Regler benötigt bis er die Soll- oder die optimale Leistung erreicht hat) und das Störverhalten (Geschwindigkeit, mit der der Regler auf Störungen reagiert).

Die Reglergeschwindigkeit ist wichtig für die Effizienz und die Sicherheit des Systems. Ist der Regler zu langsam kann zuviel Energie aus dem Anodenabgas auf den Brenner gelangen und der Reformer unter Umständen überhitzt. Ist der Regler zu dynamisch (zu schnell) eingestellt, so kann es zu Schwingungen in der Lastvorgabe des Zellstapels kommen. Dies hätte Auswirkungen auf die Anoden-
volumenströme (Ein- und Ausgänge), was sich wiederum auf das Druckniveau und damit auf die Umsätze im System auswirkt. Die Folge wären Schwankungen im Reformerumsatz und somit ein instabiles „schwingendes“ System.

Beim Störverhalten ist eine ausgewogene Einstellung nötig. Ist der Regler zu langsam, so kann es passieren, dass eine Einzelzellspannung unter den zulässigen Grenzwert von 0,4 V fällt und das System von der Steuerung abgeschaltet wird.

Als Regelgröße für den Regler wurde die Zelle mit der geringsten Einzelzellspannung gewählt. Es wurden zwei Regelkonzepte erarbeitet, die mit jeweils zwei Reglertypen (PI- und PID-Regler) getestet wurden.

1. Reglerkonzept

Im ersten Konzept (s. Abbildung 5-4) wird die niedrigste Zelleinzelspannung in Relation zur mittleren Spannung aller Zellen gesetzt. Entfernt sich die Zelle mit der niedrigsten Spannung zu sehr vom Mittelwert, so reduziert der Regler die elektrische Last, da davon ausgegangen werde muss, dass die Spannung dieser Einzelzelle zusammenbricht. Zur Abstimmung des Regelkonzepts auf den Zellstapel dient hier neben den Faktoren des Reglers noch das \(\Delta U_{\text{Soll}} \). Es gibt den maximal erlaubten Abstand zwischen \(U_{\text{min}} \) und \(U_{\text{mittel}} \) an.

Dieses Konzept zeigte ein relativ träges Regelverhalten, was sich vor allem bei Lastwechseln etwas störend bemerkbar machte. Im Störverhalten war dieser Regler jedoch ausreichend schnell und gutmütig. Als gut geeignet erwies sich dieses Konzept beim Start der kalten Zelle. Hier kam es nur zu geringen Schwankungen oder Störungen durch den Regler.
Kapitel 5

Verschaltung der Systemkomponenten

Abbildung 5-4: Schema der Regelstruktur 1

2. Reglerkonzept

Abbildung 5-5: Schema der 2. Regelstruktur
Ausgewählt zur Realisierung wurde das zweite Konzept mit einem PID-Regler und einer Rampenfunktion zur Vorgabe der Zellleistung bei Lastwechseln und bei Startvorgängen. Die gefundenen Reglerparameter und die eingestellten Grenzen gelten wahrscheinlich nur für diesen Zellstapel bzw. für dieses System.

Abbildung 5-6 dokumentiert das Verhalten der Regelstrecke bei einem Lastsprung von 600 W auf 800 W (nach 50 Sek.), sowie bei Störungen (nach 60 Sek.) Außerdem sind die gewählten Reglerparameter angegeben. Die Störungen wurden durch Reduktion der Kathodenluft gezielt verursacht (0:32 min – 0:40 min und 0:59 min – 1:10 min). Die Geraden, die \(P_{el,Soll} \) eingrenzen repräsentieren die an den Regler angelegten Gütekriterien, die einen Toleranzbereich von \(\pm 2\% \) vom Sollwert vorsehen.

Abbildung 5-6: Zellreaktion (\(P_{el,Ist} \) und \(U_{min,Ist} \)) auf Lastsprung und Störung in der Zellluftzufuhr bei unterschiedlichen Zelllasten mit der Regelungsstruktur 2 und einem PID-Regler (\(k_P = -60; T_I = 0,002; T_D = 0,001 \))

Um das Systemverhalten bei Lastwechseln zu charakterisieren, bzw. um entsprechende teilautomatisierte Lastwechsel zu ermöglichen wurden für die Brennerleistung, für den Reformermethanvolumenstrom, für das Reformerwasser und für die Brennstoffzellenleistung Rampenfunktionen programmiert. Sie stellen einen weiteren Schritt zur Automatisierung des Systems da.

Diesen Rampen kann man einen Zielwert, eine Dauer und eine Verzögerungszeit zuweisen. Startwert ist immer der aktuelle Wert im System zum Zeitpunkt der

Abbildung 5-7: Prinzipieller Ablauf eines rampengesteuerten Lastwechsels

Abbildung 5-8 zeigt das Hauptfenster der Bedienoberfläche der Steuerung, um einen Eindruck vom Funktionsumfang der Steuerung und von der Komplexität des Systems zu geben. Selten benötigte Funktionen und Parameter sind in anderen Fenstern der Bedienoberfläche untergebracht und in Abbildung 5-8 nicht zu sehen.

Im Hauptfenster befinden sich auf der linken Seite die Volumenstromkontrollen. Darunter sind vier manuell zu bedienende Schalter und das Dialogfenster, in dem die Steuerung vor eventuellen Störungen warnt, zu sehen. Rechts daneben ist die Brennersteuerung angeordnet. Rechts oben befindet sich der Teil, der den Versuchstand repräsentiert und die meisten Messwerte des Reformers und der
Kapitel 5
Verschaltung der Systemkomponenten

Abbildung 5-8: Daten- und Steuerungsfenster der Systemsteuerung

5-19
Weitere Funktionen der Systemsteuerung wie z.B. die Einstellung der Grenzwerte, Reglerparameter und Diagramme konnten in anderen Programmfenstern eingesehen und ggf. verändert werden.

5.2.3 Geschlossener Systemkreislauf mit Rückführung und Steuerung

Die Zündüberwachung bzw. der Ionisationsstrom gibt Rückmeldung an die Steuerung, ob der Brenner in einem sicheren Betrieb brennt. Ist dies nicht der Fall kann die Steuerung über ein Ausgangssignal den Brenner zünden. Ist ein Zünden des Brenners nicht möglich wird nach Ausgabe einer Fehlermeldung das System heruntergefahren und mit Stickstoff gespült.
Abbildung 5-9: Vereinfachte schematische Darstellung des Gesamtsystemversuchstandes

Abbildung 5-10 zeigt den aufgebauten Versuchstand. Teile der Peripherie wie z.B. Wärmetauscher, Kühlwasserpumpe, Ionentauscherfilter, Kondensatabscheider etc. befinden sich in der Ebene unter dem Brennstoffzellenstapel.

\[
\eta_{BZS,el,Brutto} = \frac{P_{el,Prod.}}{P_{th,Edukt} + P_{th,Br.} - P_{H2,Prod} \cdot \eta_U}
\]

Gl. 5-19

In dieser überschlägigen Gleichung (Gl. 5-19) bleibt der thermische Mehraufwand für die Erhitzung der Inertgase ebenso unberücksichtigt wie der Heizwert des im
Kapitel 5 Verschaltung der Systemkomponenten

Anodenabgas enthaltenen Restmethans. Diese beiden Vernachlässigungen haben unterschiedliche Auswirkungen auf den Wirkungsgrad. Die Gleichung (Gl. 5-19) genügt jedoch, um die in Abbildung 5-11 ersichtlichen Ausgleichseffekte zu verstehen.

Die Schwankungen im Wasserstoffumsatz des Zellstapels haben mehrere Ursachen, unter anderem sind die Alterung der Zellen und Probleme im Wasserhaushalt dafür verantwortlich.

Abbildung 5-11: Wirkungsgrade des Gesamtsystems über den Lastbereich

Bei der Kopplung des Brennstoffzellenstapels mit dem Dampfreformer (minimaler Lastpunkt 20 %) zeigte sich, dass der Reformatvolumenstrom am 20 %-Lastpunkt nicht mehr ausreicht um das auf der Anodenseite der Zellen austrocknendes Wasser auszutragen. Der Stapel war in diesem Lastpunkt sehr instabil. Daher musste auf die Vermessung des 20 % Lastpunktes für das System in Abbildung 5-11 verzichtet werden.

Im Vergleich zu Abbildung 3-22 zeigt sich bei den Gaskonzentration in Abbildung 5-12 ein leicht veränderter Verlauf. Der Restmethangehalt steigt beim 100 % Lastpunkt deutlich an. Grund hierfür könnte das im realen Anodenabgas enthaltene Wasser sein (Das synthetische Reformgas, das der Vermessung aus Abbildung 3-22 zugrunde liegt, war nicht befeuchtet.). Es wirkt sich wahrscheinlich auf die Wärmeeinbringung und damit auf die Temperaturverteilung im Re-

Abbildung 5-12: Vermessung des Reformers mit Anodenabgas im Laborsystem

Nach etwa 2500 Betriebsstunden im Zellteststand und im Gesamtsystem war der Zellstapel durch Degradation nicht mehr in der Lage 1 kWel. annähernd zu produzieren. Für alle weiteren Versuche stand er somit nicht mehr zur Verfügung. Um dennoch Aussagen über das Lastwechselverhalten des Systems bzw. des Reformers im System machen zu können, wurden anstelle des Brennstoffzellenstapels eine entsprechende Anzahl von Massendurchflussreglern (für H₂, CH₄, CO₂, N₂) und ein Befeuchter auf dem Teststand installiert, so dass das Anodenabgas aus den gemessenen Betriebsparametern berechnet und synthetisch hergestellt werden konnte.

Durch die Einbindung der Massendurchflussregler in die Steuerung konnte der Umsatz im Stapel entsprechend vom Bediener vorgegeben werden. Durch Messung der aktuellen Produktgaskonzentrationen konnten mit dem vorgegebenen Gasnutzungsgrad die Volumenströme der einzelnen Gaskomponenten des syn-
Kapitel 5
Verschaltung der Systemkomponenten

Thetischen Anodenabgases berechnet werden. Das Betriebsverhalten des Stapels (Kondensation, Dynamik etc.) kann mit dieser Methodik jedoch nicht mit simuliert werden. Dies erfordert ein sehr detailliertes mathematisches Modell, das bisher noch nicht entwickelt werden konnte.

Abbildung 5-13 zeigt die vom Bediener vorgenommenen Eingriffe bei einem Lastwechsel von einem stabilen 30%-Teillastpunkt auf Vollast, also die Aktionen. Abbildung 5-14 hingegen zeigt die Reaktionen des Systems bei diesem Lastsprung.

Die Temperatur in der SelOx steigt beim Lastwechsel bedingt durch die gestiegene Reaktionswärme (erhöhter Umsatz in der SelOx); die auf den erhöhten Luftvolumenstrom zurückzuführen ist. Eine Erhöhung des Kühlwasserstroms kann diesem entgegen wirken. In Grenzen ist die Temperaturerhöhung aber auch hilfreich um den Umsatz zu verbessern, wie Abbildung 3-25 zeigt.

Limitierender Faktor beim Lastwechsel ist die CO-Konzentration. Die Volumenstromänderung kann innerhalb des Systems in einer halben Minute abgeschlossen werden. Um aber zu verhindern, dass die Kohlenmonoxidkonzentration im Stapel über 50 ppm steigt, muss auf den Umsatz in der Shift-Stufe und in der SelOx Rücksicht genommen werden, da die SelOx abhängig vom Betriebspunkt nur eine begrenzte Menge des eingehenden Kohlenmonoxids umsetzen kann.

Kleinere Lastwechsel können entsprechend schneller vorgenommen werden. Auch Lastwechsel von höheren zu geringeren Lastpunkten sind weniger zeitkritisch. Versuche zeigten jedoch, dass mehrere Lastwechsel kurz hintereinander
zu unsicheren Betriebszuständen bzw. zu überhöhten CO-Konzentrationen hinter der SelOx führen können. Daher sollte nach einem Lastwechsel abgewartet werden, bis sich ein annähernd stationäres Temperaturprofil eingestellt hat. Dies ist in diesem Versuch nach ca. 10 Minuten der Fall.

5.2.4 Abschätzung der Systemverluste und des erreichbaren Wirkungsgrades

Zur Bestimmung des Energieinhaltes eines Massenstroms dient Gl. 5-20

\[\dot{Q} = \dot{m} \cdot c_p \cdot \Delta T \quad \text{Gl. 5-20} \]

Die Wärmeverluste einer Hülle infolge von Konvektion werden mit

\[\dot{Q} = \alpha \cdot A \cdot (t_u - t_w) \quad \text{Gl. 5-21} \]

determiniert.

Die Leistung eines heizwerthaltigen Gasstroms berechnet sich durch

\[P = \dot{m} \cdot H_u \quad \text{Gl. 5-22} \]

bzw.

\[P = \dot{m} \cdot H_o. \quad \text{Gl. 5-23} \]

Zur Abschätzung des erreichbaren Wirkungsgrades wurde eine Parametervariation durchgeführt. Grundlage ist auch hier die Gaskonzentration hinter der Shift-Stufe von \(\text{CH}_4 = 1 \text{ Vol.-\%} \), \(\text{H}_2 = 79 \text{ Vol.-\%} \), \(\text{CO}_2 = 19,4 \text{ Vol.-\%} \), \(\text{CO} = 0,6 \text{ Vol.-\%} \). Gerechnet wird in erster Nährung mit dem Strahlungsstromäquivalent in der Brennkammer des Reformers (s. Anhang A). Die unterschiedlichen Reformerwirkungsgrade resultieren somit lediglich aus einer Änderung des Wärmeintrags. Als zusätzliche Vereinfachung wird der Umsatz als konstant betrachtet.
Kapitel 5 Verschaltung der Systemkomponenten

Tabelle 5-1: Parametervariation am Rückgeführten System

<table>
<thead>
<tr>
<th></th>
<th>schlecht</th>
<th>gut</th>
<th>sehr gut</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_{\text{Ref}})</td>
<td>71 %</td>
<td>76 %</td>
<td>81 %</td>
</tr>
<tr>
<td>(\eta_{\text{BZ}})</td>
<td>35 %</td>
<td>40 %</td>
<td>45 %</td>
</tr>
<tr>
<td>(\eta_{\text{WR}})</td>
<td>85 %</td>
<td>90 %</td>
<td>95 %</td>
</tr>
<tr>
<td>(P_{\text{Peripherie}})</td>
<td>250 W</td>
<td>200 W</td>
<td>150 W</td>
</tr>
<tr>
<td>(P_{\text{Br. ein}})</td>
<td>1,21 kW</td>
<td>1,09 kW</td>
<td>0,95 kW</td>
</tr>
<tr>
<td>(P_{\text{Br.mR}})</td>
<td>0,65 kW</td>
<td>0,787 kW</td>
<td>0,937 kW</td>
</tr>
<tr>
<td>(P_{\text{BZ.el.}})</td>
<td>0,875 kW</td>
<td>1,00 kW</td>
<td>1,125 kW</td>
</tr>
<tr>
<td>(P_{\text{WR}})</td>
<td>0,744 kW</td>
<td>0,900 kW</td>
<td>1,069 kW</td>
</tr>
<tr>
<td>(P_{\text{Netto}})</td>
<td>0,494 kW</td>
<td>0,700 kW</td>
<td>0,919 kW</td>
</tr>
<tr>
<td>(\eta_{\text{el.}})</td>
<td>17,5 %</td>
<td>23,6 %</td>
<td>29,5 %</td>
</tr>
</tbody>
</table>

bzw.:

<table>
<thead>
<tr>
<th>Leistung P am</th>
<th>Diagrammbeschriftung</th>
<th>schlecht</th>
<th>gut</th>
<th>sehr gut</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_4)-Eingang</td>
<td>[Ref.ein]</td>
<td>2,18</td>
<td>2,18</td>
<td>2,18</td>
</tr>
<tr>
<td>Brenner-Eingang</td>
<td>[+Br._ein]</td>
<td>2,83</td>
<td>2,967</td>
<td>3,1166</td>
</tr>
<tr>
<td>Ref.-Ausgang(nur H(_2))</td>
<td>[Ref.Aus_H(_2)]</td>
<td>2,5</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>elektr. Leistung des Zellstapels</td>
<td>[hinter_Zelle]</td>
<td>0,875</td>
<td>1</td>
<td>1,125</td>
</tr>
<tr>
<td>Elektr. Leistung nach dem Wechselrichter</td>
<td>[hinter WR]</td>
<td>0,74</td>
<td>0,9</td>
<td>1,07</td>
</tr>
<tr>
<td>Elektrische Systemleistung nach abzug der Peripherieleistungen</td>
<td>[nach Peripherie]</td>
<td>0,494</td>
<td>0,7</td>
<td>0,92</td>
</tr>
</tbody>
</table>

Es ist deutlich zu sehen, dass die Nettoleistung wahrscheinlich unter den angestrebten 1 kW liegen wird. Der elektrische Nettowirkungsgrad des Systems liegt bei dieser Parametervariation maximal bei 29,5 %.

Der hohe Verlust bei der idealen Variante (sehr gut; bei der alle Parameter optimal bzw. am günstigen Ende des zu erwartenden realen Wertebereichs liegen) über den Reformer erklärt sich über den guten Wirkungsgrad bzw. guten Umsatz der Zellen (90 %). Da die Zellen fast den gesamten Wasserstoff umsetzt muss entsprechend viel Methan bzw. Erdgas dem Brenner zugeführt werden um die
Kapitel 5
Verschaltung der Systemkomponenten

Inertgase des Anodenabgases mit aufzuheizen, was sich entsprechend Gl. 2-25 negativ auf den Reformerwirkungsgrad auswirkt, s. Tabelle 5-2.

Tabelle 5-2: Verteilung der Verluste am Gesamtsystem gemäß der Parametervariation

<table>
<thead>
<tr>
<th>Betrag der Verluste</th>
<th>schlecht</th>
<th>gut</th>
<th>sehr gut</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verlust Reformer</td>
<td>0,33</td>
<td>0,467</td>
<td>0,616</td>
<td></td>
</tr>
<tr>
<td>Verlust Zelle</td>
<td>0,375</td>
<td>0,25</td>
<td>0,125</td>
<td></td>
</tr>
<tr>
<td>Verlust am WR</td>
<td>0,135</td>
<td>0,1</td>
<td>0,055</td>
<td>kW</td>
</tr>
<tr>
<td>Verlust durch die Peripherie</td>
<td>0,250</td>
<td>0,200</td>
<td>0,150</td>
<td>kW</td>
</tr>
</tbody>
</table>

Der Verlust des Reformers berechnet mit:

\[P_{\text{Verlust,Ref.}} = P_{\text{Br.}} + P_{\text{Ref.}} \cdot P_{\text{H2,Ref}} \]

Tabelle 5-2 lässt erkennen, dass die meisten Verluste am Reformer auftreten. Vor allem durch Wärmeverluste, aber auch durch nicht umgesetztes Methan und durch den späteren Umsatz von zunächst produziertem Wasserstoff (Air-Bleed, SelOx).

Die nutzbare Energie, die zurückgeführte Energie und die Verluste sind in Abbildung 5-15 für den besten Fall aus Tabelle 5-1 und Tabelle 5-2 dargestellt.

Kapitel 5 Verschaltung der Systemkomponenten

Die Wärmeverluste über die Oberfläche des Stapels, des Reformers und der SelOx werden mittels der Gleichungen für freie Konvektion berechnet (Gl. 5-21). Die Berechnungen erfolgen mit 22 °C (Raumtemperatur) als Basis.

Tabelle 5-3: Energiebilanz am Reformer bezogen auf den Brennwert

<table>
<thead>
<tr>
<th>Stofflich:</th>
<th>Ausgehend Leistungen und Verluste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingehende Leistungen</td>
<td>Stofflich:</td>
</tr>
<tr>
<td>$P_{\text{Ref.}, CH_4}$</td>
<td>2418 W</td>
</tr>
<tr>
<td>$P_{\text{Br.}, H_2}$</td>
<td>722 W</td>
</tr>
<tr>
<td>$P_{\text{Br.}, CH_4}$</td>
<td>756 W</td>
</tr>
<tr>
<td>$P_{\text{H}_2, \text{th}}$</td>
<td>2939 W</td>
</tr>
<tr>
<td>$P_{\text{CH}_4, \text{th}}$</td>
<td>115 W</td>
</tr>
<tr>
<td>$P_{\text{CO}, \text{th}}$</td>
<td>22 W</td>
</tr>
<tr>
<td>Wärmeverluste:</td>
<td></td>
</tr>
<tr>
<td>$Q_{\text{Kond.}, RG}$</td>
<td>152 W</td>
</tr>
<tr>
<td>$Q_{\text{Kond.}, PG}$</td>
<td>36 W</td>
</tr>
<tr>
<td>P_{RG} (140 °C)</td>
<td>145 W</td>
</tr>
<tr>
<td>Q_{PG} (160 °C)</td>
<td>56 W</td>
</tr>
<tr>
<td>$Q_{\text{Hüll}}$ (60 °C)</td>
<td>85 W</td>
</tr>
<tr>
<td>Summe</td>
<td>Summe</td>
</tr>
<tr>
<td>3896 W</td>
<td>3874 W</td>
</tr>
</tbody>
</table>

Die SelOx wird auf Grund der Erfahrungen aus ihrem Betrieb für die Bilanz als isotherm betrachtet. Daher müssen nur die durch den Umsatz in der SelOx gewonnen und über das Kühlwasser abgeführten Leistungen berücksichtigt werden. Lediglich die Verluste über die isolierte Hülle des Reformers werden als freie Konvektion berücksichtigt.

Tabelle 5-4: Wärmeproduktion in der SelOx bei Volllast

<table>
<thead>
<tr>
<th>SelOx</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Für 100% Last</td>
<td>$x_{\text{CH}4} = 1 \text{ Vol.%}, x{\text{H}2} = 79 \text{ Vol.%}, x{\text{CO}} = 0,6 \text{ Vol.%}, x_{\text{CO}_2} = 19,4 \text{ Vol.%}$</td>
</tr>
<tr>
<td>$Q_{\text{H}_2, \text{Umsatz}}$</td>
<td>44,44 W</td>
</tr>
<tr>
<td>$Q_{\text{CO}, \text{Umsatz}}$</td>
<td>22,00 W</td>
</tr>
<tr>
<td>$Q_{\text{Hüll}}$ (80°C)</td>
<td>-6,7 W</td>
</tr>
<tr>
<td>$Q_{\text{Produziert}}$</td>
<td>59,74 W</td>
</tr>
</tbody>
</table>

5-31
Die Systemgrenzen bei der Energiebilanz um den Brennstoffzellenstapel beinhalten den Kathodenluftwärmetauscher und den Air-Bleed. Der Air-Bleed entwickelt durch den Umsatz des Wasserstoffs mit Luft zu Wasser Wärme. Da diese Reaktion am Katalysator der Zelle stattfindet, wird davon ausgegangen, dass diese Wärme für das System nutzbar ist. P_{AA} ist die Heizleistung, die im Anodenabgas enthalten ist und \dot{Q}_{AA} ist die Wärme, die das Anodenabgas mit sich aus den Zellen führt (ohne Kondensation). Die Betriebsparameter des Zell stapels sind hier ebenfalls angegeben.

Tabelle 5-5: Energiebilanz am Zellstapel bezogen auf den Heizwert

<table>
<thead>
<tr>
<th>Lambda-BZ: 2 η_U: 74,50% η_{el}: 55,00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingehend</td>
</tr>
<tr>
<td>$\dot{Q}_{Air-Bleed}$</td>
</tr>
<tr>
<td>\dot{Q}_{Edukt} (70°C)</td>
</tr>
<tr>
<td>P_{H2}</td>
</tr>
<tr>
<td>P_{CH4}</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Summe</td>
</tr>
</tbody>
</table>

Die Energiebilanz um das Gesamtsystem (Tabelle 5-6) ist nicht geschlossen; da die Bilanzen um die einzelnen Komponenten aber geschlossen sind, wird davon ausgegangen, dass die Differenz zwischen eingehenden und ausgehenden Leistungen den Verlusten in den Verbindungen (Rohrleitungen, Anschlüsse etc.) entspricht. Berechnungs- und Messungenaigkeiten gehen notgedrungen ebenfalls in diesen Wert mit ein.
Kapitel 5
Verschaltung der Systemkomponenten

Tabelle 5-6: Energiebilanz des Gesamtsystems ohne elektrische Verbraucher bezogen auf den Heizwert

<table>
<thead>
<tr>
<th>Eingehend</th>
<th>Ausgehend</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{CH4,Ref}$</td>
<td>2178,9 W</td>
</tr>
<tr>
<td>$P_{CH4,Br.}$</td>
<td>681,3 W</td>
</tr>
<tr>
<td>$\dot{Q}_{Air-Bleed + SelOx}$</td>
<td>101,6 W</td>
</tr>
<tr>
<td>Aufwand:</td>
<td>2860,2 W</td>
</tr>
<tr>
<td>\dot{Q}_{RG}</td>
<td>505,0 W</td>
</tr>
<tr>
<td>$\dot{Q}_{Ref,Hülle}$</td>
<td>85,0 W</td>
</tr>
<tr>
<td>$\dot{Q}_{SelOx,Hülle}$</td>
<td>6,7 W</td>
</tr>
<tr>
<td>$\dot{Q}_{Stapeloberfläche}$</td>
<td>36,0 W</td>
</tr>
<tr>
<td>$\dot{Q}_{Zellluft}$</td>
<td>111,9 W</td>
</tr>
<tr>
<td>andere Leitungs- und Wärmeverluste</td>
<td>223,9 W</td>
</tr>
</tbody>
</table>

Der Verlust in den Leitungen von 223,9 W mag zunächst vielleicht etwas hoch erscheinen. Es ist jedoch aus den Versuchen bekannt, dass das Anodenabgas vom Ausgang des Stapels bis zum Brenner um ca. 35 °C abkühlt. Dabei kondensieren ca. 3,5 ml/min Wasser aus. Der Wärmeverlust entlang dieser ca. 2 m langen Leitung beträgt 68 W. Die anderen Leitungen im System sind zwar kürzer, haben aber teilweise einen wesentlich höheren Temperaturgradienten gegenüber der Umgebung, so dass trotz Isolierung dieser Leitungen mit ähnlich großen Leistungsverlusten zu rechnen ist. Daher erscheint dieses Ergebnis plausibel.

Um eine Betrachtung des Nettowirkungsgrades durchführen zu können ist eine Abschätzung der elektrischen Verbraucher (bzw. Verluste) nötig. Diese Abschätzung ist in Tabelle 5-7 durchgeführt worden.

Tabelle 5-7: Abschätzung der elektrischen Verluste

<table>
<thead>
<tr>
<th></th>
<th>Verlust</th>
<th>Nutzleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellestapel</td>
<td></td>
<td>966,2 W</td>
</tr>
<tr>
<td>Umrichter ($\eta_{WR} = 0,85$)</td>
<td>145 W</td>
<td></td>
</tr>
<tr>
<td>Pumpen (s. Tabelle 1 Anhang D)</td>
<td>110 W</td>
<td></td>
</tr>
<tr>
<td>Ventile</td>
<td>90 W</td>
<td></td>
</tr>
<tr>
<td>Steuerung</td>
<td>60 W</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>405 W</td>
<td>561,2 W</td>
</tr>
</tbody>
</table>
Kapitel 5
Verschaltung der Systemkomponenten

Der Gesamtsystemnutzungsgrad nach Gl. 2-36 liegt Brutto bei 66,14 % und nach Abzug der Peripherieleistungen bei 48,4 % (Nettonutzungsgrad).

Abbildung 5-16: Darstellung der Energieverteilung im System.
Die erzielten Systemwirkungsgrade sind noch unbefriedigend. Durch Systemoptimierung (kürzere und besser isolierte Leitungen und geringere elektrische Verluste bei Wechselrichter, Pumpen, Ventilen und Steuerung) könnten voraussichtlich folgende Werte erreicht werden (s. Tabelle 5-8).

| Tabelle 5-8: Leistungsbilanz mit Abschätzung des Verbesserungspotentials des Gesamtsystems. |
|---|---|---|
| **Eingehend** | **Ausgehend** |
| $P_{\text{Ref.,CH}4}$ | 2178,9 W | $P_{\text{el.}}$ | 966,2 W |
| $P_{\text{Br.,CH}4}$ | 532,3 W | $Q_{\text{Prod.}}$ | 923,9 W |
| $Q_{\text{Air-Bleed & SelOx}}$ | 102,3 W | |
| **Aufwand:** | 2711,2 W | **Nutzen:** | 1991,4 W |
| **Verluste:** | | |
| Q_{RG} (40°C) | 356,0 W | |
| $Q_{\text{Ref. Hülle}}$ | 85,0 W | |
| $Q_{\text{SelOx Hülle}}$ | 5,0 W | |
| $Q_{\text{Stapeloberfläche}}$ | 36,0 W | |
| Q_{Zellluft} | 111,9 W | |
| andere Leitungs- und Wärme-Verluste | 125,9 W | |

Somit ergibt sich eine elektrischer Bruttowirkungsgrad von 35,6 % (Nettowirkungsgrad von 27,2 %). Der Gesamtsystemnutzungsgrad erreicht 73,5 % Brutto bzw. 61,3 % Netto. Diese Wirkungsgrade liegen im oberen Bereich, verglichen mit den oben gemachten Abschätzungen (17,6-29,5% elektrischer Nettowirkungsgrad). Der schlechte elektrische Wirkungsgrad wäre durch einen Zellstapel mit besserem Strom-zu-Wärme-Verhältnis und mit einer höheren Gasausnutzung noch weiter zu verbessern. Auch ein höherer Umsatz im Reformer kann den Systemwirkungsgrad noch weiter verbessern, so dass ein elektrischer Nettowirkungsgrad des Systems von über 30 % erreichbar scheint. Dieser Wert wird in der Literatur oft gefordert, damit ein Brennstoffzellensystem wirtschaftlich und...
Kapitel 5
Verschaltung der Systemkomponenten

In Kapitel 6 wird versucht die u.a. aus diesem Abschnitt resultierenden Erkenntnisse über die Systemverluste in einen verbesserten Systementwurf zu integrieren.

5.3 Entwicklungsziele und Optimierungspotential

Das primäre Ziel, ein funktionsfähiges Gesamtsystem zu erstellen, ist erreicht worden, wie die vorangehenden Kapitel zeigen. Erwartungsgemäß weist das System aber noch einige Schwachstellen hinsichtlich Dynamik, Zuverlässigkeit und Effizienz auf.

Im Folgenden sollen das Verbesserungspotential aufgezeigt werden. Einige der Vorschläge werden im folgenden Kapitel für einen neuen Systementwurf verwendet.

Verbesserungsbedarf besteht unter anderem noch in den folgenden Bereichen:

- Der elektrische Netto-Gesamtsystemwirkungsgrad sollte mindestens 30 % betragen.

- Die Dynamik des Systems vor allem während des Anfahrens scheint verbesserungswürdig.

- Der Brenner muss hinsichtlich der Rauchgasqualität optimiert werden.

- Die Wärmeintegration ist zu verbessern bzw. die Wärmeverluste sind zu minimieren. Die Verringerung der Wärmeverluste verringert den Wärmebedarf und steigert so den Wirkungsgrad.

- Die Ergebnisse aus den sicherheitstechnischen Untersuchungen und den Untersuchungen zur Zuverlässigkeit des Systems müssen im Systemplan berücksichtigt werden (s. Anhang C).

Methoden zur Verbesserung des elektrischen Netto-Gesamtsystemwirkungsgrades wurden bereits in Kapitel 5.2.4 angesprochen. Hier können sowohl auf der Gasseite als auch auf der Stromseite Verbesserungen zur Erreichung des Wirkungsgrades führen.

Gasseitig:

- Verbesserung der Wärmeeinbringung z.B. durch Wärmeleitbleche oder durch Vergrößerung der beheizten Oberfläche.
- Verbesserung der Abwärmenutzung durch Anpassung der Wärmetauscher im Reformer an den Betrieb mit Anodenabgas.
- Reduktion der Rauchgasverluste z.B. durch einen Wärmetauscher in dem das Eduktwasser gegen das Rauchgas vorgewärmt wird.
- Reduktion der Wärmeverluste durch Leitungen (Verkürzung und Isolation der Leitungen im System).

Stromseitig:

- Reduzierung der Pumpenleistung durch Anpassung der Pumpen an das Druckniveau, an den zu fördernden Volumenstrom und an das vorhandene Spannungsniveau (Gleichspannung hinter dem Hochsetzsteller).
- Reduzierung der elektrischen Ventile auf ein vertretbares Minimum. Anpassung der Antriebe an das Druckniveau und an das Spannungsniveau (Gleichspannung hinter dem Hochsetzsteller).
- Erhöhung der Stackspannung durch Erhöhung der Zellenzahl für einen besseren Umrichterwirkungsgrad (ggf. Reduktion der aktiven Fläche).

Die Dynamik beim Start wird vor allem durch die Erwärmung der Shift-Stufe beschränkt. Eine Heizung in der Shift-Stufe könnte die Dauer des Aufheizens wesentlich verkürzen. Dies kann mit verschiedenen Mitteln realisiert werden:

- Elektrische Heizung des Systems: Diese Art der Heizung kann mit Hilfe von Heizspiralen oder Heizpatronen erfolgen, die in die Schüttung eingebracht werden. Dieses Verfahren erlaubt ein schnelles Startverhalten und verbessert wahrscheinlich auch das Lastwechselverhalten. Es erhöht aber auch den baulichen Aufwand, die Kosten, die Anfälligkeit und reduziert durch den Stromverbrauch den Wirkungsgrad relativ zur gesamten

Die Dynamik des Dampfreformers ist nicht nur durch die thermischen Massen sondern auch durch die Volumina der Reaktoren, Leitungen und Wärmetauscher beschränkt. Hier empfehlen sich Katalysatoren und Wärmetauscher mit großen Oberflächen zu Volumenverhältnissen.

Um die Wärmeintegration und die Rauchgasqualität zu verbessern, kann ein Flächenbrenner oder ein katalytischer Brenner eingesetzt werden (s. Kapitel 2.4).

Bei der Verwendung von Katalysatorpellets im Reformer sind feine Siebe mit geringem Druckverlust vorzusehen, die verhindern dass Katalysatorstäube in niedrigere Temperaturbereiche gelangen, wo sie Rückreaktionen verursachen können.

Von den Verbesserungsvorschlägen unabhängig sind zur Entwicklung eines Vorserienprodukts noch die folgenden Entwicklungen am Laborsystem durchzuführen:

- Zu entwickeln ist noch eine vollautomatische Steuerung, die das System sicher ohne die Werte der Gasanalyse betreiben kann. Einziger externer Vorgabewert für die Steuerung sollte die Leistungsvorgabe sein, die später
aus dem Strombedarf des Hauses ermittelt und an das System überstellt wird.

- Der Systemaufbau ist bezüglich des Platzbedarfs zu optimieren und mit einem möglichst gasdichten Gehäuse, für eine gezielte Luftwechselrate, zu versehen.

- Ein Not-Aus-Schalter und eine Bedieneinheit sind vorzusehen.

- Ein neuer Brennstoffzellenstapel (min. 60 Zellen) mit passendem Umrichter ist ins System zu integrieren. Dabei empfiehlt sich die Entwicklung eines Wechselrichters, dessen Ansteuerung auch in der Lage ist, die Steuerung des Gesamtsystems mit zu übernehmen.

- Wesentlicher Entwicklungsbedarf besteht noch bei den elektrischen Peripheriekomponenten, wie Ventilen und Pumpen. Sie müssen in Spannung, Druck und Volumenstrom besser an die Anforderungen des Systems angepasst werden. Die Steuerung des Systems kann in den Wechselrichter integriert werden, was Kosten und Leistung spart, s.o..

Einige der hier vorgeschlagenen Verbesserungen wie z.B. der Einsatz eines katalytischen oder eines Flächenbrenners oder der Einsatz von anderen Katalysator trägern erfordert vor der Umsetzung eine Vielzahl gründlicher Vermessungen und Untersuchungen, die im Rahmen dieser Arbeit nicht mehr geleistet werden konnten.

Das im nachfolgenden Kapitel entworfene System und die dazugehörige Umkonstruktion des Dampfreformers stützen sich somit lediglich auf die Betriebs- und Entwicklungserfahrungen, die im Rahmen des Aufbaus des Laborsystems gesammelt werden konnten.
6 Systemoptimierung

Der in diesem Kapitel vorgestellte Systementwurf setzt die Erfahrungen aus dem Betrieb dieses Systems um und versucht die Verschaltung der Komponenten zu verbessern, so dass das System effizienter, sicherer, kostengünstiger, robuster wird.

6.1 Reformernueuentwicklung

Die Neuerungen in diesem Entwurf sollen folgende Effekte haben:

- Wärmeleitbleche im Brennraum zur Verbesserung des Wärmeeintrags.
- Erhöhte Wärmetauscherflächen zur besseren Anpassung an den Betrieb mit Anodenabgas.
- Brenngasgemischvorwärzung.
- Integrierte wassergekühlte SelOx
- Einsatz eines Wabenkatalysators möglich.
- Schnelles Aufheizen der Shift-Stufe über Rauchgasklappen (optional).
- Geringeres Bauvolumen durch optimierte Isolierung.

Ob die Neuerungen die gewünschten Effekte haben muss in Test untersucht werden. Eine detaillierte Beschreibung des Entwurfs findet sich in Anhang F.
Für ein System mit 1 kW_{el} Leistung (Stapel $1,3 \text{ kW}_{\text{el}}$) wird eine Wasserstoffleistung von mindestens $3,5 \text{ kW}_{\text{th}}$ benötigt. Der Reformer muss also größer sein.

Abbildung 6-1: Entwurf des eines verbesserten $2,5 \text{ kW}_{\text{in}}$-Dampfreformers
6.2 Zelldefinition

Nicht nur der Reformer muss an die Betriebsbedingungen im Brennstoffzellensystem angepasst werden, auch der Brennstoffzellensapel sollte gewisse Eigenschaften haben um ein effektives Zusammenspiel der Komponenten zu ermöglichen. Im Folgenden sollen diese Anforderungen beschrieben werden.

- Geringer Druckverlust für einen geringeren Energiebedarf der Pumpen < 50 mbar
- Hohe Betriebsspannung unter Vollast (Für hohen Wirkungsgrad des Umrichters).
- Großes Strom-zu-Wärme-Verhältnis
- Lange Lebensdauer (ca. 40.000 h)
- CO-Toleranz (ca. 20 ppm), kein Air-Bleed (Einsparung von Komponenten, besserer Wirkungsgrad, da kein Wasserstoff zu Wasser umgesetzt wird, Reduktion der Alterung, weniger Sicherheitsrisiken)
- Großer Lastbereich für ökonomischen Betrieb (100 % - 20 %)
- Interne Befeuchtung (Einsparung des Befeuchters)
- Hoher Gasnutzungsgrad (für Anodenabgasrückführung)
- Geringer Luftbedarf (Reduktion des Strombedarfs des Kathodenluftgebläses)
- Wassergekühlt
- Leistung ca. 1,3 kW beim Betrieb mit Reformatgas für 1 kW Nettoleistung
- Gute thermische Isolierung (geringe Wärmeverluste).

6.3 Peripherie, MSR und Sicherheit

Wie schon in Kapitel 5.2.2 beschrieben steht bei einem nächsten Systementwurf nicht mehr die Vermessung sondern der Betrieb im Vordergrund. Durch den Wegfall der Gasanalyse kann das System nicht mehr über die Steuerungsgleichungen aus Anhang B geregelt werden. Eine Möglichkeit den Wegfall der Analyse zu kompensieren besteht darin, charakteristische Messdaten in Tabellen in der Steuerung zu hinterlegen.
Kapitel 6 Systemoptimierung

Tabelle 6-1: Sensorik im Vorserienmodell

<table>
<thead>
<tr>
<th>Art</th>
<th>Messstelle</th>
<th>Funktion / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-Sensor</td>
<td>Vor den Zellen</td>
<td>Schutz der Zellen vor CO-Konzentrationen</td>
</tr>
<tr>
<td>Temperatursensor</td>
<td>SelOx-Eintritt</td>
<td>Überwachung des Betriebs</td>
</tr>
<tr>
<td>Temperatursensor</td>
<td>SelOx-Mitte</td>
<td>Überwachung des Betriebs</td>
</tr>
<tr>
<td>Temperatursensor</td>
<td>KW. vor dem Stapel</td>
<td>Kühlwassereintritt</td>
</tr>
<tr>
<td>Temperatursensor</td>
<td>KW. hinter dem Stapel</td>
<td>Kühlwasseraustritt</td>
</tr>
<tr>
<td>Temperatursensor</td>
<td>Shift eintritt</td>
<td>80 °C Überwachung</td>
</tr>
<tr>
<td>Temperatursensor</td>
<td>Shiftaustritt</td>
<td>80 °C und 300 °C Überwachung</td>
</tr>
<tr>
<td>Temperatursensor</td>
<td>Shiftmitte</td>
<td>80 °C und 300 °C Überwachung</td>
</tr>
<tr>
<td>Drucksensor</td>
<td>Vor dem Reformer</td>
<td>Systemschutz</td>
</tr>
<tr>
<td>Zündüberwachung</td>
<td>Brenner</td>
<td>Überwachung der Verbrennung</td>
</tr>
<tr>
<td>Einzelzellspannungsüberwachung</td>
<td>Zellstapel</td>
<td>Überwachung des Zellbetriebs und Schutz der Zellen.</td>
</tr>
<tr>
<td>Volumenstrommessung</td>
<td>Erdgas</td>
<td>Aufdecken von Leckagen</td>
</tr>
<tr>
<td>Füllstandsanzeige</td>
<td>Wasservorlage</td>
<td>Überwachung des Wasserstands</td>
</tr>
</tbody>
</table>

Da wahrscheinlich laut Richtlinie kein Wasserstoff im System stehen bleiben darf (die entsprechende Norm ist noch nicht verabschiedet), muss eine Abfahrprozedur durchgeführt werden. Dies macht den Betrieb von Pumpen notwendig. Eine Batterie muss daher installiert werden um ein sicheres Abfahren des Systems im Falle eines Stromausfalles gewährleisten zu können.

Die Umstellung des Systems vom Betrieb mit reinem Methan auf Erdgas und von Massendurchflussreglern auf Pumpen erfordert Anpassungen, die in die Steuerung mit eingearbeitet werden müssen (z.B. Pumpenkennlinien, Regelalgorithmen und Totzeiten für die Pumpen um einen gleichmäßigen und sicheren Betrieb zu ermöglichen).

Für die Umstellung auf Erdgas wird auch eine effektive und zuverlässige Entschwefelung benötigt.
Zur Verbesserung des Wirkungsgrades müssen die Pumpen einen möglichst geringen Stromverbrauch aufweisen. Die Ventile sollen optimal an die Betriebsbedingungen angepasst (großer Durchmesser -> geringer Druckverlust, schwache Anpresskraft -> geringer Strombedarf im Betrieb) und auf ein notwendiges Minimum reduziert werden.

6.4 Verschaltung

Im Vergleich zur Verschaltung des Laborsystems (s. Abbildung 5-2) ergeben sich einige Veränderungen in der Verschaltung des Systems (Abbildung 6-2) beim Übergang zur überarbeiteten Version.

Die in Abbildung 6-2 gezeigte Wasservorlage ist nötig, da das deionisierte Wasser im System nicht teuer und aufwendig produziert werden sollte [BENZ00]. Daher muss das entsalzte Wasser im System aufgefangen und wieder verwendet werden. Vorteilhaft zum Schließen des Wasserhaushaltes wirkt sich hier die gewählte Abfahrstrategie aus (Anhang E), bei der der produzierte Wasserstoff in der SelOx zu Wasser reagiert. Das Wasser wird am Kondensatabscheider vom Gasstrom getrennt und der Wasservorlage zugeführt.

Des Weiteren ist in Abbildung 6-2 die Gasführung für das An- bzw. Abfahren mit selbst über die SelOx produziertem Inertgas dargestellt (s. Anhang E.1 und E.3; An- und Abfahrstrategie). Anstatt der beiden 3/2 Wegeventile könnte auch ein monostabiles 5/2 Wegeventil verwendet werden, was ebenfalls Strom spart, jedoch teurer ist.

Vor dem Zellstapel ist der CO-Sensor zu erkennen, der die Zellen vor unerlaubt hohen CO-Konzentrationen schützen soll. Im Notfall kann das Produktgas über ein Überdruckventil in den Schornstein abgeblasen werden oder über den Reformerbrenner verbrannt werden.

Der Ausgleichsbehälter im Kühlwasserkreislauf ist nötig um den sich bei der Erwärmung ausdehnenden Kühlwasser ein Ausweichraum zu geben.

Eine Abschätzung der Leistungen und der Wirkungsgrade des in Abbildung 6-2 entworfenen Systems ist bereits aus Tabelle 5-8 und Kapitel 5.2.4 bekannt.

Die Eingänge der Pumpen sind zum Schutze der Pumpen und des Systems mit entsprechend dimensionierten Partikelfilters auszustatten (hier nicht dargestellt).
Abbildung 6-2: Entwurf des verfahrenstechnischen Systemsplans für die nächste Entwicklungsstufe des Brennstoffzellsystems
7 Zusammenfassung und Ausblick

Für die Entwicklung einer verbesserten Version des Brennstoffzellensystems wurde mittels sicherheitstechnischer Methodiken das Laborsystem auf Sicherheit
und Zuverlässigkeit untersucht. Problematisch war dabei jedoch der Umstand, dass es auf Grund des aktuellen Standes der Technik noch keine gültigen gesetzlichen Vorschriften zur Beurteilung des Systems gibt.

Durch diese Maßnahmen konnte eine Verbesserung des bisherigen Systemplans theoretisch erarbeitet werden, welcher zukünftig den Aufbau eines funktionsfähigen Systems mit einem elektrischen Nettowirkungsgrad von ca. 30 % und einer akzeptablen Dynamik ermöglichen soll.

Wichtig für die weitere Entwicklung des Systems ist:

- Die Integration der teilweise noch fehlenden Peripheriekomponenten
- Integration aller Komponenten in ein kompaktes Gehäuse mit aktiver Belüftung.
- Die Entwicklung einer vollautomatischen Steuerung, die nicht nur Lastwechsel sondern auch den automatischen Start und Stopp des Systems so wie den StandBy-Betrieb des Systems ermöglicht, Wartungsbedarf meldet und Fehler analysiert und behandelt.
- Optimierung des Systementwurfs unter betriebswirtschaftlichen und fertigungstechnischen Gesichtspunkten.

Mit einem solchen System können dann entsprechende Langzeituntersuchungen durchgeführt werden. In weiteren Entwicklungsschritten kann dann das System sukzessive hinsichtlich Effizienz und Zuverlässigkeit verbessert werden. Auch die Untersuchung von kritischen Systemszuständen, die zum Beispiel durch extrem schnelle Lastwechsel verursacht werden, müssen noch durchgeführt werden.

Diese Arbeit liefert so einen noch nicht da gewesenen Einblick in die Vorgänge und Zusammenhänge in einem Brennstoffzellsystem und leistet somit einen Beitrag zur Einführung und zum Verständnis dieser neuen Technologie.
Literaturverzeichnis

[Benz00] Benz, W. *Theoretische und experimentelle Untersuchungen einer Wasserdosierung für einen Erdgas-Dampf-Reformer eines Brennstoffzellensystems zur Hausenergieversorgung*, Diplomarbeit, Gerhard Mercator Universität Duisburg 2000

[DVGW119] *Brennstoffzellen-Gasgeräte bis 70 kW Vorläufige Prüfungsgrundlage VP119* Oktober 2000, DVGW

Literaturverzeichnis

[istm03] Homepage des Lehrstuhls für Strömungsmechanik der Universität Erlangen stand 06.03 www.lstm.uni-erlangen.de

[Renz04] Pischinger S., Renz U. *Vorlesung Technische Verbrennung* RWTH Aachen 2004

Mathiaik J., Heinzel A., Roes J., Kalk T., Kraus H., Brandt H.: *Coupling of a 2.5 kW steam reformer with a 1 kWel PEM fuel cell*; Elsevier; Journal of Power Sources Vol. 131 Issue 1-2; 05.2004

Roes J., Wilmsmann M., Brandt H.: *Prozesskette auf dem Prüfstand*; ruhrgas AG; Ruhrgas Forum Nr. 10, 06.2004

Anhang A: Brennraummodulation

Für die Abschätzung der Inertgaskomponenten im Anodenabgas auf den Wärmeübergang im Brennraum des Reformers wurde ein Modell entwickelt, dass die bei der hohen Verbrennungstemperatur überwiegende Wärmestrahlung auf die Wände des Brennraums berücksichtigt.

Eingangsgrößen:
- λ Brenner,
- $\dot{n}_{H_2,AA}$ mol/s,
- $\dot{n}_{N_2,AA}$ mol/s
- $\dot{n}_{CO_2,AA}$ mol/s,
- \dot{n}_{H_2O} mol/s,
- Brennraumfläche A [m2],
- Reformерwandtemperatur (equivalent der mittleren Reformierungstemperatur für den gewählten Umsatz)

Ergebnisgrößen:
- $\dot{n}_{CH_4,AA}$ (Methanmolstrom auf den Brenner) / mol/s
- Verbrennungstemperatur T_{VB} / °C

Berechnungen Anodenabgasstrom (AA)

Der Umsatz von Reformer und Brennstoffzelle wird für die Rechnung vorgegeben. Ebenso Air-Bleed Luft und SelOx Lambda, so dass die Anodenabgaszusammensetzung berechnet werden kann.

1. Massenstrom
 \[\dot{m}_{i,AA} = \dot{n}_{i,AA} \cdot M_i / \text{kg/s} \]

2. Massenkonzentration
 \[x_{i,m,AA} = \frac{\dot{m}_{i,AA}}{\sum_i \dot{m}_{i,AA}} \]

Berechnungen Rauchgasstrom (RG)

Der Rauchgasstrom ergibt sich aus den verbrannten Stoffmengenströmen.

1. Molströme
 Sauerstoff
 \[\dot{n}_{O_2} = (1-\lambda) \cdot (\dot{n}_{H_2} \cdot 0,5 + \dot{n}_{CH_4} \cdot 2) \]

 Stickstoff
 \[\dot{n}_{N_2,RG} = \dot{n}_{N_2,AA} + (\lambda_{Br} \cdot 0,79 \cdot 0,5 \cdot \dot{n}_{H_2,AA} + 2 \cdot 0,79 \cdot \dot{n}_{CH_4}) \]

 Wasser
 \[\dot{n}_{H_2O} = \dot{n}_{H_2O,AA} + \dot{n}_{H_2,AA} + 2 \dot{n}_{CH_4,AA} \]

 Kohlendioxid
 \[\dot{n}_{CO_2,RG} = \dot{n}_{CO_2,AA} + \dot{n}_{CH_4,AA} \]
Der Stickstoff im Rauchgas setzt sich zusammen aus dem Stickstoff aus Air-Bleed und Selox-Luft ($n_{N2,AA}$) und dem für die Verbrennung des Brenngases benötigten in der Luft enthaltenen Stickstoff.

2. Massenströme \[\dot{m}_{i,\text{RG}} = \dot{n}_{i,\text{RG}} \cdot M_i / \text{kg/s} \]

3. Konzentration \[x_{i,\text{V,RG}} = \frac{\dot{n}_{i,\text{RG}}}{\sum_i \dot{n}_{i,\text{RG}}}; \quad x_{i,m,\text{RG}} = \frac{\dot{m}_{i,\text{RG}}}{\sum_i \dot{m}_{i,\text{RG}}} \]

Empirische Näherungsgleichung für die Rauchgaswärmekapazität

1. Sauerstoff \[c_{p,O2} = 0,913416 + 0,000136 \cdot T_{\text{VB}} - 2,039167 \cdot 10^{-8} \cdot T_{\text{VB}}^2 / \text{kJ/kgK} \]
2. Stickstoff \[c_{p,N2} = 1,024629 + 0,000103 \cdot T_{\text{VB}} - 1,140307 \cdot 10^{-8} \cdot T_{\text{VB}}^2 / \text{kJ/kgK} \]
3. Wasser \[c_{p,H2O} = 1,827138 + 0,000342 \cdot T_{\text{VB}} - 2,048007 \cdot 10^{-8} \cdot T_{\text{VB}}^2 / \text{kJ/kgK} \]
4. Kohlendioxid \[c_{p,CO2} = 0,848369 + 0,000325 \cdot T_{\text{VB}} - 6,162325 \cdot 10^{-8} \cdot T_{\text{VB}}^2 / \text{kJ/kgK} \]
5. Gesamt \[c_{p,\text{RG}} = \sum_i x_{i,m,\text{RG}} \cdot c_{p,i} \]

Heizwert des verbrannten Gasgemisches berechnet sich nach [Lucas96]:

\[-H_u = \sum_i V_i \cdot h_i^{f,0} \]

Produkte der Verbrennung sind nur Wasserdampf und CO2.

\[-H_u = \sum_i \dot{n}_{i,\text{AA}} \cdot x_{H2O,\text{RG}} \cdot h_{H2O}^{f,0}(g) + x_{CO2,\text{RG}} \cdot h_{CO2}^{f,0}(g) \]

das im Rauchgas enthaltene Wasser muss aber um das im Anodenabgas enthaltene Wasser reduziert werden. Also:

\[-H_u = \sum_i \dot{n}_{i,\text{AA}} \cdot x_{H2O,\text{RG}} \cdot h_{H2O}^{f,0}(g) + x_{CO2,\text{RG}} \cdot h_{CO2}^{f,0}(g) - x_{H2O,\text{AA}} \cdot h_{H2O}^{f,0} \]

Um den spezifischen Heizwert zu erhalten wird durch die Dichte des Brenngases (BG) und durch das spezifische Volumen dividiert:

\[-H_u = \frac{\left(\sum_i \dot{n}_{i,\text{AA}} \cdot x_{H2O,v,\text{RG}} \cdot h_{H2O}^{f,0} + x_{CO2,v,\text{RG}} \cdot h_{CO2}^{f,0} - x_{H2O,v,\text{AA}} \cdot h_{H2O}^{f,0} \right)}{\rho_{BG} \cdot V_{m,n}} \]

a-2
Leistungsbilanz

Eingehende Wärmeleistung: \(\dot{Q}_{Ein} = n_{AA} \cdot H_{u,AA} + \dot{m}_{AA} \cdot c_p \cdot \Delta T \)

Ausgehende Wärmeleistung: \(\dot{Q}_{Aus} = \dot{Q}_{RG} + \dot{Q}_{Strahlung} \)

\[
\dot{Q}_{RG} = \dot{m}_{RG} \cdot c_{p,RG} \cdot (T_{Verbr.} - T_U)
\]

\[
\dot{Q}_{Strahlung} = C_{12} \cdot A \left(T_{Verbr.}^4 - T_{Wand}^4 \right)
\]

Bestimmung des Strahlungsstroms

\[
\dot{Q}_{12} = C_{12} \cdot A \left(T_{a}^4 - T_{2}^4 \right)
\]

\[
C_{12} = \frac{\sigma}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} \left(\frac{A_1}{A_2} \left(\frac{1}{\varepsilon_2} - 1 \right) \right)}
\]

\(\varepsilon_1 = 0,79 \) (für Stahl Brennerrohr)

\(\varepsilon_2 = 0,95 \) (für Guss oxidiert (Brennraum))

\(A_1 = 0,0065345072 \text{ m}^2 \)

\(A_2 = 0,04938 \text{ m}^2 \)

\(\sigma = 5,67 \cdot 10^{-8} \text{ W/m}^2\text{K}^4 \)

\(C_{12} = 4,455E-08 \text{ Wm}^2\text{K}^4 \)
Anhang B: Erläuterung der Gleichungen zur Steuerung des Systems

Einzelsteuerungen der Volumenströme

Für die Stellgrößen Wasserzustrom, Luftzustrom zur SelOx, Luftzustrom Air-Bleed, Kathodenluftzustrom, Brennerluftzustrom und Brennermethanzustrom wurden Einzelsteuerungen entwickelt. Die Einzelsteuerungen basieren auf Abhängigkeiten zwischen den Stell- und Messgrößen, die in mathematische Formeln gefasst wurden. Im Folgenden werden diese Formeln und deren Herleitungen erläutert.

Der Volumenstrom des Reformermethans wird vom Benutzer vorgegeben. Er bestimmt den Lastpunkt und muss nicht berechnet werden.

Steuerung des Wasserzustroms

Die Menge des Wassers, die dem Reformer zugeführt wird, hängt von der Menge des zugeführten Methans ab. Das Verhältnis charakterisiert den Parameter S/C (steam to carbon; Dampf zu Kohlenstoff). Er beschreibt das Verhältnis der Moleküllstrom von Wasser und Kohlenwasserstoff.

\[
S/C = \frac{\dot{n}_{H_2O}}{\dot{n}_{CH_4,Ref,ein}}
\]

Die Umrechnung von Stoffmengenströmen \(\dot{n} \) in Volumenströme \(\dot{\nu} \) erfolgt mittels der konstanten Molvolumina \(V_{mn} \). Durch Vorgabe des S/C-Parameters ist der Wasservolumenstrom direkt an den Methanzustrom im Reformer gekoppelt.

\[
S/C = \frac{\dot{\nu}_{H_2O,Ist}}{0,81 \cdot \dot{\nu}_{CH_4,Ref,Ist}}
\]

In der Steuerung kann entweder der Volumenstrom direkt oder das S/C Verhältnis angegeben werden

Steuerung der SelOx

Bei der SelOx wird die zur Oxidation des COs benötigte Luft gesteuert. Der zur Oxidation erforderliche Stoffmengenstrom \(\dot{n}_{O_2,SelOx,erf} \) des Sauerstoffs ergibt sich aus dem Stoffmengenstrom \(\dot{n}_{CO,Ref,aus} \) des Kohlenmonoxids vor der SelOx. Dabei wird ein halbes Mol O\(_2\) pro mol CO benötigt um es zu CO\(_2\) zu oxidieren. Es gilt:

\[
\dot{n}_{O_2,SelOx,erf} = \frac{\dot{n}_{CO,Ref,aus}}{2}.
\]
Die \(\text{O}_2 \)-Moleküle sind zu etwa 21 Vol-% in der Luft enthalten. Das Luftverhältnis \(\lambda_{\text{SelOx}} \) beschreibt das Verhältnis des zugeführten Stoffmengenstroms \(\dot{n}_{\text{Luft}, \text{SelOx}} \) der Luft relativ zum für die Reaktion stöchiometrisch erforderlichen Stoffmengenstrom an Luft. Der Stoffmengenstrom \(\dot{n}_{\text{O}_2, \text{SelOx}, \text{erf}} \) multipliziert mit dem Molvolumen des Sauerstoffs ergibt den Volumenstrom der Luft, der der SelOx zugeführt wird.

\[
\dot{v}_{\text{Luft}, \text{SelOx}} = \frac{\lambda_{\text{SelOx}} \cdot \dot{n}_{\text{O}_2, \text{SelOx}, \text{erf}} \cdot V_{\text{mn}, \text{O}_2}}{0,21}.
\]

Der Volumenstrom \(\dot{v}_{\text{CO,Ref}, \text{aus}} \) des Kohlenmonoxids vor der SelOx ist das Produkt aus dem Reformatgasvolumenstrom \(\dot{v}_{\text{Ref}} \) und dem gemessenen Volumenanteil \(x_{\text{CO}} \):

\[
\dot{v}_{\text{CO,Ref}, \text{aus}} = \dot{v}_{\text{Ref}} \cdot x_{\text{CO}}.
\]

Da dem Reformer nur Methan und Wasser zugeführt wird, können die C-Atome des im Reformatgas enthaltenen Kohlenmonoxids, Kohlendioxidens und Restmethans nur aus dem vor dem Reformer eingebrachten Methan stammen. Es kann also eine C-Bilanz durchgeführt werden:

\[
\dot{n}_{\text{CH}_4, \text{Ref}, \text{ein}} = \dot{n}_{\text{CO,Ref}, \text{aus}} + \dot{n}_{\text{CO}_2, \text{Ref}, \text{aus}} + \dot{n}_{\text{CH}_4, \text{Ref}, \text{aus}}.
\]

Auf Grund der vernachlässigbar kleinen Unterschiede der Molvolumina zwischen \(\text{CO} \), \(\text{CO}_2 \) und \(\text{CH}_4 \), ist der Volumenstrom \(\dot{v}_{\text{C,Ref}, \text{aus}} \) der kohlenstoffhaltigen Bestandteile hinter dem Reformer annähernd gleich dem einstellbaren Methanvolumenstrom \(\dot{v}_{\text{CH}_4, \text{Ref}, \text{ein}} \) vor dem Reformer.

\[
\dot{v}_{\text{C,Ref}, \text{aus}} = \dot{v}_{\text{CO,Ref}, \text{aus}} + \dot{v}_{\text{CO}_2,\text{Ref}, \text{aus}} + \dot{v}_{\text{CH}_4, \text{Ref}, \text{aus}}.
\]

Mit den hinter dem Reformer gemessenen Volumenanteilen \(x_{\text{CO}} \), \(x_{\text{CO}_2} \) und \(x_{\text{CH}_4} \) (\(\sum x_C = x_{\text{CO}} + x_{\text{CO}_2} + x_{\text{CH}_4} \)) ergibt sich der Reformatgasvolumenstrom \(\dot{v}_{\text{Ref}} \) vor der SelOx zu:

\[
\dot{v}_{\text{Ref}} = \frac{\dot{v}_{\text{CH}_4, \text{Ref}, \text{ein}} \cdot x_{\text{CO}}}{\sum x_C}.
\]

mit

\[v_i = \dot{v}_{\text{Gasstrom}} \cdot x_i \]

und der C-Bilanz.

Daraus folgt

\[
\dot{n}_{\text{CO,Ref}, \text{aus}} = \frac{\dot{v}_{\text{CH}_4, \text{Ref}, \text{ein}} \cdot x_{\text{CO}}}{V_{\text{mn}, \text{CO}} \cdot \sum x_C}.
\]

Und man erhält

\[
\dot{v}_{\text{Luft}, \text{SelOx}} = \frac{\lambda_{\text{SelOx}} \cdot \dot{v}_{\text{CH}_4, \text{Ref}, \text{ein}} \cdot x_{\text{CO}} \cdot V_{\text{mn}, \text{O}_2}}{20,21 \cdot V_{\text{mn}, \text{CO}} \cdot \sum x_C}.
\]
Mit den Konstanten

\[V_{mn,CO} = 22.4 \text{ mol/l} \]
\[V_{mn,O_2} = 22.393 \text{ mol/l} \]

ergibt sich

\[\dot{V}_{Luft,SelOx} = \frac{2.38 \cdot \dot{V}_{CH_4,Ref} \cdot \text{ein} \cdot x_{CO} \cdot \lambda_{SelOx}}{\sum x_C} \text{ l/min} \]

Die Stellgröße \(\dot{V}_{Luft,SelOx} \) ist also vom zugeführten Methanvolumenstrom, der Reformatgaszusammensetzung und dem Luftverhältnis \(\lambda_{SelOx} \) abhängig.

Neben dieser Steuerung des Luftvolumenstroms über den Reformatgasvolumenstrom und über \(\lambda_{SelOx} \) begrenzt die Steuerung den Luftvolumenstrom nach unten auf 0,25 l/min um ein Auskühlen der SelOx bei niedrigen CO-Konzentrationen und geringen Volumenströmen hinter dem Reformer zu vermeiden.

Steuerung des Air-Bleeds

Der Air-Bleed-Volumenstrom, kurz AB, wird prozentual zum Reformatgasvolumenstrom berechnet. Dies entspricht den Angaben des Zellherstellers.

\[AB = \frac{\dot{V}_{AB}}{\dot{V}_{Ref,SelOx}} \cdot 100 \% \]

Der Reformatgasvolumenstrom \(\dot{V}_{Ref,SelOx} \) hinter der SelOx ergibt sich wie folgt:

\[\dot{V}_{Ref,SelOx} = \dot{V}_{Ref} + \dot{V}_{N_2,SelOx} + \dot{V}_{H_2,SelOx,Verlust} - \Delta \dot{V}_{CO,CO_2} \]

Dabei ist \(\dot{V}_{N_2,SelOx} \) der Stickstoffvolumenstrom, der vor der SelOx mit Luft dem Reformatgas zugeführt wird. Der zugeführte Sauerstoff reagiert in der SelOx mit dem CO zu CO_2, dadurch ändert sich das Volumen geringfügig. Dies wird mit \(\Delta \dot{V}_{CO,CO_2} \) berücksichtigt.

Für die Volumenänderung \(\Delta \dot{V}_{CO,CO_2} \) gilt:

\[\Delta \dot{V}_{CO,CO_2} = \dot{V}_{CO,Ref,aus} \left(1 - \frac{V_{mn,CO_2}}{V_{mn,CO}} \right) \]

Das Kohlenmonoxid wird in der SelOx oxidiert, und der verbleibende Sauerstoff reagiert mit dem Wasserstoff zu Wasser. Der Anteil wird bestimmt durch das an der SelOx eingestellte \(\lambda \). Der umgesetzte Wasserstoffvolumenstrom \(\dot{V}_{H_2,SelOx,Verlust} \) wird vom Reformatgasvolumenstrom \(\dot{V}_{Ref,SelOx} \) abgezogen.

Der Stickstoffvolumenstrom \(\dot{V}_{N_2,SelOx} \) beträgt 79 Vol-% des vor der SelOx zugeführten Luftvolumenstroms:

\[\dot{V}_{N_2,SelOx} = \dot{V}_{Luft,SelOx} \cdot 0.79 \]
Für den Verlust an Wasserstoffvolumenstrom durch die SelOx gilt:

\[
\dot{V}_{H_2, SelOx, Verlust} = \frac{\dot{V}_{Luft,SelOx}}{\lambda_{SelOx}} \cdot 0,21 \cdot (\lambda_{SelOx} - 1) \cdot 2 \cdot \frac{V_{mn,H_2}}{V_{mn,O_2}}.
\]

Der Faktor 2 berücksichtigt, dass zwei Moleküle \(H_2\) mit einem Molekül \(O_2\) zu Wasser reagieren. Mit den oben aufgeführten Konstanten und mit

\[
V_{mn,CO_2} = 22,26 \frac{1}{\text{mol}}; V_{mn,H_2} = 22,43 \frac{1}{\text{mol}}.
\]

Ergibt sich der Reformatgasvolumenstrom \(\dot{V}_{Ref, SelOx}\) hinter der SelOx zu:

\[
\dot{V}_{Ref, SelOx} = \frac{\dot{V}_{CH_4,Ref,ein}}{\sum x_C} \cdot \left(1 + 0,995 \cdot x_{CO} + 0,88 \cdot \lambda_{SelOx} \cdot x_{CO}\right).
\]

Und der Air-Bleed-Volumenstrom ergibt sich zu:

\[
\dot{V}_{AB} = \frac{\dot{V}_{CH_4,Ref,ein} \cdot AB}{100 \cdot \sum x_C} \cdot \left(1 + 0,995 \cdot x_{CO} + 0,88 \cdot \lambda_{SelOx} \cdot x_{CO}\right).
\]

für die Stellgröße \(\dot{V}_{AB}\).

Steuerung der Kathodenluft

Der Kathodenluftvolumenstrom richtet sich nach dem zur Reaktion in den Brennstoffzellen erforderlichen Stoffmengenstrom \(\dot{n}_{O_2, BZ, erf}\) des Sauerstoffs. Der Index BZ steht für Brennstoffzelle (Bezieht sich auf den gesamten Zellstapel). Der Stoffmengenstrom multipliziert mit dem Molvolumen von Sauerstoff ergibt den Sauerstoffvolumenstrom. Dieser dividiert durch 0,21 (21 Vol-%. \(O_2\) in der Luft), ergibt den erforderlichen Luftvolumenstrom \(\dot{V}_{Luft,BZ, erf}\):

\[
\dot{V}_{Luft,BZ, erf} = \frac{\dot{n}_{O_2, BZ, erf} \cdot V_{mn,O_2}}{0,21}.
\]

Der Stoffmengenstrom \(\dot{n}_{O_2, BZ, erf}\) des Sauerstoffs beträgt die Hälfte des Stoffmengenstroms \(\dot{n}_{H_2, umgesetzt}\) des umgesetzten Wasserstoffs, da ein halbes mol \(O_2\) pro mol \(H_2\) benötigt wird.

\[
\dot{n}_{O_2, BZ, erf} = \frac{\dot{n}_{H_2, umgesetzt}}{2}
\]

Der Stoffmengenstrom \(\dot{n}_{H_2, umgesetzt}\) lässt sich aus der Stromstärke I berechnen, da jedes reagierende Wasserstoffatom ein Elektron bei der Reaktion abgibt. Jedes Elektron verfügt über eine Elementarladung \(e = 1,6022 \times 10^{-19} \text{ C}\). Teilt man die Stromstärke durch die Elementarladung so erhält man die Anzahl der reagierenden Atome. Da ein mol \(H_2\) zwei Elektronen pro Molekül abgibt und 6,022E23 Moleküle enthält, wird der Elektronenfluss durch \(2 \cdot N_A\) dividiert. Da alle Zellen des Zellenstapels den Wasserstoff umsetzen, geht die Anzahl der Zellen \(Z\) (hier
20), in die Gleichung mit ein. Zur Umrechnung von Sekunde in Minute wird das Ergebnis mit 60 multipliziert. So ergibt sich die folgende Formel:
\[\hat{n}_{H_2,\text{umgesetzt}} = \frac{I \cdot 60 \cdot Z}{2 \cdot e \cdot N_A} \]

Somit ist es möglich den Luftbedarf zu bestimmen.
\[\dot{v}_{Luft,BZ,\text{erf}} = \frac{I \cdot 60 \cdot Z \cdot V_{mn,O_2}}{0,84 \cdot e \cdot N_A} \]

Wie auch bei der SelOx wird ein Luftverhältnis \(\lambda_{BZ} \) eingeführt, das als Verhältnis des zugeführten Stoffmengenstroms \(\dot{n}_{Luft,BZ} \) der Luft zum für die Reaktion stöchiometrisch erforderlichen Stoffmengenstrom \(\dot{n}_{Luft,BZ,\text{erf}} \) definiert wird.

\[\lambda_{BZ} = \frac{\dot{n}_{Luft,BZ}}{\dot{n}_{Luft,BZ,\text{erf}}} = \frac{\dot{v}_{Luft,BZ}}{\dot{v}_{Luft,BZ,\text{erf}}} \]

Durch Einsetzen der Konstanten ergibt sich für die Stellgröße \(\dot{v}_{Luft,BZ} \):
\[\dot{v}_{Luft,BZ} = 0,3316 \cdot I \cdot \lambda_{BZ} \]
Um den Anfahrvorgang der Zellen zu erleichtern wird die Kathodenluftzufuhr bei Steuerung mit Vorgabe von Lambda auf mindestens 10 l/min begrenzt.

R/B-Verhältnis

Der Parameter R/B wird definiert als das Verhältnis der Leistung, die dem Reformer als Methanvolumenstrom zugeführt wird, zur aktuellen Brennerleistung:
\[R = \frac{\dot{v}_{CH_4,Ref,\text{ist}} \cdot H_{U,CH_4}}{B \cdot 60 \cdot P_{Br,\text{ist}}} \]
Da der Volumenstrom in l/min angegeben wird, muss entsprechend auf Sekunden umgerechnet werden, um die Brennerleistung in kW zu erhalten.

Nach Einsetzen der Konstanten ergibt sich die Beziehung:
\[R / B = 0,598 \cdot \frac{\dot{v}_{CH_4,Ref,\text{ist}}}{P_{Br,\text{ist}}} \]

Steuerung des Brenners

Der Brenner besitzt zwei Stellgrößen, mit denen die Verbrennung beeinflusst werden kann, den Methanvolumenstrom \(\dot{v}_{CH_4,Br} \) und den Luftvolumenstrom \(\dot{v}_{Luft,Br} \). Mit der zugeführten Methanmenge wird die dem Brenner für die Verbrennung zugeführte Energiemenge dosiert. Auf die Menge und die Leistung des Anodenabgases kann kein Einfluss genommen werden. Durch Variation der zugeführten Luftmenge kann die Art der Verbrennung beeinflusst werden.
Für die vollständige Verbrennung von Methan werden mindestens zwei O\textsubscript{2}-Moleküle pro CH\textsubscript{4}-Molekül benötigt:

\[\dot{n}_{\text{O}_2,\text{Br},\text{CH}_4} = 2 \cdot \dot{n}_{\text{CH}_4,\text{Br}} \]

Für den erforderlichen Brennerluftvolumenstrom gilt:

\[\dot{V}_{\text{Luft},\text{Br},\text{CH}_4} = \frac{\dot{n}_{\text{O}_2,\text{Br},\text{CH}_4} \cdot V_{\text{min},\text{O}_2}}{0,21} \]

Bzw.:

\[\dot{V}_{\text{Luft},\text{Br},\text{CH}_4} = 2 \cdot \frac{\dot{V}_{\text{CH}_4,\text{Br}} \cdot V_{\text{min},\text{O}_2}}{0,21 \cdot V_{\text{min},\text{CH}_4}} \]

Mit der Luftzahl \(\lambda_{\text{Br}} \), die das Verhältnis von eingesetzter Luftmenge zur stöchiometrisch erforderlichen Luftmenge beschreibt, ergibt sich durch Einsetzen der Konstanten die folgende Beziehung für die Stellgröße \(\dot{V}_{\text{Luft},\text{Br}} \):

\[\dot{V}_{\text{Luft},\text{CH}_4} = 9,6 \cdot \dot{V}_{\text{CH}_4,\text{Br}} \cdot \lambda_{\text{Br}} \left[\frac{1}{\text{min}} \right] \]

In der Systemsteuerung besteht die Möglichkeit die Brennerleistung \(P_{\text{Br}} \) statt des Methanvolumenstroms vorzugeben. Die Leistung des Brenners bei vollständiger Verbrennung berechnet sich aus dem Produkt des Methanvolumenstroms und dem Heizwert von Methan.

\[P_{\text{Br}} = \dot{V}_{\text{CH}_4,\text{Br}} \cdot H_{\text{U},\text{CH}_4} \quad \text{mit} \quad H_{\text{U},\text{CH}_4} = 35,883 \, \frac{\text{kJ}}{\text{kg}} \]

und entsprechenden Umformungen ergibt sich der Methanvolumenstrom \(\dot{V}_{\text{CH}_4,\text{Br}} \) zu:

\[\dot{V}_{\text{CH}_4,\text{Br}} = 0,598 \cdot P_{\text{Br}} \left[\frac{\text{m}^3}{\text{min}} \right] \]

Die Brennerleistung \(P_{\text{Br},\text{oR}} \) (Der Index oR steht für „ohne Rückführung“.) bei Betrieb ohne Anodenabgasrückführung berechnet sich aus dem Produkt des Methanheizwertes und dem gemessenen Ist-Methanvolumenstrom \(\dot{V}_{\text{CH}_4,\text{Br},\text{Ist}} \). Da der Volumenstrom in l/min angegeben wird, muss entsprechend auf Sekunden umgerechnet werden, um die Brennerleistung in kW zu erhalten:

\[P_{\text{Br},\text{oR}} = 35,883 \, \frac{\text{kJ}}{\text{kg}} \cdot \frac{\dot{V}_{\text{CH}_4,\text{Br},\text{Ist}}}{60} = 0,598 \cdot \dot{V}_{\text{CH}_4,\text{Br},\text{Ist}} \, [\text{kW}] \]

Rückführung des Anodenabgases

Wird das Anodenabgas des Brennstoffzellenstapels durch Umschalten dem Brenner zur Verbrennung zugeführt, so muss die Brennerleistung und der Luft-
bedarf entsprechend anders berechnet werden. Das Anodenabgas kann nur indirekt über die Zelllast und den Eduktzustrom des Reformers beeinflusst bzw. berechnet werden.

Das Anodenabgas enthält hauptsächlich den Volumenstrom \(\dot{V}_{H_2, \text{Anode, aus}} \) des nicht umgesetzten Wasserstoffs: \(\dot{V}_{H_2, \text{Anode, aus}} = \dot{n}_{H_2, \text{Anode, aus}} \cdot V_{mn, H_2} \).

Für den Stoffmengenstrom \(\dot{n}_{H_2, \text{Anode, aus}} \) gilt:

\[
\dot{n}_{H_2, \text{Anode, aus}} = \dot{n}_{H_2, \text{Ref}} - \dot{n}_{CO, \text{Ref, aus}} \cdot (\dot{\lambda}_{\text{SelOx}} - 1) - 2 \cdot \dot{n}_{O_2, AB} - \dot{n}_{H_2, \text{umsetzt}}.
\]

Dabei gilt für den Stoffmengenstrom \(\dot{n}_{H_2, \text{Ref}} \) des Wasserstoffs hinter dem Reformer:

\[
\dot{n}_{H_2, \text{Ref}} = \frac{\dot{V}_{CH_4, \text{Ref, ein}} \cdot (1 - \sum x_C)}{V_{mn, H_2} \cdot \sum x_C}.
\]

Der Term \(\dot{n}_{CO, \text{Ref, aus}} \cdot (\dot{\lambda}_{\text{SelOx}} - 1) \) berücksichtigt den Wasserstoffverlust in der SelOx aufgrund der Reaktion des überschüssigen Sauerstoffs zu Wasser. Ebenso reagieren die \(O_2 \)-Moleküls des Air-Bleeds \(\dot{n}_{O_2, AB} \) mit dem Wasserstoff zu Wasser. Es gilt:

\[
\dot{n}_{O_2, AB} = \frac{\dot{V}_{\text{Ref, SelOx}} \cdot AB}{100 \cdot V_{mn, O_2}} \cdot 0,21.
\]

Berücksichtigt man alle diese Verluste so ergibt sich der Wasserstoffstrom hinter der Brennstoffzelle zu:

\[
\dot{n}_{H_2, \text{Anode, aus}} = \frac{\dot{V}_{CH_4, \text{Ref, ein}}}{\sum x_C} \left(\frac{1 - \sum x_C}{V_{mn, H_2}} - \frac{x_{CO}}{V_{mn, CO}} \cdot (\dot{\lambda}_{\text{SelOx}} - 1) - 2 \cdot \left(1 + 0,995 \cdot x_{CO} + \frac{0,88 \cdot \dot{\lambda}_{\text{SelOx}} \cdot x_{CO}}{100 \cdot V_{mn, O_2}} \right) \cdot AB \cdot 0,21 \right) - I \cdot 60 \cdot Z \cdot 2 \cdot e \cdot N_A.
\]

Auf diese Gleichung wird bereits in Kapitel 5.2.2 ausführlich Bezug genommen (Gl. 5-10 und folgende).

Um zu berechnen, wie viel Methan noch zum Anodenabgas dazugegeben werden muss, um eine vom Bediener vorgegebene Brennerleistung zu erzielen wird der Wasserstoffvolumenstrom \(\dot{V}_{H_2, \text{Anode, aus}} \) in einen dem Heizwert des Methans äquivalenten Volumenstrom \(\dot{V}_{CH_4, \text{Anode, H}_2, \text{äquiv.}} \) umgerechnet:

\[
\dot{V}_{CH_4, \text{Anode, H}_2, \text{äquiv.}} = \dot{V}_{H_2, \text{Anode, aus}} \cdot \frac{H_{U, H_2}}{H_{U, CH_4}}.
\]

Das im Anodenabgas enthaltene Restmethan des Reformers \(\dot{V}_{CH_4, \text{Anode}} \) ergibt sich zu:
\[\dot{v}_{CH_4, Anode} = \frac{\dot{v}_{CH_4, Ref, ein} \cdot x_{CH_4}}{\sum x_c} \]

Zusammen enthält das Anodenabgas einen dem Methan äquivalenten Volumenstrom \(\dot{v}_{CH_4, Anode, äquiv} \):

\[\dot{v}_{CH_4, Anode, äquiv} = \dot{v}_{CH_4, Anode} + \dot{v}_{CH_4, Anode, H_2, äquiv} \]

Der bei Anodenabgasrückführung zusätzlich erforderliche Methanzustrom \(\dot{v}_{CH_4, Br, mR} \) (mR steht für „mit Rückführung“) ist gleich der Differenz zwischen dem erforderlichen Methanzustrom \(\dot{v}_{CH_4, Br} \) bei Betrieb ohne Rückführung und dem im Anodenabgas enthaltenen Volumenstrom \(\dot{v}_{CH_4, Anode, äquiv} \):

\[\dot{v}_{CH_4, Br, mR} = \dot{v}_{CH_4, Br} - \dot{v}_{CH_4, Anode, äquiv} \]

Mit dem Heizwert von Wasserstoff \(H_{U, H_2} = 10,783 \text{ kJ} / \text{mol} \) und den anderen Konstanten zusammengefasst ergibt sich der \(CH_4 \)-Volumenstrom der dem Brenner für eine Sollleistung zugeführt werden muss \(\dot{v}_{CH_4, Br, mR} \) zu:

\[\dot{v}_{CH_4, Br, mR} \approx P_{Br, Soll} \cdot 1.672 - \frac{\dot{v}_{CH_4, Ref, ein} \cdot x_{CH_4} + I \cdot 0.042}{\sum x_c \cdot 0.3 \cdot \left(\left[1 - \left(\sum x_c \right) - x_{CO} \cdot (\lambda_{SelOx} - 1) \right] - \left[1 + 0.995 \cdot x_{CO} + 0.88 \cdot \lambda_{SelOx} \cdot x_{CO} \right] \cdot AB \cdot 0.004 \right)} \]

Die zur Verbrennung benötigte Luft bei Anodenabgasrückführung ergibt sich aus der Summe der für die Verbrennung des Methans und der für die Verbrennung des Wasserstoffs stöchiometrisch benötigten Luft multipliziert mit der Luftzahl \(\lambda_{Br} \):

\[\dot{v}_{Luft, Br, mR} = \left(\dot{v}_{Luft, CH_4, min} + \dot{v}_{Luft, H_2, min} \right) \cdot \lambda_{Br} \]

Die Luft, die zur Verbrennung des zusätzlich zugeführten Methans \(\dot{v}_{CH_4, Br, mR} \) und des im Anodenabgas enthaltenen Methans \(\dot{v}_{CH_4, Anode} \) benötigt wird, berechnet sich zu:

\[\dot{v}_{Luft, CH_4, min} = \frac{\dot{v}_{CH_4, Anode} + \dot{v}_{CH_4, Br, mR}}{0.21} \cdot \frac{2 \cdot V_{mn, O_2}}{V_{mn, CH_4}} \]

Einsetzen der Konstanten und der entsprechenden Gleichungen liefert:

\[\dot{v}_{Luft, CH_4, min} = 9.6 \cdot \left[P_{Br} \cdot 1.672 + I \cdot 0.042 - \frac{\dot{v}_{CH_4, Ref, ein} \cdot 0.3 \cdot \left(\left[1 - \left(\sum x_c \right) - x_{CO} \cdot (\lambda_{SelOx} - 1) \right] - \left[1 + 0.995 \cdot x_{CO} + 0.88 \cdot \lambda_{SelOx} \cdot x_{CO} \right] \cdot AB \cdot 0.004 \right)}{} \right] \]

Der für die Wasserstoffverbrennung benötigte Luftvolumenstrom \(\dot{v}_{Luft, H_2, min} \) berechnet sich gemäß der Reaktionsgleichung zu:
\[\dot{V}_{Luft,H_2,min} = \frac{\dot{V}_{H_2,Anode,aus}}{2 \cdot 0,21} \]

Mit der Gleichung für \(\dot{V}_{H_2,Anode,aus} \) berechnet sich der Luftbedarf für die Verbrennung des Wasserstoffs zu:

\[\dot{V}_{Luft,H_2,min} = 2,384 \cdot \frac{\left(1 - \sum x_c \right) - x_{CO} \cdot (\lambda_{SelOx} - 1) - \left(1 + 0,995 \cdot x_{CO} + 0,88 \cdot \lambda_{SelOx} \cdot x_{CO} \right) \cdot AB \cdot 0,004}{\sum x_c} \]

\[- I \cdot 0,139 \]

Die bei der Anodenabgasrückführung im Brenner umgesetzte Leistung berechnet sich mit

\[P_{Br,mR} \approx 0,598 \cdot \frac{\dot{V}_{CH_4,Br,Ist} + \dot{V}_{CH_4,Ref,Ist} \cdot x_{CH_4} - I_{Ist} \cdot 0,042 + 0,3 \cdot \dot{V}_{CH_4,Ref,Ist} \cdot x_{CH_4}}{\left(1 - \sum x_c \right) - x_{CO} \cdot (\lambda_{SelOx,Ist} - 1) - \left(1 + 0,995 \cdot x_{CO} + 0,88 \cdot \lambda_{SelOx,Ist} \cdot x_{CO} \right) \cdot AB \cdot 0,004} \] [kW]

Dabei ist der Anteil des Anodenabgases gegeben mit

\[P_{An,Abgas} \approx 598,1 \cdot \frac{\dot{V}_{CH_4,Ref,Ist} \cdot x_{CH_4} - I_{Ist} \cdot 0,042 + 0,3 \cdot \dot{V}_{CH_4,Ref,Ist} \cdot x_{CH_4}}{\left(1 - \sum x_c \right) - x_{CO} \cdot (\lambda_{SelOx,Ist} - 1) - \left(1 + 0,995 \cdot x_{CO} + 0,88 \cdot \lambda_{SelOx,Ist} \cdot x_{CO} \right) \cdot AB \cdot 0,004} \] [W]

Wirkungsgrad \(\eta_{Ref} \)

Der Reformerverwirkungsgrad wird in der Steuerung definiert als das Verhältnis der Leistung der produzierten Wasserstoffmenge zur Leistung der eingesetzten Methanmenge. Dabei meint die eingesetzte Methanleistung die Leistung, die im Methanvolumenstrom des Brenners und des Reformers enthalten ist:

\[\eta_{Ref} = \frac{\dot{V}_{H_2,Ref,aus} \cdot \dot{H}_{u,H_2}}{\left(\dot{V}_{CH_4,Ref,Ist} + \dot{V}_{CH_4,Br,Ist} \right) \cdot \dot{H}_{u,CH_4}} \]
wird hier der produzierte Wasserstoffvolumenstrom $\dot{v}_{H_2,Ref,aus}$ direkt hinter der Shift-Stufe herangezogen:

$$\dot{v}_{H_2,Ref,aus} = \frac{\dot{v}_{CH_4,Ref,in} \cdot x_{H_2}}{\sum x_C}.$$

Also

$$\eta_{Ref} = \frac{0.3 \cdot \dot{v}_{H_2,Ref,ist} \cdot x_{H_2}}{\sum x_C (\dot{v}_{CH_4,Ref,ist} + \dot{v}_{CH_4,Br,ist})}.$$

Wirkungsgrad $\eta_{el,BZ}$

Der elektrische Wirkungsgrad des Brennstoffzellenstapels ist definiert als das Verhältnis der erzeugten elektrischen Leistung zur Leistung, die in dem Wasserstoffvolumenström am Anodeneingang enthalten ist:

$$\eta_{el,BZ} = \frac{P_{el}}{\dot{v}_{H_2,Anode,in} \cdot H_{u,H_2} \cdot 1000 \cdot 60}$$

Die Leistung P_{el} bestimmt sich mit $P_{el,ist} = U_{ist} \cdot I_{ist} \cdot [W]$ zu

$$\dot{v}_{H_2,Anode,in} = \frac{\dot{v}_{CH_4,Ref,in} \cdot V_{mn,H_2}}{\sum x_C} \left(\frac{1 - \sum x_C - x_{CO}}{V_{mn,H_2} \cdot V_{mn,CO}} \cdot \left(\lambda_{SelOx} - 1 \right) \right) - 2 \left(1 + 0.995 \cdot x_{CO} + 0.88 \cdot \lambda_{SelOx} \cdot x_{CO} \right) \cdot \frac{AB \cdot 0.21}{100 \cdot V_{mn,O_2}}$$

und durch Einsetzen der Konstanten ergibt sich der Stromwirkungsgrad des Stapels mit den Messgrößen:

$$\eta_{el,BZ} = \frac{U_{ist} \cdot I_{ist} \cdot \sum x_C}{\dot{v}_{CH_4,Ref,ist} \cdot 4031.04} \left(\frac{1 - \sum x_C - x_{CO}}{22.43} \cdot \frac{\lambda_{SelOx,ist} - 1}{22.4} \right) - \left(1 + 0.995 \cdot x_{CO} + 0.88 \cdot \lambda_{SelOx,ist} \cdot x_{CO} \right) \frac{AB}{5331.67}.$$

Wirkungsgrad $\eta_{el,ges}$

Der elektrische Gesamtwirkungsgrad $\eta_{el,ges}$ des Gesamtsystems ist das Verhältnis der erzeugten elektrischen Leistung zur Leistung des zugeführten Methanvolumenstroms:

$$\eta_{el,ges} = \frac{P_{el} \cdot 60}{\left(\dot{v}_{CH_4,Ref,ist} + \dot{v}_{CH_4,Br,ist} \right) \cdot H_{U,CH_4} \cdot 1000}.$$
\[\eta_{el,ges} = \frac{U_{Ist} \cdot I_{Ist}}{\left(\dot{v}_{CH_4,Ref, Ist} + \dot{v}_{CH_4,Br, Ist} \right) 598,05} . \]

Umsatzgrad FU, \(\eta_U \)

Der Umsatzgrad (engl.: Fuel Utilization (FU)) zeigt den Grad der Verwertung des Brennstoffs von den Brennstoffzellen an und ist definiert als Verhältnis vom umgesetzten Wasserstoffvolumenstrom zum am Anodeneingang zugeführten Wasserstoffvolumenstrom:

\[FU = \frac{\dot{v}_{H_2, umgesetzt}}{\dot{v}_{H_2, Anode, ein}} . \]

Durch Einsetzen der entsprechenden Gleichung lässt sich der Umsatzgrad mit den Messgrößen des Systems wie folgt berechnen:

\[
FU = \frac{I_{Ist} \cdot \sum x_C}{\dot{v}_{CH_4,Ref, Ist} \cdot 160,81} \cdot \left\{ \frac{1 - \sum x_C}{22,43} \cdot \frac{x_{CO}}{22,4} \cdot \left(\lambda_{SelOx, Ist} - 1 \right) \right. \\
\left. - \left(1 + 0,995 \cdot x_{CO} + 0,88 \cdot \lambda_{SelOx, Ist} \cdot x_{CO} \right) \cdot \frac{AB}{5331,67} \right\} ,
\]
Anhang C: Sicherheitstechnischer Anhang

Als Rechtsgrundlage für die Prüfung des Brennstoffzellensystems in Hinblick auf dessen Sicherheit gilt die übergeordnet europäische Gasgeräterichtlinie. Sie gilt für Systeme mit einer Leistung kleiner 70 kW. Diese Gasgeräterichtlinie – Richtlinie 90/396/EWG – wurde in Deutschland veröffentlicht als Siebte Verordnung zum Gerätesicherheitsgesetz – 7. GSGV (Gasverbrauchseinschränkungsverordnung).

Werden die Auflagen der Gasgeräterichtlinie erfüllt, darf das Gerät die wichtige CE-Kennzeichnung für technische Industrieprodukte führen. Mit diesem Zertifikat wird nachgewiesen, dass das Gerät alle Voraussetzungen hinsichtlich Betriebssicherheit, Umweltverträglichkeit und effizienter Energienutzung erfüllt. Ist das BZH zertifiziert, so darf es überall in der Europäischen Union in Gebäuden eingesetzt werden.

Abgeleitet von dieser Richtlinie ist die VP 119 - Brennstoffzellen-Gasgeräte bis 70 kW - Vorläufige Prüfungsgrundlage - Stand Oktober 2000, Der deutschen Vereinigung des Gas- und Wasserfachs e.V. [DVGW119]

Die Ergebnisse dieser Sicherheitsanalysen sollen im Folgenden kurz vorgestellt werden.
Der Systementwurf wurde nach der sicherheitstechnischen Analyse unter Berücksichtigung der zur Verfügung stehenden Normen erwartungsgemäß als „unsicher und unzuverlässig“ eingestuft. Um das System sicherer und zuverlässig zu machen, wurden organisatorische und konstruktive Vorschläge ausgearbeitet, die den Anforderungen der Normen gerecht werden sollen:

- Überwachung der Reinigungsleistung der Entschwefelung mit einem geeigneten Sensor (z.B. Opfermembran).
- Überwachung der Reinigungsleistung der SelOx mittels eines CO-Sensors zum Schutz der Zelle (z.B. Opfermembran)
• Vor dem Betrieb der Zelle ist diese zum Explosionsschutz mit Inertgas zu spülen. (Derzeitige Herstellerangaben des Zellstapels – später ist die entsprechende DIN (noch in Vorbereitung) zu berücksichtigen.)

• Systemkritische Temperatursensoren (z.B. HotSpot) sind gemäß DIN EN 298 redundant auszuführen um die Zuverlässigkeit zu erhöhen.

• Die elektrische Verschaltung ist so einzurichten, dass bei einem Ausfall einer wichtigen Signalleitung die Steuerung den Ausfall bemerkt und das System ggf. kontrolliert abschalten kann.

• Die Steuerung muss sicherstellen, dass die Zelle vor allem kathodenseitig nicht über längere Zeit mit einem trockenen Volumenstrom angeströmt wird (Überwachung der Pumpe).

• Für den Ausfall der externen Stromversorgung ist eine entsprechend dimensionierte Batterie vorzusehen, die in der Lage ist das System über einen ausreichend langen Zeitraum mit Elektrizität zu versehen, so dass es möglich ist das System in einen sichereren Betriebszustand abzufahren.

• Die Sicherheit im Umgang mit dem System kann durch organisatorische Maßnahmen wie z.B. Fenster am Aufstellungsort (sie bieten bei einer Explosion im System der Druckwelle die Möglichkeit zu entweichen), durch Aufkleber, die auf die vom System ausgehenden Gefahren hinweisen, etc. erhöht werden.
Für das hier entwickelte Laborsystem wäre das Einhalten aller Sicherheitsvorschriften weder möglich noch sinnvoll gewesen. Im Störfall wird zum Schutze des Systems das Brennstoffzellensystem abgeschaltet und mit Stickstoff gespült. Dabei wird Wasserstoffreichesgas freigesetzt und vom Schrankabzug abgesaugt, so dass keine Explosionsgefahr entstehen kann. Einen Überblick über die Sicherheitsfunktionen gibt die folgende Tabelle C1.

<table>
<thead>
<tr>
<th>Fehler/Überschreitung einer Bedingung</th>
<th>Ursache</th>
<th>Eingriff der Steuerung im automatisierten Betrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_{\text{min}} < 0.4 \text{ V}$ oder $U_{\text{mittel}} < 0.55 \text{ V}$</td>
<td>Störung oder zu hohe Stromstärke</td>
<td>Aktivierung des Zell-Schützes und des Brenner-Bypasses</td>
</tr>
<tr>
<td>$T_{\text{Edukt}} > 550 \degree \text{ C}$ oder $T_{\text{Hotspot}} > 890 \degree \text{ C}$</td>
<td>$P_{\text{Br}, \text{Ist}}$ zu groß</td>
<td>Abstellen des Brenners; ($\dot{v}_{\text{CH}4, \text{Br}, \text{Soll}} = 0 \text{ l/min}$; $\dot{v}{\text{Luft,Br}, \text{Soll}} = 20 \text{ l/min}$); Aktivierung des Brenner-Bypasses</td>
</tr>
<tr>
<td>$T_{\text{Brennerfuß}} > 45 \degree \text{ C}$</td>
<td>Flammenrückschlag</td>
<td>Abstellen des Brenners; Aktivierung des Brenner-Bypasses</td>
</tr>
<tr>
<td>$\dot{v}_{\text{H}_2\text{O}, \text{Ist}} < 1 \text{ ml/min}$</td>
<td>Störung in der Versorgung; Störung des LFCs</td>
<td>Abstellen des Brenners; Aktivierung des Brenner-Bypasses; $\dot{v}_{\text{CH}_4, \text{Ref}, \text{Soll}} = 0 \text{ l/min}$; N$_2$-Spülen</td>
</tr>
<tr>
<td>$T_{\text{Hotspot}} < 400 \degree \text{ C}$ oder T_{Edukt} oder $T_{\text{Ref, aus}}$ oder $T_{\text{Shift, ein}}$ oder $T_{\text{Shift, Mitte}}$ oder $T_{\text{Shift, aus}} < 80 \degree \text{ C}$</td>
<td>$P_{\text{Br}, \text{Ist}}$ zu klein</td>
<td>$\dot{v}_{\text{CH}4, \text{Ref}, \text{Soll}} = 0 \text{ l/min}$; $\dot{v}{\text{H}_2\text{O}, \text{Soll}} = 0 \text{ ml/min}$; N$_2$-Spülen</td>
</tr>
<tr>
<td>$T_{\text{Shift, ein}}$ oder $T_{\text{Shift, Mitte}}$ oder $T_{\text{Shift, aus}} > 275 \degree \text{ C}$</td>
<td>$P_{\text{Br}, \text{Ist}}$ zu groß; S/C zu klein</td>
<td>$\dot{v}_{\text{H}_2\text{O}, \text{Soll}} = 15 \text{ ml/min}$</td>
</tr>
</tbody>
</table>
Anhang D: Peripheriekomponenten

Tabelle D1: Auswahl der Pumpen für das BZH nach Internetrecherche für das drucklose und das druckbetriebene System

<table>
<thead>
<tr>
<th>Verbrunnungsluft</th>
<th>Drucklos</th>
<th>Druckbetrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>ASF Thomas</td>
<td>ASF Thomas</td>
</tr>
<tr>
<td>Art.Nr.</td>
<td>YP-20 DU</td>
<td>YP-20 DU</td>
</tr>
<tr>
<td>Spannung</td>
<td>230 V AC/50 Hz</td>
<td>230 V AC/50 Hz</td>
</tr>
<tr>
<td>Leistung el.</td>
<td>15 W</td>
<td>15 W</td>
</tr>
<tr>
<td>Medium</td>
<td>Luft</td>
<td>Luft</td>
</tr>
<tr>
<td>Δp₁</td>
<td>0 bar</td>
<td>0 bar</td>
</tr>
<tr>
<td>Δp₂</td>
<td>0,1 bar</td>
<td>0,1 bar</td>
</tr>
<tr>
<td>Δp</td>
<td>0,25 mbar</td>
<td>0,25 mbar</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₁</td>
<td>30,0 l/min</td>
<td>30,0 l/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₂</td>
<td>20,0 l/min</td>
<td>20,0 l/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₁</td>
<td>27,5 l/min</td>
<td>27,5 l/min</td>
</tr>
<tr>
<td>Prinzip</td>
<td>Linearantrieb</td>
<td>Linearantrieb</td>
</tr>
<tr>
<td>Betriebsdruck p₉₀₀</td>
<td>50 mbar</td>
<td>50 mbar</td>
</tr>
<tr>
<td>Fördersollleistung bei p₉₀₀</td>
<td>20 l/min</td>
<td>20 l/min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erdgas</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>ASF Thomas</td>
<td>ASF Thomas</td>
</tr>
<tr>
<td>Art.Nr.</td>
<td>302.1</td>
<td>8009Z</td>
</tr>
<tr>
<td>Spannung</td>
<td>230 V AC/50 Hz</td>
<td>24 V</td>
</tr>
<tr>
<td>Leistung el.</td>
<td>8 W</td>
<td>80 W</td>
</tr>
<tr>
<td>Medium</td>
<td>Luft</td>
<td>Luft</td>
</tr>
<tr>
<td>Δp₁</td>
<td>0,2 bar</td>
<td>6 bar</td>
</tr>
<tr>
<td>Δp₂</td>
<td>0,3 bar</td>
<td>7 bar</td>
</tr>
<tr>
<td>Δp</td>
<td>0,2/0,25 bar</td>
<td>6/7 bar</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₁</td>
<td>5,2 l/min</td>
<td>10,2 l/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₂</td>
<td>4,0 l/min</td>
<td>7 ml/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₁</td>
<td>5,2/4,6 l/min</td>
<td>5,2/4,6 l/min</td>
</tr>
<tr>
<td>Prinzip</td>
<td>Schwinganker</td>
<td>Kolbenpumpe</td>
</tr>
<tr>
<td>Betriebsdruck p₉₀₀</td>
<td>350 mbar</td>
<td>7,35 mbar</td>
</tr>
<tr>
<td>Fördersollleistung bei p₉₀₀</td>
<td>3,65 l/min</td>
<td>3,65 l/min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BZ-Kathodenluft</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>ASF Thomas</td>
<td>ASF Thomas</td>
</tr>
<tr>
<td>Art.Nr.</td>
<td>YP 50 VC</td>
<td>YP 50 VC</td>
</tr>
<tr>
<td>Spannung</td>
<td>230 V AC/50 Hz</td>
<td>230 V AC/50 Hz</td>
</tr>
<tr>
<td>Leistung el.</td>
<td>56 W</td>
<td>56 W</td>
</tr>
<tr>
<td>Medium</td>
<td>Luft</td>
<td>Luft</td>
</tr>
<tr>
<td>Δp₁</td>
<td>0,1 bar</td>
<td>0,1 bar</td>
</tr>
<tr>
<td>Δp₂</td>
<td>0,2 bar</td>
<td>0,2 bar</td>
</tr>
<tr>
<td>Δp</td>
<td>0,1 bar</td>
<td>0,1 bar</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₁</td>
<td>68 l/min</td>
<td>68 l/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₂</td>
<td>42 l/min</td>
<td>42 l/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₁</td>
<td>75,0/62,5 l/min</td>
<td>75,0/62,5 l/min</td>
</tr>
<tr>
<td>Prinzip</td>
<td>Linearantrieb</td>
<td>Linearantrieb</td>
</tr>
<tr>
<td>Betriebsdruck p₉₀₀</td>
<td>100 mbar</td>
<td>100 mbar</td>
</tr>
<tr>
<td>Fördersollleistung bei p₉₀₀</td>
<td>65 l/min</td>
<td>65 l/min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airbleed</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>ASF Thomas</td>
<td>ASF Thomas</td>
</tr>
<tr>
<td>Art.Nr.</td>
<td>112.0</td>
<td>112.0</td>
</tr>
<tr>
<td></td>
<td>Anhang D</td>
<td>Peripheriekomponenten</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Spannung</td>
<td>230 V /50 Hz</td>
<td>230 V /50 Hz</td>
</tr>
<tr>
<td>Leistung el.</td>
<td>4,5 W</td>
<td>4,5 W</td>
</tr>
<tr>
<td>Medium</td>
<td>Luft</td>
<td>Luft</td>
</tr>
<tr>
<td>Δp₁</td>
<td>0,1 bar</td>
<td>0,1 bar</td>
</tr>
<tr>
<td>Δp₂</td>
<td>0,2 bar</td>
<td>0,2 bar</td>
</tr>
<tr>
<td>Δp</td>
<td>0,1/0,15 bar</td>
<td>0,1/0,15 bar</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₁</td>
<td>2,0 l/min</td>
<td>2,0 l/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₂</td>
<td>1,0 l/min</td>
<td>1,0 l/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp</td>
<td>2,0/1,5 l/min</td>
<td>2,0/1,5 l/min</td>
</tr>
<tr>
<td>Prinzip</td>
<td>Schwinganker</td>
<td>Schwinganker</td>
</tr>
<tr>
<td>Betriebsdruck p₇</td>
<td>100 mbar</td>
<td>100 mbar</td>
</tr>
<tr>
<td>Fördersollleistung bei p₇</td>
<td>2 l/min</td>
<td>2 l/min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reformer Wasser</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>hnp-microsystems</td>
<td>hnp-microsystems</td>
</tr>
<tr>
<td>Art.Nr.</td>
<td>2921</td>
<td>4605</td>
</tr>
<tr>
<td>Spannung</td>
<td>12 V DC</td>
<td>12 V DC</td>
</tr>
<tr>
<td>Leistung el.</td>
<td>3 W</td>
<td>20 W</td>
</tr>
<tr>
<td>Medium</td>
<td>VE Wasser</td>
<td>VE Wasser</td>
</tr>
<tr>
<td>Δp₁</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δp₂</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Δp</td>
<td>3 bar</td>
<td>3 bar</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₁</td>
<td>18 ml/min</td>
<td>70 ml/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₂</td>
<td>17 ml/min</td>
<td>40 ml/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp</td>
<td>18 ml/min</td>
<td>18 ml/min</td>
</tr>
<tr>
<td>Prinzip</td>
<td>Gerotor</td>
<td>Gerotor</td>
</tr>
<tr>
<td>Betriebsdruck p₇</td>
<td>350 mbar</td>
<td>7 mbar</td>
</tr>
<tr>
<td>Fördersollleistung bei p₇</td>
<td>12 ml/min</td>
<td>12 ml/min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kühlwasser</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>EHEIM</td>
<td>EHEIM</td>
</tr>
<tr>
<td>Art.Nr.</td>
<td>1048</td>
<td>1048</td>
</tr>
<tr>
<td>Spannung</td>
<td>230 V AC</td>
<td>230 V AC</td>
</tr>
<tr>
<td>Leistung el.</td>
<td>10 W</td>
<td>10 W</td>
</tr>
<tr>
<td>Medium</td>
<td>Aquarium</td>
<td>Aquarium</td>
</tr>
<tr>
<td>Δp₁</td>
<td>0 bar</td>
<td>0 bar</td>
</tr>
<tr>
<td>Δp₂</td>
<td>0,16 bar</td>
<td>0,16 bar</td>
</tr>
<tr>
<td>Δp</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₁</td>
<td>10 l/min</td>
<td>10 l/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp₂</td>
<td>0 l/min</td>
<td>0 l/min</td>
</tr>
<tr>
<td>Volumenstrom bei Δp</td>
<td>1 l/min</td>
<td>1 l/min</td>
</tr>
<tr>
<td>Prinzip</td>
<td>Kreiselpumpe</td>
<td>Kreiselpumpe</td>
</tr>
<tr>
<td>Betriebsdruck p₇</td>
<td>0,1 bar</td>
<td>0,1 bar</td>
</tr>
<tr>
<td>Fördersollleistung bei p₇</td>
<td>1 l/min</td>
<td>1 l/min</td>
</tr>
</tbody>
</table>

1) linear interpoliert, wenn Druckbereiche nicht Standard bei Kompressor
Anhang E: Betriebsstrategien für das Gesamtsystem

- **Mischbetrieb:** Der Mischbetrieb stellt eine Kombination aus stromgeführt- em und wärmegeführtem Betrieb da. Dabei übernimmt die Steuerung die
Entscheidung ob der Betrieb wirtschaftlich bzw. sinnvoll ist. Wichtig ist hierbei die Berücksichtigung der Standkosten, die anfallen, wenn das System nicht in Betrieb ist.

Unabhängig von der Quelle der Leistungsvorgabe, die durch die oben erläuterte übergeordnete Betriebsstrategie bestimmt wird, und bei der vor allem wirtschaftlichen Betrachtungen maßgeblich sind, ist es zunächst notwendig, das System intern stabil, sicher und effizient zu betreiben. Daher wird im weiteren Verlauf vor allem auf die internen, technischen Betriebsstrategien eingegangen.

Für die endgültige Steuerung muss das System so gut bekannt und vermessen sein, dass eine Überwachung der Gasqualitäten nicht mehr nötig ist bzw. es müssen ggf. andere Wege gefunden werden, um entsprechende Werte für die Steuerung zu erhalten. So kann z.B. eine Lambdasonde eingebaut werden um

Entwicklungsziele für eine Vollautomatische Steuerung

- Automatisches Starten
- Selbstüberwachung, Fehlerbehandlung und –diagnose
- Erkennen von Wartungsbedarf
- NotAus
- Automatisches Abschalten
- StandBy-Betrieb

Dabei darf im Vergleich zur aktuellen Version der Steuerung nicht mehr auf die Werte der Gasanalyse zurückgegriffen werden (maximal ein CO-Sensor zum Schutz der Zelle).

Abbildung E-1: Programmablaufschaem für die Steuerung des Gesamtsystems

Die Fehlermeldung liefert je nach Art des Fehlers nur eine Wartungsmeldung oder führt im schlimmsten Fall zum Abschalten des Systems. Tabelle C1 im Anhang C gibt einen Überblick über die derzeit in der Systemsteuerung hinter-
legten und überwachten Grenzwerte, die beim Über- bzw. Unterschreiten zu einer Fehlermeldung führen.

ANHANG E.1 Abschaltung: (Ruhebetrieb, System herunterfahren und NotAus)

Abhängig vom auslösenden Ereignis unterscheidet sich das Vorgehen beim Abschalten des Systems. Unterschieden wird zwischen

- NotAus, ausgelöst durch einen internen oder externen Fehler wie z.B. Stromausfall;
- Ruhe-Betrieb vorgegeben von der Lastanforderung oder
dem Abschalten des Systems z.B. für eine Wartung.

Unabhängig von der Ursache für das Abschalten ist es jedoch notwendig, die Bildung eines explosionsfähigen Gasgemisches zu verhindern. Dies kann z.B. durch Umpumpen des Produktgases des Dampfreformers, aber auch des Anodenabgases in einem Kreislauf im System erfolgen. Zusätzlich wird eine exakt dosierte Luftmenge auf die SelOx gegeben. So wird der Wasserstoff an der SelOx zu Wasser umgesetzt, und im System verbleibt ein Gasgemisch, das hauptsächlich aus Stickstoff und Kohlendioxid besteht. Das entstandene Wasser wird über einen Kondensatabscheider der Wasservorlage zugeführt. Es ist mittels einer Batterie sicherzustellen, dass dieser Vorgang auch stattfinden kann, wenn das System durch einen Stromausfall vom Netz getrennt wird. Die Batterie muss über eine ausreichende Kapazität verfügen, um die Erdgaspumpe, die das Umpumpen des Produktgases übernimmt, und die SelOx-Pumpe, die die SelOx mit Luft versorgt, lange genug zu betreiben. Die für das Umpumpen benötigten Ventile sollten so ausgewählt sein, dass sie zum Umpumpen nicht geschaltet werden müssen (Ruhestellung).

durch zyklisches Nachheizen für einen schnellen Neustart die Temperaturen über diesem Grenzwert zu halten. (Abkürzen von Phase 1 des Systemsstarts s. u.)

In Abbildung E-2 ist ein Ablaufschema für das Abschalten des Systems aufgeführt. Es enthält die Unterprogramme: „Heizen“ und „Warten“.

Wird die CO-Reinigung im System nicht mittels einer SelOx realisiert, so kann der Wasserstoff auch über den Air-Bleed der Zelle am Katalysator der Membran umgesetzt und auf diese Art und Weise das Inertgas erzeugt werden. Der Einfluss dieser Methode auf die Lebensdauer der Brennstoffzelle bzw. des SelOx-Katalysators muss noch untersucht werden.
Abbildung E-2: Blockschaltplan des Systems für das Abfahren.

Abbildung E-2: Blockschaltplan des Systems für das Abfahren.

Die in Abbildung E-4 und in Abbildung E-5 angegebene Wartezeit von ca. 10 Minuten ist notwendig, um dem Temperaturprofil im System die Möglichkeit zu geben, sich zu normalisieren. Erst danach sind neue Lastwechsel möglich ohne dass es zu kritischen Zuständen beim Lastwechsel kommt.

Abbildung E-3: Schematische Vorgehensweise beim Erhöhen des Lastpunktes des Dampfreformers.
Abbildung E-4: Lasterhöhung des Systems
Abbildung E.3 Systemstart

Abbildung E-6 zeigt einen entsprechenden Systemstart anhand der elektrischen Leistung des Stacks, der Wasserstoffleistung (jeweils prozentual), der Reformeraustrittstemperatur und der CO-Konzentration hinter der SelOx der Systemstart wurde in Abbildung E-7 manuell durchgeführt. Dabei kommt es zwischen der 50. und der 70. Minute zu einer Verzögerung auf Grund von Problemen in der Wasserversorgung. Die Schwankungen der Zellleistung sind bedingt durch den...
Regler, der auf Kondenswasser in der Gasverteilungsstruktur reagiert. Der Start endet hier beim 80 %-Lastpunkt.

Abbildung E-6: Manueller Systemstart

Der Systemstart kann bei der hier angewandten Methode in mehrere Phasen unterteilt werden.

Phase 1: trockenes Aufheizen: In dieser Zeit wird das System mit dem Inertgas aus N\textsubscript{2} und CO\textsubscript{2} gespült um die Wärme des Brenners vor allem in die Shift-Stufe zu tragen. Das Inertgas entstammt dem letzten Abfahren. Bei der Inbetriebnahme des Systems nach Wartung oder Montage ist ein Start mit Stickstoff aus einer Flasche notwendig. Die 1- Phase dauert auf Grund der thermischen Trägheit des Reformers derzeit am längsten.

Phase 2: Aufheizen mit Wasser. Mit Überschreiten der Kondensationstemperatur in der Shift-Stufe kann dem Inertgasstrom Wasser zudosiert werden. Dies erhöht die Wärmekapazität des Inertgasgemisches erheblich. Zusätzlich konnte beobachtet werden, dass es im Reformer auf Grund der hohen Temperaturen und in Gegenwart des Katalysators zur Aufspaltung von Wasser kommt. Dabei entsteht Wasserstoff und CO\textsubscript{2}. Der Kohlenstoff zur Bildung des CO\textsubscript{2} kommt wahrscheinlich von Kohlenstoffanlagerungen am Katalysator im Reformer während der Reformierung. Der Grund für die Anlagerungen und die Menge müssten noch
Anhang E
Betriebsstrategien für das Gesamtsystem

untersucht werden. Mit Hilfe des Wasserstoffs und unter der Zugabe von Luft kann in dieser Phase die SelOx durch eine kontrollierte Knallgasreaktion am Katalysator aufgeheizt werden, so dass sie beim Zuschalten von Erdgas auf den Reformereingang bereits annähernd Betriebstemperatur erreicht hat und ein Überschwingen der CO-Konzentration verhindert werden.

Phase 3: Beginn des Betriebs. Wichtig ist nicht nur die Aufheizung des Reformers, sondern auch das Aufheizen der Zelle. Sobald die SelOx (ca. 80 °C) und die Shift-Stufe (ca. 125 °C) erwärmt sind, kann Methan (entsprechend dem 20%-Lastpunkt) zugegeben werden. Zeitgleich wird der Gasweg über ein Ventil umgestellt, so dass das Gas nicht mehr im Kreis geführt wird sondern durch die Zelle auf den Reformerbrenner geleitet wird und die Pumpe nicht länger aus dem System ansaugt sondern aus dem Erdgasleitungssystem. Dabei ist darauf zu achten, dass die Flamme des Reformerbrenners nicht durch den in diesem Augenblick erhöhten Inertanteil (relativ niedrige Flammgeschwindigkeit des Erdgases steht der hohen Gasaustrittsgeschwindigkeit des Inertgases gegenüber) ausgeblasen wird (kleines Lambda).

Abbildung E-7 zeigt den hier beschriebenen Systemstart als Blockschaltplan.
Abbildung E-7: Blockschaltplan eines Systemstarts

Start

Sicherer Start möglich?

Fehlermeldung

Umpumpen

Br.-Zuluft an

CH4-Br. an

Zünden

$T_{\text{Ref., Alle}} > 90^\circ \text{C}$

Nein

$V_{\text{H}_2\text{O}} = 2 \text{ ml/min}$

SelOx Luft Max.

$T_{\text{Ref., Alle}} > 125^\circ \text{C}$

Nein

Ja

Umschalten auf Zelle+EG

Kühlwasser

Airbleed an

Zellluft an

Rampen P_{Zelle}, $V_{\text{CH}_4 \text{ Ref.}}$, $P_{\text{Br.}}$

Zurück zum Hauptprogramm

Warten 3 min.

Abbildung E-7: Blockschaltplan eines Systemstarts
Anhang F: Funktionsbeschreibung des Reformeren twurfs

Verdampfung
Das Erdgas-Wasser-Gemisch wird am Edukt-Eingang dem Reformer zugeführt. In einem Doppelrohrwärmeübertrager wird es von innen durch das heiße Produktgas und von außen durch das warme Rauchgas erwärmt, was zur Verdampfung des Wasser im Gasgemisch führt. Im zweiten Wärmetauscher wird das Eduktgemisch durch die Hitze des Rauchgases überhitzt und bei Temperaturen von ca. 450 °C in den Prereformer geleitet.

Prereformer
Der Prereformer wird durch die Hitze des Rauchgases und über die Wärmeleitung der Kühlrippen beheizt. Der Kern des Prereformers enthält wahlweise ein Füllrohr (zum Einfüllen des Reformerkatalysators wie oben dargestellt) oder ein Blindrohr.

Das Blindrohr bzw. das Füllrohr (es wird mit inaktivem Material gefüllt, nachdem der Reformerkatalysator in den Reaktorraum gefüllt wurde) soll Schüttung im Kern des Prereformers vermeiden, da dort die Temperaturen zur Reaktion wahrscheinlich für eine Reaktion nicht ausreichen. Sie verhindern somit, dass Edukt ohne Reaktion am Prereformerkatalysator zum Reformerkatalysator gelangt.

Auf die Trennung der Katalysatoren (von Pre- und Reformerkatalysator) durch den Siebboden kann ggf. verzichtet werden. Dann wäre es aber denkbar, dass Prereformerkatalysatorkörnchen in einen zu heißen Bereich gelangen, wo sie durch Sinterung zerstört werden könnten. Vorteil des Verzichts auf die mittlere Einfüllung wäre die Reduktion der Fertigungs- und Materialkosten.

Reformer

Das Volumen der Reformerschüttung wurde im Vergleich zum ursprünglichen Reformer etwas vergrößert um den Umsatz im Reformer zu verbessern.

Sollten sich die Wärmeleitwege im Reformer als zu lang erweisen, kann ein oben und unten verschlossenes Blindrohr im Inneren des Reformers diesen zu einem Ringspaltreaktor machen. Für diese Variante wird nur der rechte Füllstutzen
verwendet, so dass der Gaseintritt zentrisch erfolgen kann. Auf die Trennung der Katalysatoren muss dann verzichtet werden.

Shift

Das heiße, kohlenmonoxidreiche Produktgas verlässt den Reformer und erwärmt im Gegenstrom im Doppelrohrwärmeübertrager das kalte Edukt und wird so auf ca. 140 °C abgekühlt. Die Shift-Stufe ist im Volumen im Vergleich zur ursprünglichen Shift-Stufe gleich geblieben. Sie ist im Entwurf geringfügig breiter geworden, dafür wurde die Höhe etwas reduziert.

SelOX

An der Innenseite der SelOX ist die Wasserkühlung angeordnet. Sie kühlt so das Rauchgas und die SelOX. Die Kühlung erfolgt im Gegenstrom zum Produktgas. Die SelOX ist an den Kühlwasserkreislauf des Brennstoffzellenstapels gekoppelt, so dass die dort anfallende Wärme aus der SelOX und aus dem Rauchgas für das System nutzbar gemacht wird.

Die Austrittstemperatur der Shift-Stufe lag im alten System maximal bei 160 °C. Die optimale Betriebstemperatur der SelOX liegt bei 140 °C – 150 °C. Es ist davon auszugehen, dass die SelOX Eintrittstemperatur durch Wärmeverluste am Winkelstück und durch die Einspeisung der kalten Luft in diesem Bereich liegen wird.

Durch die Integration der SelOX in den Reformer wurden ein Stück Leitung mit relativ hoher Temperatur eingespart. Auf diesem Stück verlor das Produktgas
bisher trotz Isolierung 90 K. Durch die Integration der SelOx in den Reformer wird Platz gespart. Die Gefahr von Kondensation in der SelOx wird reduziert und kann nur noch beim Start auftreten.

Brenner

Erster Ansatzpunkt zur Optimierung des Dampfreformers war der Brenner. Der ursprünglich verwendete Pilotbrenner ist zwar preiswert, verfügt aber über eine relativ schlechte Rauchgasqualität (NO\textsubscript{X} und CO-Konzentrationen). Der Metallfaserbrenner soll durch seine geringere Flammentemperatur die Emissionen an Stickoxd und Kohlenmonoxid reduzieren und durch eine verbesserte Wärmeeinbringung den Umsatz erhöhen. Durch die Ringspaltanordnung um den Reformer steht eine große Fläche zur Verfügung um die Wärme des Brenners aufzunehmen. Wärmeleitbleche am Reformer vergrößern die Oberfläche zusätzlich und leiten die Wärme auch zum Prereformer. Dies soll die Wärmeeinbringung auch unterhalb des Reformers verbessern. Die optimale Position des Brennring muss durch Versuche ermittelt werden.

Rauchgasklappen

Rauchgasnutzung

Als Option kann in diesem heißen Bereich ein Wärmetauscher für die Brennergasvorwärzung vorgesehen werden, der dem Rauchgas zusätzlich Wärme entzieht und damit das Brenngasgemisch aufheizt. Dabei ist darauf zu achten, dass die Zündtemperatur des Brenngasgemisches im Wärmetauscher oder im Brenner nicht erreicht wird.

Durch eine Wand wird das Rauchgas umgelenkt und strömt nun nach oben und streicht dabei am Eduktwärmetauscher entlang. Dieser wurde im Vergleich zum
ehemaligen Wärmetauscher um zwei Windungen verlängert, um dem Rauchgas mehr Wärme entziehen zu können und den Reformer so an die Erfordernisse des Anodenabgasbetriebes besser anzupassen.

Auf Höhe der Shift-Stufe streicht das Edukt außen am Doppelrohrwärmetauscher entlang und kann so die Restwärme an das kalte Edukt abgeben. Bevor es das System verlässt, geht noch etwas Wärme an die Wasserkühlung der SelOx über.

Der hier vorgestellte Entwurf ist als Innovationsträger zu verstehen, in dem einige Lösungsvorschläge für die im Betrieb mit dem alten Dampfreformer aufgetretenen Probleme präsentiert werden. Zusammenfassend soll der Entwurf die folgenden Verbesserungen bewirken:

- Verbesserte Rauchgasqualität durch reduzierte Flammtemperatur des Flächenbrenners.
- Verbesserte Wärmeinbringung durch Wärmeleitbleche und größere Anzahl bzw. Länge der Wärmetauscher.
- Schnellerer Erwärmmung der Shift-Stufe beim Systemstart durch Heizklappen zur Verkürzung der Startzeit.
- Reduktion der Wärmeverluste durch Reduktion der Rauchgastemperatur und durch Integration der SelOx.
- Reduktion des Bauvolumens durch Verschachtelung der Komponenten.
- Vermeidung von Katalysatorstäuben im Produktgaswärmetauscher durch Partikelfilter (Sinterkörper).