Untersuchung schneller Strukturänderungen
mit Hilfe ultrakurzer Röntgenimpulse

Dissertation zur
Erlangung der Doktorwürde
der Naturwissenschaften

vorgelegt beim Fachbereich Physik
der Universität Duisburg-Essen

von
Christian Blome
aus Essen

Juli 2003
Untersuchung schneller Strukturänderungen
mit Hilfe ultrakurzer Röntgenimpulse

Dissertation zur
Erlangung der Doktorwürde
der Naturwissenschaften

vorgelegt beim Fachbereich Physik
der Universität Duisburg-Essen

von
Christian Blome
aus Essen

Juli 2003

Gutachter:
Prof. Dr. D. von der Linde
Prof. Dr. M. Horn-von Hoegen

Vorsitzender:
Prof. Dr. L. Schäfer

Inhaltsverzeichnis

Abbildungsverzeichnis .. V

1 Einleitung ... 1
 1.1 Einführung und Motivation .. 1
 1.2 Gliederung .. 4
 1.3 Zusammenfassung der Ergebnisse 6
 1.4 Erzeugung kurzer Röntgenimpulse 8
 1.4.1 Laser-Plasma-Röntgenquellen 8
 1.4.2 Alternative Methoden .. 11

2 Röntgenquelle der Universität Essen 15
 2.1 Aufbau und Konstruktion der Röntgenquelle 15
 2.2 Torisch gebogener Röntgenspiegel 18
 2.3 Charakterisierung der Röntgenquelle 27

3 Experimente mit hoher Zeitauflösung 33
 3.1 Erweiterung des Versuchsaufbaus 33
 3.2 Experimente an dünnen Germaniumschichten 44
 3.2.1 Laserinduziertes Schmelzen von Halbleitern 44
 3.2.2 Zeitaufgelöste Messungen 48
 3.3 Experimente an dünnen Wismutschichten 64
 3.3.1 Struktureigenschaften und optische Phononen 64
 3.3.2 Zeitaufgelöste Messungen 73

4 Zusammenfassung und Ausblick .. 96

5 Anhang ... 106
 5.1 Röntgendetektion .. 106
 5.2 Auswertungssoftware ... 111
 5.3 Winkelkalibrierung der Wismutexperimente 115
 5.4 Fehleranalyse ... 116
 5.5 Materialdaten ... 121

Literaturverzeichnis ... 127

Danke

Lebenslauf mit Publikationsliste
Abbildungsverzeichnis

1 Hochaufgelöstes Aluminiumspektrum .. 8
2 Brillanz unterschiedlicher Quellen .. 13
3 Aufbau und Konstruktion der Röntgenquelle 16
4 Aufbau zur 1:1-Abbildung mit einem Röntgenspiegel 19
5 Fokus des Si (311)-Spiegels aus Jena, aufgenommen mit Ti-Kα 20
6 Abweichung vom Braggwinkel über eine torische Fläche 21
7 Aufnahme der Topografie des Si (311)-Spiegels aus Jena 22
8 Röntgenbeugungskurve von Si (311) ... 23
9 Hochaufgelöstes Spektrum der Ti-Quelle 25
10 Röntgenemission vs. Zeitverzögerung im Vorverstärker 28
11 Ti-Kα-Photonen und Untergrund vs. Position der Linse und Ti-Kα-
 Fluß vs. Laserenergie ... 30
12 Spezieller Treibermodus der Röntgen-CCD-Kamera 31
13 Histogramm des Ti-Kα-Röntgenflusses 32
14 Strahlenverläufe vor der Vakuumkammer 35
15 Abbildung des Aufbaus innerhalb der Vakuumkammer für das Anrege-
 Abfrage-Experiment .. 37
16 Schematische Darstellung der Kommunikationswege der eingesetzten
 Computer .. 38
17 Zeitverschmierung zwischen Anrege- und Abfrageimpuls 39
18 Auswertung einer Röntgenbeugungskurve 41
19 Berechnete Beugungskurve einer 170 nm Ge (111)-Schicht 42
20 Zeitaufgelöste Mikroskopie an einer Si-Oberfläche während des Schmel-
 zens ... 45
21 Zeitaufgelöste Reflektivität eines weißen Spektrums und Abnahme
 der zweiten Harmonischen an einer GaAs-Oberfläche 46
22 Bindungsenergie pro Si-Atom vs. Phononenauslenkung 47
23 Zeitaufgelöste Reflektivitätskurve einer 170 nm Ge (111)-Schicht be-
 obachtet für 0,1, 0,2 und 0,4 J/cm² ... 50
24 Faltung einer Gaußfunktion mit einer zeitaufgelösten Reflexionskurve 52
25 Zeitaufgelöste Röntgenbeugungskurven von Ge (111) für verschiedene
 Verzögerungszeiten, Anregefluenz 0,2 J/cm² 53
26 Debye-Waller-Faktor für die Reflexe von Ge (111) und (400) 54
<table>
<thead>
<tr>
<th>Seite</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Isochores Heizen und adiabate Entspannung bei der Laserwechselwirkung</td>
</tr>
<tr>
<td>28</td>
<td>Entstehung von verschiedenen akustischen Störungen nach Therma-</td>
</tr>
<tr>
<td></td>
<td>lisierung der optischen Energie.</td>
</tr>
<tr>
<td>29</td>
<td>Vernachlässigung der lateralen Effekte bei thermischer Ausdehnung</td>
</tr>
<tr>
<td>30</td>
<td>Abbildung der fcc-Struktur von Bi</td>
</tr>
<tr>
<td>31</td>
<td>Röntgenbeugungskurve von Bi, aufgenommen mit einer Cu-Kα-Röntgen-</td>
</tr>
<tr>
<td></td>
<td>röhre</td>
</tr>
<tr>
<td>32</td>
<td>Potentialverlauf zur Erklärung der DECP-Theorie (schematisch)</td>
</tr>
<tr>
<td>33</td>
<td>Optisches Anrege-Abfrage-Experiment an Bi</td>
</tr>
<tr>
<td>34</td>
<td>Normierter Röntgenstrukturfaktor von Bi vs. Phononenamplitude für</td>
</tr>
<tr>
<td></td>
<td>hkl = (111) und hkl = (222)</td>
</tr>
<tr>
<td>35</td>
<td>Berechnete Beugungskurven einer 50 nm Bi-Schicht in den Beugungs-</td>
</tr>
<tr>
<td></td>
<td>richtungen (111) und (222)</td>
</tr>
<tr>
<td>36</td>
<td>Faltung einer Phononenoszillation mit dem Röntgenimpuls</td>
</tr>
<tr>
<td>37</td>
<td>Zeitauflöste Röntgenreflexionsmessung auf Bi (222) mit der Ener-</td>
</tr>
<tr>
<td></td>
<td>giedichte 6 mJ/cm² bis 30 ps</td>
</tr>
<tr>
<td>38</td>
<td>Reduzierung des Beugungsvermögens von Bi (111) und (222) durch</td>
</tr>
<tr>
<td></td>
<td>den Debye-Waller-Faktor und durch thermische Ausdehnung</td>
</tr>
<tr>
<td>39</td>
<td>Modulationsamplitude der Faltung einer cos-Funktion mit einem Gauß-</td>
</tr>
<tr>
<td></td>
<td>impuls</td>
</tr>
<tr>
<td>40</td>
<td>Zeitauflöste Röntgenreflexionsmessung auf Bi (111) mit einer Ener-</td>
</tr>
<tr>
<td></td>
<td>giedichte von 6 mJ/cm² bis 2 ps</td>
</tr>
<tr>
<td>41</td>
<td>Zeitauflöste Röntgenreflexionsmessung auf Bi (111) mit einer Ener-</td>
</tr>
<tr>
<td></td>
<td>giedichte von 10 mJ/cm² bis 40 ps</td>
</tr>
<tr>
<td>42</td>
<td>Änderung des Beugungsvermögens auf Grund der thermischen Aus-</td>
</tr>
<tr>
<td></td>
<td>dehnung</td>
</tr>
<tr>
<td>43</td>
<td>Zeitauflöste Röntgenreflexionsmessung auf Bi (222) mit einer Ener-</td>
</tr>
<tr>
<td></td>
<td>giedichte von 15 mJ/cm² bis 40 ps</td>
</tr>
<tr>
<td>44</td>
<td>Zeitauflöste Röntgenreflexionsmessung auf Bi (111) mit einer Ener-</td>
</tr>
<tr>
<td></td>
<td>giedichte von 15 mJ/cm² bis 50 ps</td>
</tr>
<tr>
<td>45</td>
<td>Zeitauflöste Röntgenreflexionsmessung auf Bi (222) mit einer Ener-</td>
</tr>
<tr>
<td></td>
<td>giedichte von 20 mJ/cm² bis 70 ps</td>
</tr>
<tr>
<td>46</td>
<td>Röntgenbeugungskurven für Bi (222) bei einer Anregung von 20 mJ/cm²</td>
</tr>
<tr>
<td></td>
<td>und Bi (111) bei einer Anregung von 15 mJ/cm²</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Einführung und Motivation

Die Stärke dieser Technik liegt in der natürlichen Synchronisation der beiden Laserimpulse; die Zeitverzögerung wird einfach über eine Laufzeitdifferenz zwischen den Laserimpulsen eingestellt. Ein weiterer Vorteil ist die erreichbare zeitliche Auflösung, die im wesentlichen durch die Impulsdauer des verwendeten Lasersystems gegeben ist. Es werden heute ultrakurze \(^1\) Laserimpulse mit einer Zeitdauer von nur 5 fs erzeugt [81].

Da der optische Abfrageimpuls mit den Valenz- und Leitungsbandelektronen der Probe wechselwirkt, werden nur elektronische Eigenschaften untersucht; es werden aber keine direkten Informationen über Strukturanpassungen gewonnen. Strukturbedingte Aussagen können nur indirekt über die häufig nicht eindeutige Interpretation der Meßergebnisse gemacht werden [75, 76].

Ein wichtiges Ziel ist daher die Erweiterung dieser bekannten Technik in den Röntgenbereich [63]. Die kurzen Wellenlängen der harten Röntgenstrahlung im Å-Bereich (\(Ångström\), 1 Å = 10^{-10} m) erlauben eine direkte Untersuchung der Materie auf

\(^1\)Unter dem Begriff „ultrakurz“ werden im weiteren Vorgänge auf einer Zeitskala unterhalb von 1 ps (Pikosekunde, 1 ps = 10^{-12} s) bezeichnet.

Kombiniert man folglich die Röntgenstrahlung mit einer hohen zeitlichen Auflösung im subps-Bereich (Sub-Pikosekunde) durch ultrakurze Röntgenpulse oder schnelle Detektoren, so wird die faszinierende Möglichkeit realisierbar, extrem schnelle chemische Reaktionen, Phasenübergänge, Oberflächenreaktionen und schnelle biologische Prozesse in Echtzeit zu verfolgen. Kurze Röntgenpulse im ps-Bereich sind bis heute die Domäne von Großforschungseinrichtungen, wie die Synchrotronquelle an der Advanced Photon Source, die European Synchrotron Radiation Facility, das Stanford Linear Accelerator Center und das Deutsche Elektronen Synchrotron. Auch die geplanten Freien-Elektronen-Laser (FEL), die Röntgenblitze im fs-Bereich erzeugen werden, sind auf Grund der notwendigen mehrere km-langen Beschleunigerstrecken sowie den hohen Kosten zu den Großforschungseinrichtungen zu zählen.

2Ist wiederum die Reaktion schneller als die Dauer der Röntgenpulse, so ist es möglich, eine obere Schranke für die Impulsdauer der erzeugten Röntgenblitze zu geben.
3APS, Argonne, Illinois, USA
4ESRF, Grenoble, Frankreich
5SLAC, Menlo Park, Kalifornien, USA
6DESY, Hamburg, Deutschland

In dieser Arbeit wird mittels zeitaufgelöster Röntgenbeugungsexperimente gezeigt, daß die verwendete Laser-Plasma-Röntgenquelle eine Impulsdauern von unter 300 fs besitzt. Zum Vergleich sei hier angeführt, daß schnelle Röntgen-Schmierbild-Kameras (engl.: streak camera) eine Zeitauflösung von 2 ps erreichen [36].

1.2 Gliederung

In dem Kapitel 1.3 Zusammenfassung der Ergebnisse wird ein Überblick über die erzielten Meßergebnisse und die erreichte Zeitauflösung in den Experimenten geboten. Die daraus resultierenden Veröffentlichungen werden am Ende des Kapitels zusammengestellt. Die Veröffentlichungen informieren in verkürzter Form über die erreichten Resultate.

Bei dem im Kapitel 3.2 Experimente an dünnen Germaniumschichten beschriebenen ersten Experiment handelt es sich um einen Beitrag zum Themenkomplex „nicht-thermisches Schmelzen von Halbleitern“. In dieser Arbeit wird der Phasenübergang von der Fest- in die Flüssigphase von hochangeregten Ge-Schichten mit der Methode der Röntgenbeugung zeitaufgelöst verfolgt und anschließend diskutiert. Im Kapitel 3.3 Experimente an dünnen Wismutschichten wird das zweite Experiment beschrieben. Es demonstriert erstmals Röntgenbeugung an einer optischen Phononenmode (A1g-Mode) in Wismut (Bi) mit einer Zeitauflösung von deutlich unter 500 fs. Da der geometrische Strukturfaktor durch die Phononenauslenkung moduliert wird, ist es möglich, die Gitterschwingung durch Abnahme und Zunahme der Röntgenreaktivität zu verfolgen.

Im Anhang ist neben der Charakterisierung der röntgenempfindlichen CCD-Kamera eine kurze Beschreibung der selbstgeschriebenen Auswertungssoftware für die Kamerabilder unter 5.2 Auswertungssoftware zu finden. Die für einige Abschätzungen verwendeten Materialdaten von Germanium und Silizium (Si) sind im Anhang unter 5.4 Materialdaten zusammengestellt.
1.3 Zusammenfassung der Ergebnisse

Es konnte eine Laser-Plasma basierte Röntgenquelle mit einer Photonenenergie von 4,5 keV (Kiloelektronenvolt, 1 keV = 10³ eV), die der Titan-Kα-Linie entspricht, realisiert werden. Diese Röntgenquelle kann Messzeiten von einigen Tagen ohne Unterbrechung zur Verfügung stellen. Die durchgeführten zeitaufgelösten Experimente weisen auf eine obere Schranke der Impulsdauer der Röntgenstrahlung von ca. 300 fs hin. Durch einen torisch gebogenen Röntgenspiegel kann die incoharente Röntgenstrahlung aus dem vor dem Target liegenden Halbraum auf einen Fokusaumlöser von ca. 80 μm (Mikrometer, 1 μm = 10⁻⁶ m) fokussiert werden. Im Fokus wird ein Röntgenfluß von ca. 2 · 10⁴ Photonen pro Laserimpuls gemessen.

Eine detaillierte Auswertung der Messdaten ergibt bei einer Anregung mit 0,2 J/cm², daß der Film auf der kurzen Zeitskala von 300 fs über eine Tiefe von ca. 40 nm geschmolzen ist. Die daraus resultierende nötige Schmelzfrontgeschwindigkeit von ca. 10⁵ m/s ist nicht vereinbar mit der maximal möglichen Geschwindigkeit, die durch die Schallgeschwindigkeit von einigen 1000 m/s gegeben ist. Dies läßt die Vermutung zu, daß es sich um einen homogenen Schmelzprozeß handelt.

Nach dem nichtthermischen Schmelzen breitet sich eine Schmelzfront mit der Geschwindigkeit von ca. 850 m/s aus. Aus den Winkelverschiebungen der Röntgen-

In einem weiteren Experiment ist durch einen kurzen Laserimpuls die A1g-Phononenmode in einer dünnen, einkristallinen Wismutschicht angeregt worden. Da die Gitterschwingung zur Modulation der Beugungseffizienz der Bi-Schicht führt, kann mit zeitaufgelöster Röntgenbeugung die zeitliche Auslenkung verfolgt und mit dem theoretisch berechneten Strukturfaktor als Funktion der Phononenamplitude verglichen werden. Daraus folgten Phononenamplituden – in Abhängigkeit der Anregefrequenz – bis zu ca. 10% des nächsten Nachbarabstandes. Die aus den Meßdaten gewonnene Phononenfrequenz von 2,65 THz zeigt eine deutliche Rotverschiebung im Vergleich zur Phononenfrequenz im nicht angeregten Wismut von 2,92 THz. Ebenfalls gaben die Winkelverschiebungen der Beugungskurven wieder Aufschluß über den Druck und die Temperatur in dem angeregten Film. Teile dieser Arbeit sind in [77] publiziert worden.
1.4 Erzeugung kurzer Röntgenimpulse

1.4.1 Laser-Plasma-Röntgenquellen

Wenn ein Laserimpuls auf eine Metalloberfläche fokussiert wird, absorbiert das Target die Laserenergie innerhalb einer Skintiefe von ca. 10 nm [8]. Überschreitet die Energiedichte im Fokus die Ionisationsschwelle, so entsteht ein Plasma, von dem aus ein inkoherenter „Röntgenblitz“ in den vor dem Target liegenden Halbraum emitziert wird. Typische Werte für die Ionisationsschwelle von Festkörpern liegen bei $10^{12} - 10^{13}$ W/cm² [40, 26].

Es ist eine Anzahl von Linien zu erkennen, welche identifiziert werden konnten als Linienstrahlung von hochangeregten Ionen aus dem Plasma. Die im Spektrum domi-nierende Al-Kα-Linie kann nur durch nichtangeregte Atome außerhalb der Plasma-schicht emittiert werden. Die Al-Kα-Photonen besitzen eine Energie von 1,49 keV, was einer Wellenlänge von 8,34 Å entspricht [94].

Die Kα-Strahlung entsteht nicht im heißen Plasma, sondern entsteht hinter der Plasmaschicht und wird durch Elektronen erzeugt, welche durch das Laserfeld beschleu-nigt werden. Übersteigt die Laserintensität die Schwelle von 10^{15} W/cm², werden im Plasma Elektronentemperaturen von einigen 100 eV erreicht. Die Energiedis-sipation der Laserstrahlung durch Elektron-Ion-Stöße kann vernachlässigt werden, da die Stoßfrequenz mit der Elektronentemperatur abnimmt [26]. In Experimenten wird trotzdem ein Absorptionsgrad von über 50% gemessen, die damit verbunde-ne „stofffreie Absorption“ wird in verschiedenen alternativen Theorien zu erklären versucht. Dabei unterscheiden sich die Theorien durch verschiedene experimentelle Ausgangssituationen. Die wichtigsten Modelle sind:

- Resonanzabsorption: Dieses Modell ist gültig für p-polarisierte Laserstrahlung und Plasmaskalenlängen von $L \geq \lambda_{\text{Laser}}$. Die Plasmaskalenlänge L ist über die Plasmadichte n_e definiert: $L = n_e/(\nabla n_e)$ [91, 4].

- Vakuumheizen oder Brunel-Absorption: Dieses Modell ist gültig für steile Dichtegradienten [9, 91, 4], im Gegensatz zur Resonanzabsorption.

Das Interesse an diesen kurzen Kα-Röntgenimpulsen hat dazu geführt, daß die unterschiedlichsten Targetmaterialien verwendet wurden. So wurden beispielsweise in Arbeiten der Laser-Gruppe am Laboratoire d’Optique Appliquée die Materialien Kalzium, Aluminium und Eisen untersucht [4, 60, 62]. Die gemessenen Quelldurchmesser betrugen um die 10 μm; bei einer Laserwiederholrate von 10 Hz wurden pro Impuls $3 \cdot 10^8$ Kα-Photonen erzeugt.

5Laboratoire d’Optique Appliquée, LOA, Palaiseau, Frankreich
1.4 Erzeugung kurzer Röntgenimpulse

1.4.2 Alternative Methoden

Andere Ideen basieren auf der direkten Wechselwirkung von relativistischen Elektronenpaketen mit kurzen Laserimpulsen. Im wesentlichen wirkt dabei das Laserfeld wie ein periodisch wechselndes Magnetfeld (Wiggler). Die Wigglerperiode entspricht dabei der Laserwellenlänge. Von Schoenlein et al. wurden durch Thomsonstreuung harte Röntgenpulse erzeugt [39, 66, 68]. Dazu wurde ein Laserimpuls mit einer zeitlichen Dauer von 100 fs und einer Energie von 100 mJ unter 90° in einen relativistischen Elektronenstrahl (50 MeV) fokussiert. Es entstand ein 300 fs langer Röntgenimpuls bei einer Wellenlänge von 30 keV (0,4 Å). Der Photonenfluß betrug $5 \cdot 10^4$ Photonen. Die Quelle kann bei einer Wiederholrate von 2 Hz arbeiten, die Abstrahlrichtung ist kollimiert in einen Winkel von 7,9 mrad (Milliradian, $1 \text{ mrad} = 10^{-3} \text{ rad}$). Ein Vorteil der Quelle ist, daß die Röntgenwellenlänge durch die Elektronenenergie direkt einstellbar ist.

Um diese völlig unterschiedlichen Quellen vergleichen zu können, wurde die Brillanz \(b\) eingeführt [43]. Diese ist definiert durch

\[
b = \frac{dn_{0.1\%}(x,y,\theta,\psi,\nu)}{dx dy d\Omega dt}. \tag{1}
\]

Durch \(dn_{0.1\%}\) werden die emittierten Photonen innerhalb der Bandbreite von 0,1%, zentriert um die Photonenenergie \(\nu\) angegeben. Diese Anzahl wird normiert auf die Fläche der Quelle \(dx dy\) im Punkt \((x,y)\) und normiert auf den Raumwinkel.
1.4 Erzeugung kurzer Röntgenimpulse

\[d\Omega, \text{ welcher durch die Winkel } (\theta, \psi) \text{ aufgespannt wird, sowie auf das Zeitintervall } dt. \] Die Definition der Brillanz ist jedoch mit Vorsicht zu behandeln. Es werden Quellen bevorzugt, welche eine möglichst kurzen Röntgenimpuls abstrahlen. Werden allerdings schnelle Detektoren verwendet, welche den zu beobachtenden Prozeß in einem Durchgang zeitlich auflösen, wird ein langer Röntgenimpuls gebraucht. Ebenfalls werden Quellen mit kleiner Abstrahlfläche und möglichst kleinem Abstrahlwinkel favorisiert, dies bedeutet eine hohe räumliche Auflösung. Es hat jedoch keinen Sinn, Experimente mit höherer Auflösung als die der Detektoren durchzuführen.

\[Abb. 2: \text{ Brillanz unterschiedlicher Quellen.} \]

![Diagramm der Brillanz unterschiedlicher Quellen](image)

erkennen, daß mit höherer Kernladungszahl die Röntgenemission abnimmt. Theore
tische Berechnungen unterstützen diese Tendenz [53]. In [53] werden Rechnungen
durchgeführt, die zeigen, daß die optimale Laserintensität I_{opt} für die Erzeugung
von Kα-Photonen mit der Kernladungszahl Z wie $I_{opt} = 7 \cdot 10^9 Z^{4.4} \text{ W/cm}^2$
skaliert. In einem weiteren Schritt wird auch gezeigt, daß trotz optimaler Intensität der
Röntgenfluß mit der Kernladungszahl abnimmt. Die theoretischen Berechnungen
werden in zwei Schritten durchgeführt. Der erste Schritt simuliert die Laserplasma-
wechselwirkung und ergibt die Elektronengeschwindigkeitsverteilung als Funktion
der Zeit. Diese Berechnung wird mit einem PIC-Programm (engl.: particle in cell
simulation) durchgeführt. Im zweiten Schritt wird die Geschwindigkeitsverteilung
dazu benutzt, um mit einer Monte-Carlo-Simulation die Anzahl der Röntgenphoto-
nen als Funktion der Zeit zu berechnen. Das Ergebnis der Berechnungen ist somit
nicht nur die Gesamtzahl der Photonen pro Laserimpuls, sondern auch der zeitliche
Verlauf ihrer Entstehung. Eine weiteres Ergebnis der Simulationen ist, daß subps-
Röntgenimpulse nur bei Folientargets mit Stärken von etwa 2 μm entstehen können.
Folientargets haben den Vorteil, daß die Elektronenreichweite im Target beschränkt
ist. Nach dem Hindurchtreten der schnellen Elektronen durch die Folie entsteht
keine weitere Röntgenstrahlung, und die Emission ist somit zeitlich eingeschränkt.
Bei den bisher durchgeführten Röntgenbeugungsexperimenten wurde die Strahlung
aber immer mit Hilfe von Festkörpertargets erzeugt. Nahezu alle Gruppen konnten
subps-Zeitauflösungen bei ihren Experimenten nachweisen. Arbeiten mit einer
Si-Quelle haben die Gruppen [23, 24, 61] durchgeführt. Die hier verwendete Titan-
quelle führte zu den Veröffentlichungen [14, 78]. Mit Hilfe der Thomsonstreuung
wurden zeitaufgelöste Experimente an InSb durchgeführt [16]. Resultate von Beu-
gungsexperimenten mit einer Kupferquelle mit einer Zeitauflösung von einigen ps
wurden in [13, 73] veröffentlicht.
2 Röntgenquelle der Universität Essen

2.1 Aufbau und Konstruktion der Röntgenquelle

Die ersten Schritte zur Entwicklung einer fs-Röntgenquelle am Institut für Laser- und Plasmaphysik an der Universität Essen wurden vom Autor durchgeführt [6]. Da Ti-Kα eine Wellenlänge von 4,5 keV bzw. 2,75 Å besitzt, wurde es als Targetmaterial verwendet. Mit dieser Wellenlänge ist es nach der Bragggleichung

\[2 g_{hkl} \sin \theta_B = \lambda \]

noch möglich, Braggbeugungen an Halbleitern wie Si, Ge, GaAs und auch an Bi durchzuführen. In (2) ist \(g_{hkl} \) der Abstand der beugenden Ebenen, das Tupel (hkl) die Miller’schen Indizes der Netzebenenschar, \(\theta_B \) der Braggwinkel und \(\lambda \) die Wellenlänge der Röntgenstrahlung. Geht man zu kleineren Gitterabständen über, so muß eine kürzere Wellenlänge gewählt werden, damit die aus der Bragggleichung abgeleitete Bedingung \(\lambda \leq 2 g_{hkl} \) erfüllt ist.

Eine systematische Untersuchung anderer Materialien mit höherer Kernladungszahl und somit mit kürzerer Wellenlänge wurde an der entwickelten Quelle noch nicht durchgeführt [8].

\[^8 \text{Ausnahme ist hier das Material Kupfer [6, 32].} \]
Abb. 3: Aufbau und Konstruktion der Röntgenquelle.

2.1 Aufbau und Konstruktion der Röntgenquelle

Im linken unteren Bild wird die röntgenemittierende Fläche durch den Röntgenspiegel im Verhältnis 1:1 auf die Kamera abgebildet. Der abbildende Röntgenspiegel ist auf einem Rotationstisch montiert und in einer optischen Spiegelhalterung befestigt. Das Dreieck zwischen Drahttarget, Röntgenspiegel und Detektor entspricht einem 2f-Aufbau, wobei f die Brennweite des Röntgenspiegels ist. Dies bedeutet, daß der Quellpunkt 1:1 in die Detektorebene abgebildet wird. Die Physik des Röntgenspiegels wird in dem folgenden Kapitel 2.2 Torisch gebogener Röntgenspiegel näher erläutert. Außerdem ist die Quarzlinse mit der Brennweite von 150 mm zur Fokussierung der Laserstrahlung zu sehen. Diese wird durch eine 8 µm dünne Mylarfolie vor dem ablatierten Titanstaub geschützt.

Da bei den späteren Beugungsexperimenten mehrere Winkel sehr exakt eingestellt werden mußten, ist die Experimentierplattform innerhalb der Vakuumkammer vollständig von dieser entkoppelt worden. Die Plattform ist direkt mit dem optischen Tisch verbunden. Wird die Kammer abgepumpt und verformt sich dabei, kann sich die Plattform nicht mitbewegen.

2.2 Torisch gebogener Röntgenspiegel

9Ein Dreitupel stellt im weiteren Text immer die Millerschen Indizes dar.
2.2 Torisch gebogener Röntgenspiegel

Die Abhängigkeit der Brennweiten von den Krümmungsradien und dem Braggwinkel θ_B des verwendeten Materials ergibt sich aus Abb. 4:

\[f_h = \frac{R_h}{2} \sin \theta_B \quad \quad f_v = \frac{R_v}{2 \sin \theta_B} \]

Werden die Krümmungsradien so angepaßt, daß die Foki zusammenfallen, ergibt sich eine Brennweite f und eine eindeutige Punkt-zu-Punkt Abbildung. Ist die Bedingung nicht erfüllt, erhält man einen horizontalen und vertikalen Fokus und in folgedessen liegen die Abbildungsebenen räumlich getrennt hintereinander. Folgende Tabelle faßt die Eigenschaften des Spiegels zusammen:

<table>
<thead>
<tr>
<th>Titan-Kα₁</th>
<th>$4,51 \text{ keV}$</th>
<th>[57]</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_B</td>
<td>$57,084^\circ$</td>
<td>[65, 64]</td>
</tr>
<tr>
<td>R_h</td>
<td>$149,79 \text{ mm}$</td>
<td>[95]</td>
</tr>
<tr>
<td>R_v</td>
<td>$106,39 \text{ mm}$</td>
<td>[95]</td>
</tr>
<tr>
<td>f_h</td>
<td>$62,87 \text{ mm}$</td>
<td></td>
</tr>
<tr>
<td>f_v</td>
<td>$63,37 \text{ mm}$</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1: Eigenschaften des Si (311)-Spiegels, hergestellt durch die Arbeitsgruppe von Prof. Förster, Universität Jena. In der rechten Spalte stehen die Referenzen aus denen die Konstanten entnommen wurden. Der Braggwinkel ist mit dem Softwareprogramm XOP (engl.: x-ray oriented programs) berechnet worden.
Im Experiment wird die 1:1-Abbildung mit Hilfe einer Schablone justiert. Die Abstände können auf $\pm 0,5$ mm eingehalten werden. Daß die Foki nicht perfekt aufeinander abgestimmt sind (siehe Tab. 1), ist auf Grund der Justagegenauigkeit nicht weiter von Belang. Zur Justage des Braggwinkels wird vom Draht gestreutes Laserlicht verwendet. Der Röntgenspiegel wird so gedreht, daß das Licht zurück auf die Quelle fällt. Wird der Röntgenspiegel nun um $90^\circ - \theta_B$ gedreht, so steht der Spiegel im Braggwinkel. Der Winkel wird während des Betriebs der Quelle nachjustiert bis der Röntgenfluß maximal ist. Hierzu ist der Spiegel auf einem Drehteller mit Schrittmotor montiert. Die Auflösung des Motors beträgt 10^{-3}°. Die Röntgenkamera kann an die Stelle des optischen Fokus gestellt werden und ist in Richtung des Röntgenspiegels motorisiert. Mit der Freiheit, die Kamera durch den Fokus bewegen zu können, kann der kleinste Fokusdurchmesser gesucht werden. Damit keine Strahlenschäden in dem CCD-Chip der Kamera entstehen, wird zur Aufnahme des Fokus der Röntgenfluß erniedrigt (siehe: Strahlenschaden auf der Kamera im Anhang 5.1 Röntgendetektion). Abb. 5 zeigt den aufgenommenen Röntgenfokus, die Halbwertsbreite beträgt ca. 70 µm FWHM (engl.: full with half maximum). Durch die Motorisierung der Kamera ist es möglich zu bestimmen, wie sich die Rayleighlänge (Fokallänge) verhält. Der Fokusdurchmesser ist innerhalb von $\pm 0,5$ mm unempfindlich gegen Verschiebung.
2.2 Torisch gebogener Röntgenspiegel

Rechte Seite: Zum Vergleich ist der Torus durch eine Ebene ersetzt worden.

Um einen möglichst effizienten Spiegel zu erhalten, sollte die Variation des Winkels über die Oberfläche \(\Delta \theta_{\text{geo}} \) kleiner sein als die natürliche Linienbreite der verwendeten Röntgenstrahlung \(\Delta E \). Ist die Variation des Winkels lokal stärker, ist die Braggbedingung für andere Wellenlängen erfüllt. Sind diese aber im einfallenden Spektrum nicht vorhanden, so tragen diese Stellen nicht zur Beugung bei. Die natürliche Linienbreite kann mit Hilfe des totalen Differentials der Bragggleichung (2) in Winkeleinheiten umgerechnet werden:

\[
\left| \frac{\Delta \lambda}{\lambda} \right| = \left| \frac{\Delta E}{E} \right| = \left| \frac{\Delta \theta}{\tan \theta_B} \right|
\]

(4)

Die natürliche Linienbreite der Titan-Kα-Strahlung liegt im Bereich von \(|\Delta E/E| \approx 4 \cdot 10^{-4} \) \cite{57}, es ergibt sich eine Winkelvariation von \(\Delta \theta_{\text{Linie}} = 6,2 \cdot 10^{-4} \) rad. Es wurde ein Matlabprogramm geschrieben, welches die Variation des Braggwinkels über die Oberfläche beliebig gekrümmter Kristallspiegel in verschiedenen Geometrien berechnen kann. Für die folgenden Berechnungen und Abschätzungen wird eine gemittelte Brennweite von \(\bar{f} = 63,12 \) mm verwendet. Für den Fall der 1:1-Abbildung mit dem Torus zeigt die Abb. 6 links die Abweichung vom Braggwinkel über der Oberfläche, rechts ist zum Vergleich der Torus durch eine Ebene ausgetauscht worden. Im Falle des Torus beträgt die maximale geometrische Abweichung \(\Delta \theta_{\text{geo}} \approx 1,5 \cdot 10^{-4} \) rad, im Falle der Ebene beträgt die Abweichung zwei Größenordnungen mehr.

Aus dieser Betrachtung folgt, daß die geometrische Variation \(\Delta \theta_{\text{geo}} \) um einen Faktor 4 kleiner als die natürliche Linienbreite \(\Delta \theta_{\text{Linie}} \) ist. Die Bedingung, daß die Ände-
runung des Braggwinkels über der Oberfläche klein sein soll, ist somit erfüllt. Aus der Ti-Kα-Linie schneidet der Kristall einen spektralen Bereich von $\Delta E \approx 0,5$ eV heraus.

\textit{Abb. 7:} Aufnahme der Topografie des Si(311)-Spiegels aus Jena.
2.2 Torisch gebogener Röntgenspiegel

![Diagramm](image.png)

Abb. 8: Röntgenbeugungskurve von Si (311) berechnet mit XOP. Der Kristall besitzt eine Stärke von 50 µm

Da die Kα-Photonen auf eine größere Fläche verteilt werden, kann der Röntgenfluß ohne Gefahr für die CCD-Kamera erhöht werden. Mit der Kalibrierung der Röntgenkamera, die im Anhang 5.1 Röntgendetektion vorgestellt wird, kann die Anzahl der detektierten Photonen berechnet werden. Der Röntgenfluß betrug in der *Abb. 7* typische $2 \cdot 10^4$ Photonen/Laserimpuls. Das Bild wurde nach den Optimiermethoden, die im Kapitel 2.3 Charakterisierung der Röntgenquelle vorgestellt werden, aufgenommen. Die Intensität des Lasers betrug im Fokus einige 10^{16} W/cm².

Betrachtet man eine Drehung des Röntgenspiegels um einen Winkel $\Delta \theta_B$, so erhält man bei fester Wellenlänge die Beugungskurve des Spiegels. Eine zusätzliche experimentelle Bedingung ist, daß der Spiegel nur auf einem kleinen Stück ausgeleuchtet wird, so daß die Variation des Braggwinkels über die Oberfläche keine Rolle spielt. Der gebogene Si-Wafer hat eine Stärke von 70 µm und kann im gebogenen Zustand mit einem ebenen dicken Kristall verglichen werden [88]. *Abb. 8* zeigt die berechnete Beugungskurve eines 50 µm starken ebenen Si (311)-Kristalls. XOP (engl.: x-ray oriented programs) [65, 64] ist in der Lage, die Eindringtiefen von beliebigen Photonenenergien in verschiedene ebene Kristalle zu berechnen. Die Eindringtiefe von Ti-Kα in einen ebenen Si (311)-Kristall beträgt ca. 15 µm.
Die Halbwertsbreite θ_{RC} der s-polarisierten Röntgenbeugungskurve (engl.: rocking curve) beträgt 46,38 µrad, die der p-polarisierten Kurve 20,22 µrad. Die geometrische Variation des Braggwinkels über der Oberfläche bei festem Winkel ist somit um einen Faktor ≈ 5 größer als die Beugungskurve des Spiegels. Aus diesen Daten läßt sich zusammenfassen:

- Für einen effizienteren Röntgenspiegel ist es besser, wenn die Breite der Röntgenbeugungskurve größer ist als die Variation des Braggwinkels über der Oberfläche.

- Da die Röntgenbeugungskurve eine stärkere Reflektivität für s-Polarisation besitzt, ist die Strahlung im Fokus teilweise polarisiert. Maßgebend für die Reflektivität ist die integrierte Reflektivität, da durch die Variation des Braggwinkels über der Oberfläche alle Winkel angeboten werden. Die integrierte Reflektivität erhält man durch Integration der Beugungskurven in Abb. 8. Die integrierte Reflektivität für s-Polarisation beträgt 43,74 µrad, die für p-Polarisation beträgt 12,62 µrad. Das Verhältnis von s- zu p-Polarisation ist 1:0,3.

Wird der Spiegel gedreht, arbeitet dieser als Spektrometer. Als obere Abschätzung für die Energieauflösung kann die Halbwertsbreite der s-polarisierten Röntgenbeugungskurven verwendet werden. Die Halbwertsbreite entspricht einer Energieauflösung von $|\Delta E / E| \approx 3 \cdot 10^{-5}$. Die Spin-Bahn-Aufspaltung der Linien $K\alpha_1$ und $K\alpha_2$ haben folgende Eigenschaften:

<table>
<thead>
<tr>
<th>Linie</th>
<th>Energie [keV]</th>
<th>FWHM [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-$K\alpha_1$</td>
<td>4,51084</td>
<td>1,87</td>
</tr>
<tr>
<td>Ti-$K\alpha_2$</td>
<td>4,504486</td>
<td>2,34</td>
</tr>
</tbody>
</table>

Tab. 2: Aufspaltung der $K\alpha$-Energien [57].

Durch Drehen des Röntgenspiegels kann das Spektrum durchgefahren werden. Die Kamera steht dabei außerhalb des Fokus. Jeder Meßpunkt in Abb. 9 ist eine Mittelung über 20 Aufnahmen. Sehr gut ist die Aufspaltung der Linien zu sehen (die grobe Methode der Pulshöhenanalyse vgl. Abb. 55 im Anhang konnte dies nicht leisten). Rechnet man die Energien der $K\alpha$-Linien aus Tab. 2 in die entsprechenden Braggwinkel um, so besitzen die Linien einen Abstand von 7,5 min. Die Interpolation in Abb. 9 weist denselben Abstand auf.
Abb. 9: Hochaufgelöstes Spektrum der Ti-Kα-Quelle. Die Meßdaten sind durch Änderung des Einfallswinkels auf den Si(311)-Spiegel entstanden. Deutlich ist die Aufspaltung in die Kα₁ und Kα₂-Linie zu erkennen.

Aus einer Pulshöhenanalyse ist bekannt, daß die Röntgenquelle \(\approx 10^8 \) Photonen/sr bei einer Laserenergie von 30 mJ emittiert [6]. Mit der folgenden Abschätzung kann aus diesem Röntgenfluß auf die Anzahl der zu erwartenden Photonen im Fokus des Röntgenspiegels geschlossen werden [46].

\[
N_{ref} = N_L A \sin \theta_B \frac{\lambda R_{int}}{(2 f)^2} \frac{\Delta \alpha \tan \theta_B}{\Delta \lambda}
\]

In dieser Gleichung bedeutet \(N_{ref} \) die Anzahl der gebeugten Photonen vom Röntgenspiegel. Der Wert \(N_L \) ist die Anzahl der Photonen, die von der Quelle in einem Raumwinkel von 1 sr emittiert werden. Der erste Multiplikant in der Gleichung stellt den Raumwinkel dar, den der Röntgenspiegel in der 1:1 Geometrie abdeckt. Dabei ist \(A \) die Fläche des Röntgenspiegels und \(A \sin \theta_B \) die effektive Fläche, die in den Raumwinkel eingegangen. Im zweiten Multiplikant steht die integrierte Reflektivität \(R_{int} \), die Wellenlänge der Strahlung \(\lambda \) sowie ihre natürliche Breite \(\Delta \lambda \). Wird die integrierte Reflektivität über s- und p- Polarisation gemittelt, so erhält man für die Ti-Kα-Linie \(N_{ref} \approx 5 \cdot 10^{-5} N_L \). Mit dem zuvor gemessenen Röntgenfluß ergibt dies \(5 \cdot 10^3 \) theoretisch gebeugte Photonen vom Röntgenspiegel. In Abb. 11 (Kapitel 2.3) wird bei einer Laserenergie von ebenfalls 30 mJ eine Anzahl von \(\approx 7 \cdot 10^3 \) gebeugten Photonen vom Röntgenspiegel gemessen.
Die Anzahl der gemessenen Photonen liegt in derselben Größenordnung wie die der theoretisch abgeschätzten.

Wird im Fokus des Röntgenspiegels eine kristalline Probe plaziert, so ist im allgemeinen die Röntgenbeugungskurve der Probe wesentlich schmaler als der angebotene Winkelbereich von $\approx 2,5^\circ$, der vom Röntgenspiegel angeboten wird. Da die Beugungskurve des Spiegels Abb. 8 außerdem wesentlich schmaler ist als die der hier verwendeten Proben Abb. 19 und 35, ergibt sich, daß der gebeugte Strahl der Beugungskurve der Probe entspricht.
2.3 Charakterisierung der Röntgenquelle

Die Betrachtung der Eigenschaften der Röntgenquelle stellt eine Arbeit für sich dar. Dieses Kapitel ist eine kurze Zusammenfassung der Themen, die später weiter bearbeitet werden könnten. Sobald feststand, daß der Röntgenfluß hoch genug für zeitauflösende Experimente war, wurde die Charakterisierung und die Verbesserung der Röntgenquelle eingestellt und der Umbau für die Beugungsexperimente durchgeführt. Für die Meßdaten in diesem Kapitel wurde die Kamera in der Aufnahmeposition für eine Topografie belassen.

\(^{10}\)Die hier beschriebene Entstehungsweise der ASE ist von allgemeiner Natur und nicht spezifisch für das verwendete Lasersystem. Werden jedoch im weiteren Zahlenwerte angegeben, so beziehen sich diese auf das verwendete 10 Hz Ti:Sa-Lasersystem am Institut für Laser- und Plasmaphysik der Universität Essen. Da während dieser Arbeit die Laserenergie nach Kompression von 30 mJ auf 200 mJ vergrößert worden ist, beziehen sich die Zahlenwerte auf die letzte Ausbaustufe.
Abb. 10: Röntgenemission der Kα-Photonen und der harten Untergrundstrahlung als Funktion der Zeitverzögerung zwischen dem 800 nm Laserimpuls aus dem Laseroszillator und dem 532 nm Pumpstrahl aus dem Nd:Yag Laser im ersten Vorverstärker.

um einen Faktor 100 verstärkt.
Die mitverstärkte spontane Emission macht sich als langer ns-Impuls bemerkbar. Ist die Verstärkung groß genug, kann die führende Flanke der ASE im Experiment bereits zu einem Plasma führen. Erreicht der Hauptimpuls einige Zeit später das Target, wechselwirkt der Hauptimpuls mit einem ausgedehnten Plasma. Es ist also wichtig, daß der Hauptimpuls zeitlich der ASE vorausläuft oder die ASE erst gar nicht entsteht. Die ASE wird durch verschiedene Maßnahmen minimiert:

- Durch eine geschickte Anordnung von Pockelszellen und Polarisatoren zwischen den Verstärkerstufen (Pulsselektion).
- Durch Einsetzen von Blenden. Da die ASE eine andere Divergenz als der Hauptimpuls aufweist, ist es möglich die spontane Emission auszublenden.
- Durch die kontrollierte zeitliche Verschiebung des Hauptimpulses zu den Pumppulsen im Vor- und Hauptverstärker.

Die beiden ersten Methoden sind fest im Lasersystem eingebaut, die zeitliche Verzögerung muß während des Experiments kontrolliert werden. Im Idealfall erreicht der 800 nm Hauptimpuls das aktive Medium bereits während die Besetzungsinversion entsteht und fragt diese nahezu vollständig ab. Der Pumplaser ist elektronisch mit

Eine weitere einfache Methode zur Optimierung der Quelle ist das Verschieben der Linse und somit eine Änderung der Intensität. Befindet sich der Draht exakt im Fokus, wird mehr harte Strahlung und störender Untergrund erzeugt. Die Linse wird

Um eine Statistik über die Impuls-zu-Impuls Schwankungen zu erhalten, wurde ein Verfahren angewandt, das mehrere Röntgenblitze gleichzeitig mit der Kamera aufnimmt und auswertet. Dazu wurde die Kamera mit dem Laser synchronisiert und mit 0,01 s belichtet. Während die Kamera zum Verschieben und Auslesen der

\[11\text{Stand Juli 2003}\]
2.3 Charakterisierung der Röntgenquelle

12Automatisiert durch ein \textit{Matlab}programm.
Abb. 13: Auswertung von einigen hundert Aufnahmen, wie sie in Abb. 12 zu sehen sind. Das entstandene Histogramm zeigt eine mittlere Röntgenausbeute von ca. $2 \cdot 10^4$ Photonen pro Impuls. Die Halbwertsbreite der Kurve beträgt ca. ±25%.

Es wurde mit verschiedenen Methoden versucht, eine Normierung zwischen dem Röntgenfluß und einer anderen physikalischen Größe herzustellen. Die Kα-Emission wurde auf folgende Eigenschaften normiert:

- Laserenergie bei 800 nm (siehe Abb. 11).
- Laserenergie der zweiten Harmonischen bei 400 nm.
- mittels einem röntgenempfindlichen Phosphor auf die globale Röntgenemission.

Leider sind diese Versuche bisher nicht zur Zufriedenheit verlaufen. Weitere Versuche zur Normierung erfolgen in der Diplomarbeit [32].

Da bei dem ersten Teil der „Experimente an dünnen Germaniumschichten“ sich eine natürliche Normierungsmöglichkeit ergab, ist die Schwankungsbreite in diesem Experiment nicht von Interesse. Bei den Experimenten auf Bi-Schichten fällt diese natürliche Normierung leider weg, und die Meßpunkte müssen, um den Fehler niedrig zu halten, entsprechend oft gemittelt werden. Im Anhang unter 5.4 Fehleranalyse befindet sich eine entsprechende Diskussion der Meßgenauigkeit für die Experimente an den Bi-Schichten.
3 Experimente mit hoher Zeitauflösung

3.1 Erweiterung des Versuchsaufbaus

Für die Experimente wird die Röntgenquelle, wie sie in Kapitel 2.1 beschrieben wurde, verwendet. Es folgt eine genauere Beschreibung der Erweiterung des Versuchsaufbaus für zeitaufgelöste Messungen sowie der Justageprozedur und der Auswertung der Beugungslinien. In den Kapiteln 3.2 Experimente an dünnten Germaniumschichten und 3.3 Experimente an dünnten Wismutschichten wird dann auf eine genauere Beschreibung der Umbauten verzichtet.

¹³Diese Proben wurden von der Arbeitsgruppe um Herrn Prof. Horn-von Hoegen, Universität Essen, und Herrn Dr. Kammler, Universität Hannover, zur Verfügung gestellt.
Ein weiterer Vorteil der dünnen Kristallschichten ist, daß die Näherung für kinematische Röntgenbeugung benutzt werden kann [98]. Die Näherung besagt, wenn der Kristall mit der Schichtdicke \(d\) wesentlich dünner als die Eindringtiefe \(\beta\) der Röntgenstrahlung ist, dann ist die Anzahl der gebeugten Photonen \(I_{\text{Probe}}\) näherungsweise proportional zur Stärke des Kristalls:

\[
d << \beta \quad \Rightarrow \quad I_{\text{Probe}} \propto d.
\]

Von dieser Näherung wird in den Experimenten für verschiedene Abschätzungen Gebrauch gemacht.

Das eigentliche Experiment befindet sich in der Vakuumkammer, in der auch die Röntgenstrahlung erzeugt wird. Dies ist notwendig, da die Transmission von Titan-K\(\alpha\) durch 10 cm Luft unter Normalbedingung etwa 0,5 beträgt [38].

Da je nach Anregungsintensität, die später beobachteten Effekte nicht vollständig reversibel sind, d. h. die Probenoberfläche nach jedem Laserimpuls beschädigt wird, wird die Probe auf einen motorisierten XY-Verschieber befestigt. Zur Einstellung des genauen Braggwinkels wird der gesamte Probenmanipulator zusätzlich auf einen motorisierten Rotationstisch mit Skala gestellt.
Die Probe befindet sich exakt über dem Rotationsmittelpunkt, damit beim Drehen der Probe die Entfernung zwischen Probe und Röntgenspiegel nicht geändert wird. Der Weg der Röntgenstrahlung wird optisch vorjustiert; dazu wird das gestreute Laserlicht vom Titandraht ausgenutzt. Das gestreute Licht wird über den Röntgenspiegel fokussiert. Durch optische Abbildungen wird die Probe in den optischen Fokus gestellt und fixiert. Durch Drehen der Probe wird das gestreute Licht über den Röntgenspiegel auf die Quelle zurückreflektiert. Durch Drehen des Rotationstisches um den Winkel $90^\circ - \theta_B$ wird der Braggwinkel θ_B der Probe eingestellt. Tab. 3 gibt die Braggwinkel für Ge(111) und für das Substrat Si(111) an. In der Tab. 9 im Kapitel 3.3.1 Struktureigenschaften und optische Phononen sind die Braggwinkel für die Bi-Probe zusammengefaßt.

<table>
<thead>
<tr>
<th>Linie</th>
<th>Energie [keV]</th>
<th>Ge(111) θ_B [°]</th>
<th>Si(111) θ_B [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titan-Kα_1</td>
<td>4,51</td>
<td>24,884</td>
<td>25,999</td>
</tr>
</tbody>
</table>

Tab. 3: Braggwinkel für Ge und Si in der Beugungsrichtung (111) [65].

Da der Röntgenkristall einen horizontalen Öffnungswinkel von ca. 2,5° anbietet, sind bei exakter Justage sowohl die Si(111) als auch die Ge(111) Linie in der Röntgenbeugungskurve zu sehen (Abb. 18). Dies ist bei den Bi-Proben nicht mehr der Fall, da der Winkelunterschied zwischen Bi(111) und Si(111) zu groß ist. Die Röntgenkamera wird so positioniert, daß das gestreute Licht von der Probe auf den Eingang der Röntgenkamera fällt. Damit der divergente Röntgenkonus von der CCD-Kamera ganz erfaßt wird, wird der Abstand zwischen Probe und Röntgenkamera klein gehalten. Abb. 15 zeigt einen Blick in die geöffnete Vakuumkammer.

Während einer Belichtung fährt der Probenverschieber ein Rechteck mäanderförmig ab, so daß immer eine frische Stelle zur Anregung zur Verfügung steht. Damit es an den Umkehrpunkten und am Ende des Rechtecks nicht zu Mehrfachbeschüß der Probe kommt, wird dort jeweils der Laser ausgeschaltet. Durch einen Steuerimpuls wird die Belichtung der Kamera zu Beginn eines Rechtecks ausgelöst. Der Computer merkt sich die Startkoordinaten des Rechtecks, so daß es möglich ist, das gleiche Areal mehrfach abzutasten. Mit dieser Möglichkeit wird vor jeder transient angeregten Belichtung die gleiche Fläche ohne Anregung als Normierungsbild auf-

\[14\] Dazu wird die Steuerung der Pockelszellen manipuliert. Die Pockelszellen trennen optisch den Vorverstärker vom Hauptverstärker.
3.1 Erweiterung des Versuchsaufbaus

genommen. Das hat den Sinn, daß die Oberflächenqualität an Hand der Ge- bzw. Bi-Röntgenlinie vor jedem Meßpunkt überprüft werden kann.

Zum anderen können bei den Ge-Experimenten durch Normierung auf die Si-Linie des nicht angeregten Bildes Schwankungen im Röntgenfluß unterdrückt werden. Dies ist möglich, da die Reflektivität der Si-Linie auch während der Anregung kaum geändert wird. Sind \(I_{Ge,ungep} \), \(I_{Bi,ungep} \) die detektierten Photonen in der nicht angeregten Ge bzw. Bi-Linie, \(I_{Si,ungep} \) die Photonen in der nicht angeregten Si-Linie und \(I_{Ge,gep} \), \(I_{Si,gep} \), \(I_{Bi,gep} \) die Photonen in den angeregten Linien, dann ergibt sich die normierte Reflektivität \(R \) aus:

\[
R_{Ge} = \frac{I_{Ge,gep}}{I_{Ge,ungep}} \frac{I_{Si,ungep}}{I_{Si,gep}} \\
R_{Bi} = \frac{I_{Bi,gep}}{I_{Bi,ungep}}.
\]

(7)
Da bei den Bi-Experimenten die Möglichkeit zur Normierung nicht gegeben ist, wird im Anhang 5.4 Fehleranalyse eine gesonderte Diskussion der Meßgenauigkeit gegeben.

Abb. 16: Schematische Darstellung der Kommunikationswege der eingesetzten Computer.
3.1 Erweiterung des Versuchsaufbaus

Der Anregeimpuls sollte mit dem Röntgenimpuls einen möglichst kleinen Winkel bilden, da sonst die Zeitverzögerung zwischen den Impulsen zu einer Funktion des Ortes über den Strahlquerschnitt wird. In Abb. 17 ist dieser Sachverhalt dargestellt. Der blaue Strahl stellt den Abfrageimpuls (Röntgenimpuls) und der rote den Anregeimpuls dar, beide schließen den Winkel γ ein. Der Winkel θ in der Skizze entspricht dem Braggwinkel θ_B im Experiment.

Die Zeitverschmierung über der angeregten Probenoberfläche ergibt sich aus der Differenz der unterschiedlichen Wegstrecken δs der Strahlen bis zur Probenoberfläche. Auf der linken Seite der Skizze Abb. 17 erreichen beide Strahlen die Oberfläche gleichzeitig, auf der rechten Seite kommt der Anregeimpuls vor dem Abfrageimpuls. Die Laufzeitdifferenz Δt beträgt:

$$\Delta t = \frac{\delta s}{c} \approx d \frac{\cos(\theta) - \cos(\theta + \gamma)}{c}$$ \hspace{1cm} (8)

wobei d der Durchmesser des Abfrageimpulses und c die Lichtgeschwindigkeit ist. Der realisierte Winkel zwischen den beiden Impulsen betrug bei den Experimenten $\text{ca.} 5^\circ$, der Durchmesser des Röntgenimpulses betrug 80 μm, der Anregeimpuls hatte einen Durchmesser von $\text{ca.} 250 \mu$m. Auf Grund des Braggwinkels sind die beiden Foki auf der Probe elliptisch verzerrt (die lange Achse um einen Faktor $1/\sin(\theta_B)$). Dies entspricht einer Zeitverschmierung für alle Experimente von $\text{ca.} 25$ fs.

Für die Planung von späteren Experimenten sei hier auf die Möglichkeit hingewiesen, bei einer festen Zeitverzögerung mit einer einzigen Aufnahme eine Zeitabhängigkeit über einige 100 fs aufzunehmen. Mit einem Spiegel oder Beugungsgitter werden die Wellenfronten des optischen Anregeimpulses gekippt. Die Probenoberfläche wird – senkrecht zur Dispersionsebene – großflächig mittels einer Zylinderlinse angeregt. Senkrecht zur Dispersionsebene entsteht durch die Wellenfrontverkippung eine zeit-

Im weiteren wird die Bestimmung der integrierten Reflektivität aus den Kamera-bildern erläutert. Wie bereits bei der Berechnung der Reflektivität aus (7) erklärt wurde, existieren zu jeder Zeitverzögerung zwei Aufnahmen, eine bei nicht angeregter und eine bei angeregter Probe. Die linke Seite von Abb. 18 zeigt einen Ausschnitt einer Aufnahme einer Ge-Beugungslinie bei nicht angeregter Probe.
3.1 Erweiterung des Versuchsaußbaus

Experimente mit hoher Zeitauflösung

Abb. 19: Berechnete Röntgenbeugungskurve für eine 170 nm starke Ge (111)-Schicht bei der Wellenlänge für Ti-Kα.

Für die Beugungsexperimente ist es wichtiger, die integrierte Reflektivität R_{int} zu ermitteln. Aus der Berechnung ergibt sich folgende Tabelle:

<table>
<thead>
<tr>
<th>Material</th>
<th>R_{int} [μrad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge (111)</td>
<td>s-pol: 55,44</td>
</tr>
<tr>
<td></td>
<td>p-pol: 23,44</td>
</tr>
</tbody>
</table>

Tab. 4: Integrierte Reflektivitäten für eine 170 nm starke Ge-Schicht in (111)-Richtung.

Werden $2 \cdot 10^4$ Photonen im Röntgenfokus gleichmäßig über den horizontalen Öffnungswinkel des Röntgenspiegels von 2,5° verteilt und wird das Verhältnis 1:0,3 von s- zu p-polarisiertem Anteil im Röntgenfokus berücksichtigt, dann die Anzahl der gebeugten Photonen auf ca. 20 pro Laserimpuls abgeschätzt werden. Im Experiment mußte der Abstand Kamera-Probe auf Grund des großen XY-Verschiebers so groß gewählt werden, daß die gebeugte Linie nicht mehr komplett vom CCD-Chip erfaßt wurde. Um alle gebeugte Photonen zu erhalten, muß die Zahl der detektierten Photonen von 9,4 (Abb. 18) mit dem Faktor $\approx 1,7$ multipliziert werden. Dieser Faktor ergibt sich aus dem Abstand zwischen Probe und CCD-Chip sowie dem vertikalen Öffnungswinkel des Röntgenspiegels. Die Gesamtzahl gebeugter Photonen ist somit ca. 16, dieser Wert liegt in der Größenordnung der abgeschätzten gebeugten Photonen von 20. Um die Anzahl der Photonen bereits während der Messung schnell
berechnen zu können, wurde in der programmierten Auswertungssoftware die Berechnung der Höhe der Stufen automatisiert. Die einzelnen Menüpunkte der Software sind im Anhang 5.2 Auswertungssoftware beschrieben.

Nach Fertigstellung dieser Arbeit konnte von der Firma Roperscientific eine neue CCD-Kamera PI•LCX1300 erworben werden, welche eine lichtempfindliche Fläche von 27×26 mm besitzt. Mit dieser sollte es möglich sein, sämtliche Photonen zu detektieren. Ein weiterer Vorteil der neuen Kamera ist die hohe QE von ca. 80% [58].
3.2 Experimente an dünnen Germaniumschichten

3.2.1 Laserinduziertes Schmelzen von Halbleitern

Um den später experimentell beobachteten Effekt des ultraschnellen Schmelzens thematisch einordnen zu können, wird vorab eine kurze Darstellung der Resultate von bereits durchgeführten Experimenten und theoretischen Arbeiten gegeben. Für eine Vertiefung in die Thematik wird auf die angegebenen Referenzen verwiesen.

Wenn die Photonenenergie des optischen Anregeimpulses größer ist als die Bandlücke des Halbleiters, ist der primäre Effekt der Bestrahlung mit Laserlicht die Anregung von Elektronen ins Leitungsband. Die Erzeugung eines solchen Elektron-Loch Plasmas (angeregte Festphase) ist verantwortlich für die Gitterinstabilitäten, die zum ultraschnellen Schmelzen (Phasenänderung) führen. Die massive Anregung von Elektronen aus bindenden Valenzbandzuständen in antibindende Leitungsbandzustände – durch einen kurzen intensiven Laserimpuls – führt zu einer Minderung der kovalenten Bindungskräfte. Überschreitet die angeregte Festphase die kritische Ladungsträgerdichte von \(N_{krit} \approx 10^{22}\text{ cm}^3 \), verhält sich das Material wie eine Flüssigkeit [15]. Der Phasenübergang ist dann auf der Zeitskala von typischen Phononenfrequenzen (eindeutig 100 fs) zu beobachten.

Abb. 20: Zeitaufgelöste Mikroskopie einer Si-Oberfläche während des Schmelzens.

Der Abfrageimpuls fällt unter einem Winkel auf die Probenoberfläche, so daß es zu einer Zeitverschmierung entlang der Horizontalen kommt. Dies ist der Grund, warum in der Abb. 20 für 300 fs nur ein Teil der Probe angeregt ist, erkennbar an der erhöhten Reflektivität. Die stärkere Reflektivität kann interpretiert werden als Phasenübergang des Materials in eine metallische Flüssigkeit. Der Phasenübergang findet auf einer Zeitskala von wenigen 100 fs statt.

Das linke Bild in Abb. 21 zeigt die Reflektivität einer angeregten Si-Schicht als Funktion der Wellenlänge zu verschiedenen Zeiten. Das verwendete spektrale Kontinuum wurde dabei durch Selbstphasenmodulation des Anregeimpulses erzeugt. Das gemessene Spektrum bei der Verzögerungszeit -120 fs stimmt mit dem theoretischen Spektrum der Festphase (gekennzeichnet mit „sol.“) überein. Für späte Verzögerungszeiten ähnelt der Verlauf des gemessenen Spektrums dem Spektrum der Flüssigphase (Kurve gekennzeichnet mit „liq.“). Dieser Übergang findet ebenfalls innerhalb von 300 fs statt.

Das rechte obere Bild in Abb. 21 zeigt das Verschwinden der zweiten Harmonischen von einem GaAs Kristall. Die Quelle der zweiten Harmonischen ist die induzierte nichtlineare Polarisation. Die Erzeugung ist eine strukturempfindliche Metho-

\[15\] Beleuchtet man einen geeigneten Kristall mit einem intensiven kurzen Laserimpuls, so kann in Reflektionsrichtung ein frequenzverdoppelter optischer Impuls – die zweite Harmonische – beobachtet werden.
46

Experimente mit hoher Zeitauflösung

Abb. 21: Die linke Seite zeigt die zeitaufgelöste Reflektivität eines spektralen Kontinuums auf einem Si-Kristall. Rechts ist das Verschwinden der zweiten Harmonischen bei Anregung eines GaAs Kristalls zu sehen.

Theoretische Arbeiten von Stampfl und Bennemann [82, 83] haben in Rechnungen den Zusammenhang zwischen Gitterstabilität und Ladungsträgerkonzentration für Si untersucht. Ihre Theorie führt zu einer notwendigen Schwellekonzentration von

\(^{16}\) Die Stärke der Anregung wird durch die Flächendichte der eingestrahlten Energie charakterisiert (Fluenz). Die SI-Einheit der Fluenz ist \([J/m^2]\).
3.2 Experimente an dünnten Germaniumschichten

1,5 \cdot 10^{22} Elektron-Loch Paare/cm3. Diese Konzentration reicht aus, um Instabilitäten zu induzieren, die zum ultraschnellen Schmelzen führen. Den Autoren war es möglich, die Bindungsenergie pro Atom als Funktion der transversalen und longitudinalen Phononenamplitude und als Funktion der Plasmadichte zu berechnen. Das Ergebnis dieser Rechnungen ist in Abb. 22 zu sehen. Das linke Bild zeigt die Bindungsenergie E_b im nicht angeregten Zustand als Funktion der Phononenamplitude. Im rechten Bild ist die Energie bei einer Elektron-Loch Konzentration von 3 \cdot 10^{22} 1/cm3 berechnet worden. Die Rechnung ohne Anregung zeigt erwartungsgemäß, daß die Atome in ihrer Ruhelage im Kristallgitter ein stabiles Minimum im effektiven Potential bei $\delta_l = 0$ und $\delta_t = 0$ annehmen. Bei der massiven Anregung zeigt die Rechnung aber, daß sich die Ursprungs Lage in einen instabilen Sattelpunkt verwandelt. Dadurch verwandeln sich die zuvor bindenden Kräfte in antibindende, sich abstoßende Kräfte. Stampfl et al. und Bennemann zeigen, daß unter dem Einfluss der abstoßenden Kräfte die Atome nach 100 fs eine Versetzung von 1 Å durchführen (bei einem Bindungsabstand von 2,35 Å). Dies bedeutet, daß auf Grund des abstoßenden Potentials die Atome kinetische Energie gewinnen. Dies kann als direkte Aufheizung des Gitters interpretiert werden, ohne daß Elektron-Phonon-Stöße Energie an das Gitter übertragen müssen.
3.2.2 Zeitaufgelöste Messungen

Als Vorbereitung auf die Beugungsexperimente wurde in einem optischen Anrege-Abfrage-Experiment die Schmelzschwelle von Ge bestimmt. Es wurde eine Schwelle für die Fluenz von $F_{Sch} = 0,050 \text{ J/cm}^2$ für p-polarisiertes Licht bei einem Einfallswinkel von 80° gemessen. Dieser Winkel entspricht dem des Anregespins im Röntgenexperiment. Um in den Bereich des extrem schnellen, nicht thermischen Schmelzens zu gelangen, wurden die Experimente bei Fluenzen von mindestens 2 F_{Sch} durchgeführt. Bei dem optischen Vorexperiment konnte durch Reflexionsmessung die Zeitskala der Phasenumwandlung bestimmt werden. Die Änderung der Reflektivität durch die Umwandlung von der Festphase in die Flüssigphase, welche eine höhere Reflektivität besitzt, findet innerhalb von 250 fs statt. Wird die Energie im Ge-Film schnell gleichverteilt, kann die gemessene Schmelzschwelle durch die Materialdaten verifiziert werden. Für diese und folgende Abschätzungen werden die Abkürzungen aus Tab. 5 durchgehend verwendet.

<table>
<thead>
<tr>
<th>Materialdaten Germanium</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmelztemperatur</td>
<td>$T_{M,Ge}$</td>
</tr>
<tr>
<td>spezifische Wärme (sol)</td>
<td>$c_{sol,Ge}$</td>
</tr>
<tr>
<td>Absorptionskoeffizient (sol @ 800 nm)</td>
<td>$1/\alpha_{sol,Ge}$</td>
</tr>
<tr>
<td>Schallgeschwindigkeit (sol)</td>
<td>$v_{sol,Ge}$</td>
</tr>
<tr>
<td>Dichte (sol)</td>
<td>$\rho_{sol,Ge}$</td>
</tr>
<tr>
<td>Kompressionsmodul (sol)</td>
<td>$B_{sol,Ge}$</td>
</tr>
<tr>
<td>lin. Ausdehnungskoeffizient (sol)</td>
<td>$\beta_{sol,Ge}$</td>
</tr>
<tr>
<td>latente Wärme</td>
<td>$L_{M,Ge}$</td>
</tr>
<tr>
<td>spezifische Wärme (liq)</td>
<td>$c_{liq,Ge}$</td>
</tr>
<tr>
<td>Schallgeschwindigkeit (liq)</td>
<td>$v_{liq,Ge}$</td>
</tr>
<tr>
<td>Kompressionsmodul (liq)</td>
<td>$B_{liq,Ge}$</td>
</tr>
<tr>
<td>lin. Ausdehnungskoeffizient (liq)</td>
<td>$\beta_{liq,Ge}$</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit</td>
<td>$\eta_{sol,Ge}$</td>
</tr>
</tbody>
</table>

Tab. 5: Zusammenfassung der verwendeten Abkürzungen physikalischer Eigenschaften von Ge in verschiedenen Phasenzuständen (sol – Festkörper, liq – Flüssigkeit).

17 die optischen Daten wurden von Herrn Dr. Sokolowski-Tinten, Universität Essen bestimmt.
Die Werte für die Materialdaten sind im Anhang in Tab. 13 zusammengefasst. Die temperaturabhängigen Werte von $v_{sol,Ge}$, $B_{sol,Ge}$ und $\beta_{sol,Ge}$ sind im Anhang in den Abb. 64, 65 und 66 dargestellt. Die Schallgeschwindigkeit $v_{sol,Ge}$ bezieht sich im weiteren Text immer auf eine longitudinale Welle mit Ausbreitungsrichtung senkrecht zu den (111)-Ebenen. Sei F_{ein} die einfallende Flächenenergiedichte, F_{dep} die absorbierte Energiedichte, d die Ge-Filmdicke und R die Reflektivität der Ge-Schicht, so gilt folgende einfache Abschätzung:

\[
F_{dep} = (1 - e^{-da_{sol,Ge}})(1 - R)F_{ein} .
\] (9)

Der Term $(1 - R)F_{ein}$ beschreibt die Nettoenergiedichte, die nach Reflexion an der Oberfläche im Material verbleibt. Der erste Term $(1 - e^{-da_{sol,Ge}})$ beschreibt nach dem Beerschen Gesetz, welcher Anteil der Energie bis zur Tiefe d absorbiert worden ist. Die Reflektivität bei einer Wellenlänge von 800 nm und einem Einfallswinkel von 80° beträgt ca. 0,03. An der Schmelzschwelle gilt:

\[
F_{dep} = dc_{sol,Ge}(T_M - T_R)
\] (10)

wobei $T_R = 300$ K die Raumtemperatur ist. Setzt man (9) in (10) ein, erhält man eine Gleichung für die einfallende Energiedichte F_{ein}, die benötigt wird, um die Schmelzschwelle zu erreichen. Mit den angegebenen Materialdaten aus dem Anhang und der Filmdicke von 170 nm ergibt sich $F_{ein} = 0,056$ J/cm². Dieser Wert stimmt mit dem gemessenen nahezu überein.

Abb. 23: Das obere Bild zeigt die gemessene Abnahme der Beugungseffizienz als Funktion der Verzögerungszeit zwischen Röntgenimpuls und Anregeimpuls. Die Daten sind für drei verschiedene Anregeflüssen 0,1, 0,2 und 0,4 J/cm2 aufgenommen worden. Die gestrichelte schwarze Linie zeigt die Schmelzfrontgeschwindigkeit von 850 m/s für das thermische Schmelzen. Das untere Bild zeigt die extrem schnelle Abnahme auf einer fs-Zeitskala für die beiden höheren Energiestufen. Eine signifikante Reduktion der Reflektivität um 20% findet unterhalb von 300 fs statt.
Für die Meßkurve bei einer mittleren Anregefluenz von 0.2 J/cm² fällt die Beugungseffizienz innerhalb der ersten 300 fs auf ca. 80% ab. Nach diesem schnellen Abfall folgt eine langsame Abnahme, die auf einer Zeitskala bis über 100 ps hinaus mit Röntgenbeugung verfolgt wurde. Die Beugungseffizienz nimmt bei sehr späten Zeitpunkten wieder zu. Indem ein zuvor angeregtes Gebiet noch einmal ohne Anregesignal mit Röntgenstrahlung abgetastet wird, wurde exemplarisch für jede Fluenz ein Meßpunkt bestimmt, der in Abb. 23 mit „∞“ gekennzeichnet ist. Es wird eine Erholung der Effizienz bei allen Fluenzen gemessen, das bedeutet, daß die Ge-Schicht teilweise wieder epitaktisch (d. h. einkristallin) aufwächst.

Die beobachtete schnelle Abnahme ist ein Indiz dafür, daß ein Teil des Kristallfilms nicht-thermisch schmilzt. Das geschmolzene Volumen kann nicht mehr zur Beugung beitragen. Mit der kinematischen Näherung für Röntgenbeugung (6) kann die aufgeschmolzene Schichtdicke abgeschätzt werden. Ist \(d_{\text{liq}} \) die aufgeschmolzene Schichtdicke, die nicht mehr zur Röntgenbeugung beiträgt, so ergibt sich aus der Proportionalität (6) die integrierte Reflektivität:

\[
R_{\text{int}} \approx \frac{d - d_{\text{liq}}}{d}
\]

Die gemessene reduzierte Reflektivität von \(R_{\text{int}} = 0.8 \) bedeutet somit, daß eine nicht thermisch geschmolzene Schicht von ca. 40 nm existiert. Die erforderliche Schmelzfrontgeschwindigkeit (unter der Voraussetzung, daß die Oberfläche einen bevorzugten Nukleationskeim darstellt) wäre somit ca. \(10^5 \) m/s und damit mehr als eine Größenordnung über der Schallgeschwindigkeit von Ge. Da die Schallgeschwindigkeit aber die Geschwindigkeit der Phasengrenze limitiert, ist dies ein Indiz dafür, daß es sich nicht um einen heterogenen Schmelzprozeß mit einer propagierenden Phasengrenze handeln kann [54]. Die spätere langsame Abnahme der Reflektivität wird mit dem klassischen thermischen Schmelzen erklärt. Die Schmelzfront (d. h. die Phasengrenze flüssig-fest) bewegt sich in die noch feste Ge-Schicht hinein. Mit dem Wachsen der flüssigen Schicht wird die Beugung weiter reduziert. Die Schmelzfrontgeschwindigkeit kann aus der Steigung der Meßdaten zu späten Zeitpunkten abgeschätzt werden. Dazu wird die gemessene Reflektivitätsänderung – mit Hilfe der kinematischen Näherung für Röntgenbeugung – in eine Schichtdickenänderung umgerechnet. Beispielsweise zeigt die eingezeichnete Tangente im oberen Bild von Abb. 23 eine Schmelzfrontgeschwindigkeit von ca. 850 m/s für die Fluenz von 0,2 J/cm².

\[18\] Die Näherung ist gültig, da die Eindringtiefe von Ti-Kα in der Geometrie für Braggbeugung an Ge (111) 0,66 μm für den s-polarisierten und 1,02 μm für den p-polarisierten Anteil beträgt [84].
Experimente mit hoher Zeitauflösung

Setzt man einen gaußförmigen Röntgenimpuls in der Zeit und eine instantane Antwort des Materials auf die Anregung (Heavisidefunktion) voraus, so läßt sich aus der Faltung der beiden Funktionen eine obere Grenze für die Dauer der Röntgenimpulse abschätzen. Hierzu wird die Halbwertsbreite des gaußförmigen Impulses auf den schnellen Abfall der Meßdaten in Abb. 23 angepaßt. In Abb. 24 sind als Beispiel die Meßdaten für die Anregefluenz 0,4 J/cm² bis zur Zeitverzögerung von 1 ps vergrößert dargestellt. Die blaue und grüne Funktion sind numerisch berechnete Faltungen einer Gaußkurve mit den Halbwertsbreiten von FWHM 250 fs bzw. 350 fs mit einer modifizierten Heavisidefunktion. Die Modifizierung besteht lediglich darin, daß die Heavisidefunktion am Zeitnullpunkt von der Reflektivität 1 auf 0,6 (und nicht wie üblich auf 0) springt. Diese Maßnahme ist notwendig, damit die Reflektivität der Meßdaten im langsamen Bereich anschließen. Die angepaßten Funktionen geben den Abfall der Meßdaten in diesem Bereich gut wieder – bis auf einen Ausreißer bei ca. 0,5 ps.

3.2 Experimente an dünnen Germaniumschichten

Abb. 25: Exemplarisch werden hier zeitaufgelöste Röntgenbeugungskurven für die Energie von 0,2 J/cm² gezeigt. Die gestrichelte schwarze Linie ist jeweils das Normierungsbild. Die rote eingezeichnete Linie ist die gemessene Beugungskurve mit transienter Anregung.

Abb. 25 zeigt exemplarisch einige Röntgenbeugungsprofile bei verschiedenen Verzögerungszeiten Δt für die Fluenz 0,2 J/cm². Die schwarzen Kurven sind jeweils die aufgenommenen Röntgenbeugungskurven ohne Anregung der Probe und die roten Kurven mit Anregung der Probe. Die erste Auffälligkeit ist, daß die angeregte Röntgenbeugungskurve bei Δt = 0,8 ps keine Winkelverschiebung und keine Änderung in der Form im Vergleich zur Normierungskurve aufweist, aber bereits eine Reduzierung der Beugungseffizienz auf ca. 70% stattgefunden hat. Hieraus ergibt sich ein weiteres Indiz für das nichtthermische Schmelzen zu frühen Zeiten. Würde diese Reduzierung durch thermisches Aufheizen des Gitters erklärt werden, so könnte die Reduktion durch den klassischen Debye-Waller-Faktor beschrieben werden [98]. Daß dies nicht der Fall ist, liegt zum einen an der Zeit, die die Elektronen brauchen, um ihre Energie an das Gitter weiterzugeben. Die typische Zeitskala für die Anregung
von Phononen beträgt einige ps. Zum anderen ist die Stärke der beobachteten Abnahme für einen klassische Debye-Waller-Faktor zu groß. Der Debye-Waller-Faktor kann nach den Referenzen [34, 98] abgeschätzt werden. In Abb. 26 ist die Reduzierung des Beugungsvermögens auf Grund des Debye-Waller-Faktors als Funktion der Temperatur für unterschiedliche Ge-Reflexe berechnet worden. In die Abschätzung geht die Debye-Temperatur T_D, die Wellenlänge der Röntgenstrahlung, der Braggwinkel und die Atommasse ein. Die Materialkonstanten sind in Tab. 13 zusammengefaßt. Für die gemessene Beugungseffizienz des Ge(111)-Reflex von 70% müßte die Temperatur über 6700 K betragen. Diese Temperatur ist um einen Faktor 2 größer als die Temperaturerhöhung, die aus der deponierten Laserenergie berechnet werden kann. Um diese Temperatur abzuschätzen, werden die Abkürzungen aus Tab. 5 weiterverwendet. In die Abschätzung gehen folgende Vereinfachungen ein:

- Wärmeleitung wird vernachlässigt.

- Während der Laserwechselwirkung entsteht ein stark absorbierendes Elektronen-Loch-Plasma. Die dadurch begründete Änderung der Absorptionskonstante während der Laserbestrahlung wird nicht berücksichtigt [79].

19Der Debye-Waller-Faktor für die anderen Ge-Reflexe wird noch einmal in dem Kapitel 4 Zusammenfassung und Ausblick benötigt.
Die in den einzelnen Phasen (flüssige Ge-Schicht, feste Ge-Schicht, feste Si-Schicht) deponierte Energie soll sich gleichmäßig in diesen verteilen.

Die Energiedichte F_{ein} sei wieder die einfallende Energiedichte, F_{liq} und F_{sol} seien die Energiedichten, die in der flüssigen Ge-Schicht und im festen Ge deponiert worden sind. Analog zu (9) ergibt sich hier:

$$F_{\text{liq}} = (1 - R) F_{\text{ein}} (1 - e^{-\alpha_{\text{sol,Ge}} d_{\text{liq}}})$$
$$F_{\text{sol}} = (1 - R) F_{\text{ein}} (e^{-\alpha_{\text{sol,Ge}} d_{\text{liq}}} - e^{-\alpha_{\text{sol,Ge}} d}).$$

Die Temperaturen in der Flüssigphase T_{liq} und in der Festphase T_{sol} ergeben sich in Analogie zu Gleichung 10:

$$T_{\text{liq}} = \frac{1}{c_{\text{liq,Ge}}} \left(\frac{F_{\text{liq}}}{d_{\text{liq}}} - c_{\text{sol,Ge}} (T_M - T_R) - L_{M,\text{Ge}} \right) + T_M$$
$$T_{\text{sol}} = \frac{1}{c_{\text{sol,Ge}}} \left(\frac{F_{\text{sol}}}{d - d_{\text{liq}}} \right) + T_R.$$

Das Einsetzen der Schichtdicken $d_{\text{liq}} = 40$ nm und $d = 170$ nm, der Materialkonstanten und einer Fluenz von 0,2 J/cm² ergibt eine Temperatur in der Flüssigphase von $T_{\text{liq}} = 3370$ K und eine stark überhitzte Festphase von $T_{\text{sol}} = 3250$ K. Wie bereits vermerkt, sind diese Temperaturen um einen Faktor 2 kleiner als die aus der Debye-Waller Abschätzung. Vollständigkeitshalber soll an dieser Stelle auch die Temperatur im Si-Substrat abgeschätzt werden. Die Materialdaten, die hierzu benötigt werden, sind im Anhang in Tab. 14 zusammengefaßt. Es werden folgende Abkürzungen für die Materialeigenschaften von Si verwendet:

<table>
<thead>
<tr>
<th>Materialdaten Silizium</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>spezifische Wärme (sol)</td>
<td>$c_{\text{sol,Si}}$</td>
</tr>
<tr>
<td>Absorptionskoeffizient (sol @ 800 nm)</td>
<td>$1/\alpha_{\text{sol,Si}}$</td>
</tr>
<tr>
<td>Schallgeschwindigkeit (sol)</td>
<td>$u_{\text{sol,Si}}$</td>
</tr>
<tr>
<td>Kompressionsmodul (sol)</td>
<td>$B_{\text{sol,Si}}$</td>
</tr>
<tr>
<td>lin. Ausdehnungskoeffizient (sol)</td>
<td>$\beta_{\text{sol,Si}}$</td>
</tr>
</tbody>
</table>

Tab. 6: Zusammenfassung der verwendeten Abkürzungen physikalischer Eigenschaften von Si in verschiedenen Phasenzuständen (sol – Festkörper, liq – Flüssigkeit).
Die deponierte Energie im Si-Substrat F_{Si} wird analog zu den vorherigen Gleichungen beschrieben durch:

$$F_{\text{Si}} = (1 - R_{\text{Ge}}) e^{-\alpha_{\text{sol,Ge}}d} (1 - R_{\text{Ge-Si}}) F_{\text{ein}} (1 - e^{-\alpha_{\text{sol,Si}}d_{\text{Si}}})$$

(16)

$$\approx (1 - R_{\text{Ge}}) e^{-\alpha_{\text{sol,Ge}}d} (1 - R_{\text{Ge-Si}}) F_{\text{ein}} .$$

(17)

Die Näherung der letzten Exponentialfunktion ergibt sich aus der Größenordnung der Argumente. $R_{\text{Ge-Si}} \approx 0.11$ ist die Reflektivität am Übergang von Ge-Si. Die Temperatur T_{Si} ergibt sich aus:

$$T_{\text{Si}} = F_{\text{Si}}^{\alpha_{\text{sol,Si}}} c_{\text{sol,Si}} + T_{R} .$$

(18)

Die Rolle der absorbierenden Schichtstärke übernimmt hier wegen $1/\alpha_{\text{sol,Si}} << d_{\text{Si}}$ der Absorptionskoeffizient. Durch Einsetzen der Materialparameter ergibt sich eine Temperatur von $T_{\text{Si}} \approx 550 \text{ K}$.

Die einzelnen Schichten stehen unter hohem Druck. Unter der flüssigen Ge-Schicht befindet sich eine intakte, heiße, unter Druck stehende kristalline Schicht aus Ge. Aus den Temperaturen ist es ebenso möglich, die Drücke in den einzelnen Schichten abzuschätzen. Dazu wird im folgenden ein Modell verwendet, was in Abb. 27 skizziert ist. Da die Zeit während der Laserwechselwirkung für eine Expansion des Materials nicht ausreicht, wird das Material isochor, d. h. bei konstantem Volumen $dV = 0$ aufgeheizt. Im pV-Diagramm ist dieser Vorgang durch die vertikale Isochore verdeutlicht. Der Volumenausdehnungskoeffizient γ ist mit dem linearen Ausdehnungskoeffizient β durch die Gleichung $\gamma \approx 3\beta$ verknüpft. Das totale Differential des Druckes $p(T,V)$ lautet:

$$dp = \left(\frac{\partial p}{\partial T} \right)_V dT + \left(\frac{\partial p}{\partial V} \right)_T dV .$$

(19)

20) Die nachfolgende Entspannung des Materials ist in Abb. 27 als Adiabate gezeichnet worden. Der adiabatische Charakter wird in den folgenden Abschätzungen nicht benötigt. Es sei jedoch noch eine Begründung für die nahezu adiabatische Expansion, d. h. ohne Wärmeaustausch gegeben: Das Temperaturgefälle, das sich über eine Länge von l, erstreckt sich auf einer typischen Zeitskala von $\tau = \frac{E_{\text{sol,Ge}}}{\theta_{\text{Ge}}} \approx \eta_{\text{Ge}}$ ab. Für eine typische Skalenlänge von 100 nm ergibt sich eine thermische Relaxationszeit für Ge von $\tau \approx 5 \text{ ns}$. Folglich ist der Wärmeaustausch auf der hier untersuchten Zeitskala von $\approx 100 \text{ ps}$ vorerst nicht entscheidend.

21) Dehnt sich ein Würfel mit der Kantenlänge L auf die neue Kantenlänge $L + \delta$ aus, so ändert sich das Volumen um ΔV. Es ergibt sich $(L + \delta)^3 = V + \Delta V$. Ist die Ausdehnung $\delta << L$, so können Terme in höherer Ordnung von δ vernachlässigt werden. Mit dem linearen Ausdehnungskoeffizienten β wird δ zu: $\delta = \beta L \Delta T$. Es ergibt sich $\Delta V/V = 3\beta \Delta T + O(\delta^2) \approx \gamma \Delta T$.

3 Experiments with high temporal resolution
3.2 Experimente an dünnen Germaniumschichten

Abb. 27: Isochores Heizen bei der Laserwechselwirkung und anschließende adiabatische Entspannung des Materials.

Die Indizes an den partiellen Ableitungen bedeuten jeweils, daß die Variable konstant zu belassen ist. Kann die Volumenausdehnung vernachlässigt werden, so fällt der zweite Term in (19) weg. Mit der Definition des Volumenausdehnungskoeffizienten bei konstantem Druck \(p \) und der isothermen Kompressibilität \(\kappa \):

\[
3\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \quad \kappa = \frac{1}{B} = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T
\]

wird in Standardwerken der Thermodynamik die Beziehung zwischen hydrostatischem Druck und Temperaturerhöhung bei konstantem Volumen aus (19) und (20) hergeleitet [100]:

\[
dp = \left(\frac{\partial p}{\partial T} \right)_V dT = 3\beta B dT \quad (21)
\]

Zur Integration werden die Interpolationen der Materialparameter \(B \) und \(\beta \) aus den Abb. 65 und 66 (im Anhang) verwendet. Die Materialkonstanten sind in Abhängigkeit der Temperatur im expandierten Zustand (also bei \(p = 0 \)) gemessen worden, so daß die Druckabhängigkeit bei der Integration vernachlässigt werden muß\(^{22}\). Die Integration wird vom Druck \(p = 0 \) bei Rautemperatur \(T_R \approx 300 \) K bis zum gesuchten

\(^{22}\)Da die intakte Ge-Schicht in einem extrem überhitzen Phasenzustand vorliegt, gibt es für diesen Bereich keine gesicherten Meßdaten für \(\beta \), \(B \) und die Schallgeschwindigkeit. Die Werte können nur aus den bekannten Meßdaten extrapoliert werden. Die Funktionen, die die genäherten Werte beschreiben, haben keinen Anspruch auf Richtigkeit in diesem Extrembereich der Materie; so sind die hier berechneten Drücke nur Richtwerte.
Druck \(p(T) \) bei der Temperatur \(T \) durchgeführt:

\[
\Rightarrow p(T) = \int_{T_n}^{T} 3\beta B dT.
\]

Der Druck in der flüssigen Ge-Schicht kann unter Verwendung der Materialparameter \(B_{\text{liq}} \) und \(\beta_{\text{liq}} \) in der Flüssigphase aus Tab. 13 abgeschätzt werden. Die numerisch ausgewertete Integration ist in Abb. 67 im Anhang abgebildet. Tab. 7 faßt die abgeschätzten Temperaturen und Drücke zusammen.

<table>
<thead>
<tr>
<th>Schicht</th>
<th>Temperatur</th>
<th>Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td>flüssiges Ge</td>
<td>3370 K</td>
<td>(\approx 10 \text{ GPa})</td>
</tr>
<tr>
<td>festes Ge</td>
<td>3250 K</td>
<td>(\approx 5 \text{ GPa})</td>
</tr>
<tr>
<td>festes Si</td>
<td>550 K</td>
<td>(\approx 0.3 \text{ GPa})</td>
</tr>
</tbody>
</table>

Tab. 7: Abgeschätzte Temperaturen und Drücke, die sich ergeben, wenn die eingestrahlte Fluenz von 0.2 J/cm\(^2\) zu Grunde gelegt wird.

Das Druckprofil ist schematisch in Abb. 28 dargestellt. Aus diesem anfänglichen Druck- und Spannungsprofil entwickelt sich eine Vielzahl von verschiedenen akustischen Störungen. Um die Druckunterschiede in den einzelnen Schichten auszugleichen, muß von den Grenzflächen Ge\(_{\text{liq}}\)-sol und Ge\(_\text{sol}\)-Si\(_\text{sol}\) eine Kompressionswelle in den Bereich mit niedrigerem Druck und eine Expansionswelle in den Bereich mit höherem Druck propagieren. Da sich das Material an der Oberfläche Ge\(_{\text{vac}}\)-liq auch zur Vakuumseite ausdehnt, entsteht an der Oberfläche eine Verdünnungswelle, die in das Material hineinläuft. Das untere Bild in Abb. 28 verdeutlicht die unterschiedlichen akustischen Wellen. Effekte senkrecht zur Oberflächennormalen können auf Grund der Dimensionen vernachlässigt werden. Die mit Röntgenstrahlung abgefragte Fläche ist wesentlich kleiner als die angeregte. Die Verdünnungswellen – welche senkrecht zum Normalenvektor (lateral) propagieren – beeinflussen das abgefragte Gebiet erst zu Zeiten von \(t = s/v \), wobei \(v \) die Schallgeschwindigkeit parallel zu den (111)-Ebenen ist und \(s \) die Wegstrecke bis zum abgefragten Gebiet. Bei der Wegstrecke \(s \) ist zu beachten, daß die Flecken auf der Probe durch den Braggwinkel in der Horizontalen gestreckt sind. Für die kürzere vertikale Achse beträgt \(s \) ungefähr 80 \(\mu \text{m} \). Die Schallgeschwindigkeit beträgt einige 1000 m/s. Es ergeben sich somit Laufzeiten von einigen 10 ns. Für die längere Achse sind die Laufzeiten entspre-

\footnote{(250 – 80)/2 \(\mu \text{m} \), 250 \(\mu \text{m} \) ist der Durchmesser des Anregeimpulses, 80 \(\mu \text{m} \) der Durchmesser des Röntgenfokusses.}
3.2 Experimente an dünnen Germaniumschichten

Dehnung

\[\varepsilon \]

Druck

\[p \]

Vakuum

\[d_{11q} \]

Silizium

\[d \]

Abb. 28: Entstehung von verschiedenen akustischen Störungen nach Thermalisierung der optischen Energie. Die Propagationsrichtung der Welle ist parallel zur Oberflächennormale. Die blauen Amplituden besitzen eine positive Dehnung und sind somit Expansionswellen; die roten Amplituden stellen Kompressionswellen dar. Die eingezeichneten Pfeile verdeutlichen die Ausbreitungsrichtung der Wellen. \(d_{11q} \) ist die ultraschnell aufgeschmolzene Ge-Schicht von 40 nm und \(d \) die Stärke der Ge-Schicht von 170 nm.

Die einzelnen akustischen Störungen beeinflussen sich nicht für Zeiten, die kürzer

24in dieser Arbeit also immer in Richtung der Oberflächennormalen.
Experimente mit hoher Zeitauflösung

3.6 Veränderung wellen uniaxialer Ausdehnung

sind, als die, die die Störung benötigt, um eine Phasenschicht zu durchlaufen (für die intakte Ge-Schicht von 130 nm und der Schallgeschwindigkeit für die Festphase beträgt die Zeit ca. 23 ps). Da die akustische Impedanz an der Grenzfläche Ge$_{sol}$-Si$_{sol}$ nicht angepaßt ist, werden die akustischen Wellen an dieser Grenzfläche reflektiert. Durch die Superposition von einfallender Welle und reflektierter Welle wird die Situation mit zunehmender Zeit komplizierter. Im weiteren zeitlichen Verlauf werden die Wellen gedämpft, bis sie zum Stillstand kommen.

Die ersten meßbaren Effekte sollten also eine Kompression der heißen aber noch intakten Ge-Schicht sowie schwächere Kompression der Si-Schicht sein. Durch die Änderung des Netzebenenabstandes wird sich die Röntgenbeugungskurve zu anderen Braggwinkeln verschieben. Bildet man das Differential d/dg auf beiden Seiten der Bragggleichung (2), so entsteht:

$$
\varepsilon = \frac{\Delta g}{g} = - \frac{1}{\tan \theta_B} \Delta \theta.
$$

Dies bedeutet, daß eine gemessene Änderung des Braggwinkels $\Delta \theta$ die Folge eines geänderten Netzebenenabstandes Δg ist. Aus den verschobenen Beugungskurven läßt sich die relative Änderung des Netzebenenabstandes (bzw. die Dehnung) $\varepsilon = \Delta g/g$
berechnen. Folgende Vorzeichenkonventionen werden durchgehend verwendet:

\[
\Delta \theta \begin{cases}
< 0 \rightarrow \Delta g/g > 0 & \text{Expansion} \\
> 0 \rightarrow \Delta g/g < 0 & \text{Kompression}
\end{cases}
\] (24)

Es folgt eine qualitativere Auswertung der Verschiebung der Beugungskurven in Abb. 25 bei 27 ps. In den folgenden Abschätzungen werden für die einzelnen Schichten die Indizes aus Abb. 28 verwendet.

Die transiente Spannung \(\sigma \) (die Druckamplitude der Welle) ergibt sich aus der Definition der Schallgeschwindigkeit für Festkörper und dem Hook'schen Gesetz (im weiteren wird auf die Miller'schen Indizes verzichtet):

\[
\text{Schallgeschwindigkeit: } v = \sqrt{\frac{B}{\rho}} \quad \text{Hook'sches Gesetz: } \sigma = B\varepsilon \quad (25)
\]

\[
\rightarrow \sigma = \rho v^2 \varepsilon. \quad (26)
\]

Der schwarze Pfeil über der Si-Linie in Abb. 25 kennzeichnet eine gemessene Dehnung von \(\varepsilon_1 = -0.005 \) im Si. Mit den Materialparametern von Si aus dem Anhang und (26) ergibt sich eine Druckamplitude von \(\sigma_1 = 1 \) GPa. Der zweite schwarze Pfeil über der Ge-Linie kennzeichnet eine Dehnung von \(\ddot{\varepsilon} = -0.02 \), dies entspricht einer

\(^{25}\)Es sei darauf hingewiesen, daß hier ein rein akustischer Effekt gemessen wird. Würde es sich um einen thermischen Effekt handeln, würde dies bedeuten, daß eine Temperaturerhöhung eine Kompression zur Folge hätte.
Druckamplitude von \(\dot{\sigma} = 3,3 \) GPa. Da das Beugungsprofil von Ge bereits aus expansiven und kompressiven Anteilen besteht, wird die anfängliche Druckamplitude größer gewesen sein, als die hier gemessene.

Im nächsten Schritt wird der absolute Druck in den einzelnen Schichten berechnet. Für eine Kompressions- bzw. Verdünnungswelle die von einem Gebiet \(l \) nach \(k \) läuft gilt allgemein:

\[
\varepsilon_{l\rightarrow k} = \frac{1}{(\rho_k v_k + \rho_l v_l)v_k} (p_k - p_l).
\]

(27)

Angenommen, daß das Si-Substrat unter dem anfänglichen Druck \(p = 0 \) steht, läßt sich mit (27) und der gemessenen Kompression \(\varepsilon_1 \) der absolute Druck in der festen Ge-Schicht auf \(p_1 = 2,4 \) GPa abschätzen. Danach läßt sich mit (27) ebenso die Dehnung der Verdünnungswelle \(\varepsilon_2 \), die von der Si-Ge Grenzfläche in das feste Ge propagiert, berechnen. Es ergibt sich \(\varepsilon_2 = 8,4 \cdot 10^{-3} \). Mit Hilfe der gemessenen Kompression \(\varepsilon = -0,02 \) – die bereits eine Überlagerung von expansiven und kompressiven Anteilen ist – läßt sich die Dehnung der anfänglichen Kompressionswelle \(\varepsilon_3 \), die von der flüssigen Ge-Schicht in das feste Ge hineinläuft, abschätzen:

\[
\varepsilon = \varepsilon_2 + \varepsilon_3.
\]

(28)

Mit \(\varepsilon_3 = -28,4 \cdot 10^{-3} \) und dem bekannten Druck \(p_1 \) im festen Ge, ergibt sich mittels (27) der anfängliche Druck im flüssigen Ge-Film von 9,4 GPa.

Da hier das anfängliche Druckprofil abgeschätzt wurde, können mit Hilfe von (21) die Temperaturen im Ge berechnet werden (siehe Integration Abb. 67 im Anhang). Es ergibt sich folgende zusammenfassende Tabelle der gemessenen Drücke und Temperaturen:

<table>
<thead>
<tr>
<th>Schicht</th>
<th>Temperatur</th>
<th>Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td>flüssiges Ge</td>
<td>3240 K</td>
<td>9,4 GPa</td>
</tr>
<tr>
<td>festes Ge</td>
<td>1800 K</td>
<td>2,4 GPa</td>
</tr>
</tbody>
</table>

\textit{Tab. 8:} Abgeschätzte Temperaturen und Drücke mit Hilfe der Verschiebungen in den Röntgenbeugungskurven für die Fluenz von 0,2 J/cm².

Der Vergleich zwischen den \textit{Tab. 8} und 7 zeigt, daß die Werte in der Größenordnung übereinstimmen. Der Temperaturunterschied zwischen gemessenen und mit Hilfe der
Laserfluenz abgeschätzten Werten beträgt für die flüssige Ge-Schicht lediglich 4%. Für die feste Ge-Schicht ergibt sich jedoch, daß die abgeschätzten Werte um einen Faktor 2 größer sind als der aus der Messung der Dehnung. Eine Fehlerquelle hierbei ist die Nichtbeachtung der Wärmeleitung bei der Abschätzung mit Hilfe der Laserfluenz. Auf Grund der extremen Temperaturgradienten, kann es zu einer nicht zu vernachlässigen Aufheizung der Si-Schicht kommen.

In der Beugungskurve für 123 ps in Abb. 25 sind die akustischen Störungen ausgeklungen, und es wird angenommen, daß die Ge-Schicht im thermisch expandierten Zustand (also bei \(p = 0 \)) vorliegt. Das bedeutet die Verschiebung der Beugungskurve zu kleineren Braggwinkeln, wie es in der gemessenen Kurve auch zu sehen ist. Die Verschiebung der Beugungskurve von Ge zeigt eine Änderung der Gitterkonstanten von \(\epsilon_{th} \approx 0,008 \). Eine uniaxiale, thermische Ausdehnung in der (111)-Richtung eines kubischen Kristalls ist wie folgt mit der Temperatur verknüpft [34]:

\[
de_{th} = \frac{3B\beta}{v_{111}^2}\epsilon_{111}\rho dT.
\]

Die Integration erstreckt sich hier von der Dehnung \(\epsilon_{th} = 0 \) bei der Raumtemperatur \(T_R = 300 \text{ K} \) bis zur gemessenen thermischen Ausdehnung \(\epsilon_{th}(T) \) bei der gesuchten Temperatur \(T \). Die durchgeführte Integration ist im Anhang in Abb. 68 abgebildet. Es ergibt sich für die gemessene Dehnung in der Ge-Schicht eine Temperatur von \(ca. \ 1100 \text{ bis 1200 K} \). Dieser Wert liegt in der Nähe der Schmelztemperatur. Daraus folgt, daß flüssiges und festes Ge sich im Gleichgewicht befinden. In der Si-Linie sind deutlich expansive und kompressive Anteile zu erkennen.
3.3 Experimente an dünnen Wismutschichten

3.3.1 Struktureigenschaften und optische Phononen

In kristalliner Form kommt Bi in der A7 oder α-Arsen Struktur vor. Die Bravais Einheitszelle von Bi kann durch eine leichte rhomboedrische Verformung der fcc-Struktur (engl.: face-centered-cubic) abgeleitet werden. Abb. 30 zeigt die Struktur mit einigen Details, die wie folgt erläutert werden. Die geometrischen Daten wurden mit Hilfe der Literaturwerte [33] berechnet: Die Winkel zwischen den primitiven Vektoren (rot eingezeichnet) würden bei einem echten fcc-Gitter jeweils 60° betragen. Durch die rhomboedrische Störung beträgt der Winkel 57,23°, und die Vektoren haben eine Länge von 4,746 Å. Die Verbindungslinien, die den Kubus beschreiben (schwarz gestrichelte Linien), stehen nicht exakt rechtwinklig aufeinander wie in der fcc-Struktur, sondern der Winkel ist 87,53°. Die Kantenlänge des Kubus beträgt 6,572 Å, die Raumdiagonale beträgt $R = 11,862$ Å. In Abb. 30 symbolisieren die schwarzen Punkte Gitterpunkte, die zur Bravais Zelle gehören, und die blauen Punkte Gitterpunkte, welche zur primitiven rhomboedrischen Zelle gehören. Die primitive Basis des Gitters besteht aus je zwei Wismutatomen, die fast um die Hälfte der
3.3 Experimente an dünnen Wismutschichten

Abb. 30: fcc-Struktur von Bi. Die roten Vektoren spannen die primitive rhomboedrische Einheitszelle auf.

Raumdiagonale $(0, 468 R)$ gegeneinander versetzt sind. Beispielsweise stellen die grünen Punkte zwei Atome dar, deren Gitterpunkt sich im Ursprung des Koordinatensystems befindet. Der nächste Nachbarabstand ist z. B. gegeben durch den Abstand zwischen dem zweiten Atom in der Basis, das sich auf der Hälfte der Raumdiagonale befindet, und einem Atom, das sich im Zentrum einer der unteren Seitenflächen des Kubus befindet. Der nächste Nachbarabstand beträgt 3,072 Å. Die Beschreibung der (111)-Ebenen ist in den beiden Systemen fcc-Zelle oder rhomboedrische primitive Einheitszelle äquivalent. Der (111)-Ebenenabstand beträgt $d_{111} = 3,954$ Å. Um die Struktureigenschaften zu überprüfen, wurde eine Röntgenbeugungskurve mit einer kommerziellen Cu-Röntgenröhre Abb. 31 aufgenommen. Mit den bisher gegebenen Daten ist es möglich, aus der Bragggleichung (2) die Beugungswinkel zu bestimmen. Tab. 9 ergibt sich für die Ti-$K\alpha$- und Cu-$K\alpha$-Energien. Die berechneten Zahlenwerte aus Tab. 9 für Cu-$K\alpha$ und den gemessenen Winkeln aus Abb. 31 stimmen überein. Hier sei bereits auf das Problem hingewiesen, daß der angebotene Winkelbereich des Röntgenspiegels nicht mehr ausreicht, um die Si-Linie und die Bi-Linie gleichzeitig zu beugen. Damit ist eine Normierung des Röntgenflusses nicht mehr möglich, wie das bei den Schmelzexperimenten auf den Si-Ge Proben der Fall war.
Experimente mit hoher Zeitauflösung

Abb. 31: Röntgenbeugungskurve von Bi, aufgenommen mit einer Cu-Kα-Röntgenröhre. Das Maximum des Si(111)-Peaks ist auf 1 normiert.

<table>
<thead>
<tr>
<th>Linie</th>
<th>Energie [keV]</th>
<th>Si (111) [°]</th>
<th>Si (222) [°]</th>
<th>Bi (111) [°]</th>
<th>Bi (222) [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-Kα1</td>
<td>4,510</td>
<td>26,000</td>
<td>61,251</td>
<td>20,342</td>
<td>44,047</td>
</tr>
<tr>
<td>Ti-Kα2</td>
<td>4,504</td>
<td>26,040</td>
<td>61,403</td>
<td>20,373</td>
<td>44,127</td>
</tr>
<tr>
<td>Cu-Kα1</td>
<td>8,048</td>
<td>14,221</td>
<td>29,428</td>
<td>11,234</td>
<td>22,931</td>
</tr>
<tr>
<td>Cu-Kα2</td>
<td>8,028</td>
<td>14,257</td>
<td>29,509</td>
<td>11,262</td>
<td>22,991</td>
</tr>
</tbody>
</table>

Tab. 9: Berechnete Braggwinkel θ_B für Bi und Si in der Beugungsrichtung (111) und (222).

Als optische A$_{1g}$-Mode wird eine longitudinale Gitterschwingung entlang der Raumdiagonale (in Abb. 30 die z-Achse) bezeichnet. Bei der Oszillation ändert sich der Abstand der beiden Atome in der Basis. Eine besondere Eigenschaft der Mode ist, daß die Schwingung die Kristallsymmetrie nicht beeinflußt. Die rhomboedrische Verzerrung der fcc-Struktur wird stabilisiert durch den Peierls-Jones-Mechanismus [49].

Die Abweichung von der perfekten fcc-Struktur ist für den Kristall energetisch günstiger. Durch die Verzerrung öffnet sich eine Energielücke unterhalb der Fermifläche. Die Energielücke hat ein Absenken der Elektronenergien unterhalb der Energielücke zur Folge, was wiederum die Gesamtenergie des Kristalls absenkt. Dieser Mechanismus kann durch äußere Einflüsse wie Druck, Temperatur oder durch optische Anregung des elektronischen Systems leicht gestört werden [71, 99].
3.3 Experimente an dünnen Wismutschichten

Durch diese Störung ändert sich insbesondere der Gleichgewichtsabstand der beiden Wismutatome in der Basis. Ähnlich wie beim ultraschnellen Schmelzen ist auch in dem DECP-Modell die Quelle der Instabilität die Beeinflussung des elektronischen Systems. Das durch einen kurzen Laserimpuls angeregte elektronische System kommt auf einer Zeitskala in ein Gleichgewicht, die kurz ist, verglichen mit der Zeit, die die Atome brauchen, um durch Bewegung auf die neuen Potentiale zu reagieren. Aus diesem Grunde verschieben sich die Gleichgewichtskoordinaten als Funktion der Zeit, ohne daß die trägen Atome darauf reagieren können. Folgen die Atome der neuen Gleichgewichtskoordinate, findet ein „senkrechter“ Übergang im Potentialbild, ähnlich wie bei dem Franck-Condon-Prinzip statt. Abb. 32 skizziert diesen Sachverhalt, die Richtung der Auslenkung entspricht der \(z \)-Achse in Abb. 30. Vor der Anregung ruht das Atom in einer Potentialmulde. Die Gleichgewichtskoordinate \(A_1(t = 0) \) fällt mit der Auslenkung \(X = 0 \) zusammen. Ändert sich das Potential, verschiebt sich die Gleichgewichtslage, so daß die vorherige Gleichgewichtslage zu einem Umkehrpunkt einer Oszillation wird.

Wird das Potential harmonisch genähert, so läßt sich die Auslenkung durch eine einfache Differentialgleichung (DGL) beschreiben:

\[
\frac{d^2}{dt^2} X(t) + 2 \cdot \gamma \frac{d}{dt} X(t) + \omega_0^2 X(t) = \omega_0^2 A_1(t) \tag{30}
\]

Anfangsbedingungen: \(X(t = 0) = 0 \) \quad \frac{d}{dt} X(t = 0) = 0 . \tag{31}

Die linke Seite der DGL beschreibt die freie Schwingung mit Dämpfung, die rechte Seite ist eine äußere Kraft, die das Phonon treibt. Im nicht angeregten Bi ist diese Kraft nicht vorhanden. Die plötzliche Veränderung der Gleichgewichtsordinate \(A_1(t) \) bedeutet, daß eine zeitabhängige Kraft sprunghaft eingeschaltet wird. Eine der Aufgaben der DECP-Theorie ist die korrekte Beschreibung der zeitabhängigen Änderung der Gleichgewichtsordinate und somit der äußeren Kraft. Vernachlässigt man die Zeitabhängigkeit der Koordinate \(A_1(t) \), so ist die wirkende Kraft konstant und die DGL läßt sich analytisch lösen. Ohne Reibung, d.h. \(\gamma = 0 \), ist die Lösung äußerst einfach. Sie lautet für \(t > 0 \): \(X(t) \propto 1 - \cos(\omega_0 t) \). Lösungen mit zeitlich veränderlicher Gleichgewichtsordinate sind wesentlich aufwendiger \[28\]. Beispielsweise findet man in \[99\] eine Diskussion der Lösung, wenn die Gleichgewichtsordinate durch \(A_1(t) \propto n(t) \) beschrieben wird. Wobei \(n(t) \) die Anzahl der Elektronen beschreibt, die optisch in das Leitungsband angeregt worden sind. Die Funktion \(n(t) \) ist wiederum abhängig von der Laserleistung sowie der zeitlichen Form des optischen Anregeimpulses.

Bei optischen zeitaufgelösten Messungen wird die Reflektivität durch die Mode moduliert. Unter der stark vereinfachenden Annahme\[27\], daß nur die Phononenbewegung \(X(t) \) zur Reflektivitätsmodulation \(\Delta R / R \) beiträgt, kann dies mittels der realen und der imaginären Dielektrizitätskonstante \(\epsilon_{1,2} \) ausgedrückt werden \[99, 19\]:

\[
\frac{\Delta R}{R} = \left\{ \frac{\partial R}{\partial \epsilon_1} \frac{\partial \epsilon_1}{\partial X(t)} + \frac{\partial R}{\partial \epsilon_2} \frac{\partial \epsilon_2}{\partial X(t)} \right\} \frac{X(t)}{R} \tag{32}
\]

Um aus einer gemessenen optischen Reflektionsmodulation die Amplitude einer Gitterschwingung abschätzen zu können, gehen somit viele unbekannte Funktionen ein, welche im folgenden noch einmal zusammengefaßt werden:

- Annahme über das Potential in der die Schwingung der Atome stattfindet (harmonische Näherung, anharmonische Potentiale, ...).

\[27\] Tragen weitere Effekte zur Reflektivitätsmodulation bei, wie z.B. Änderung der Elektronendichte \(n(t) \) im Leitungsband oder daß die Elektronen der oszillatorischen Bewegung der Kerne folgen, so muß (32) entsprechend geändert werden.
• Beschreibung der Dämpfung der Schwingung (in (30) ist diese beispielsweise proportional zur Geschwindigkeit)
• Beschreibung der externen Kräfte als Funktion der Zeit
• Lösung der DGL (30) zur Bestimmung von \(X(t) \)
• Messung der Dielektrizitätskonstanten

Abb. 33: Optisches Anrege-Abfrage-Experiment an Bi. Die Daten stammen von Hase et al. [27].
Experimente mit hoher Zeitauflosung

Auf der rechten Seite der Abb. 33 ist das Frequenzspektrum zu sehen. Die Phonomorfrequenz in nichtangeregtem Bi beträgt $\nu_{1g} = 2.92$ THz. Die Änderung der Frequenz bei stärkerer Anregung ist darauf zurückzuführen, daß das Potential, in dem die Schwingung stattfindet, „aufweicht“, und die Frequenz dadurch abnimmt, wie es in Abb. 32 für die Potentialkurve unter Anregung dargestellt ist. Die maximale gemessene Reflektionsänderung entspricht einer Phononenamplitude von 0,13 Å. Ähnliche Resultate auf einkristallinem Bi werden von DeCamp et al. vorgestellt [19].

Es wurde eine Reflektivitätsmodulation um 1% beobachtet, was auf eine Phononenamplitude von 0,1 Å schließen läßt. DeCamp et al. konnten nachweisen, daß die Modulationsamplitude der Reflektivität in einem großen Bereich linear mit der Fluenz ist. Ebenso war es möglich, die Aufweichung der Frequenz in Abhängigkeit der Fluenz zu messen.

Da die Anzahl der gebeugten Photonen im Röntgenexperiment vom geometrischen Strukturfaktor S_{hkl} abhängt, ist das nächste Ziel, diesen Faktor als Funktion der Auslenkung X aus der Ruheelage der beiden Atome in der Basis zu berechnen. Zur Beschreibung wird die gebräuchlichere fcc-Einheitszelle benutzt. Die drei Vektoren \mathbf{l}_i ($i = 1, 2, 3$) spannen die primitive rhomboedrische Einheitszelle auf. Benutzt man diese Vektoren, um die Positionen \mathbf{a}_j ($j = 1...8$) aller Atome innerhalb der fcc-Zelle zu beschreiben, so sind diese durch:

\[
\begin{align*}
\mathbf{a}_1 &= (0, 0, 0) \\
\mathbf{a}_2 &= \mathbf{l}_1 \\
\mathbf{a}_3 &= \mathbf{l}_2 \\
\mathbf{a}_4 &= \mathbf{l}_3 \\
\mathbf{a}_5 &= \mathbf{a}_1 + \mathbf{h} \\
\mathbf{a}_6 &= \mathbf{l}_1 + \mathbf{h} \\
\mathbf{a}_7 &= \mathbf{l}_2 + \mathbf{h} \\
\mathbf{a}_8 &= \mathbf{l}_3 + \mathbf{h}
\end{align*}
\]

(33)

gegeben. Der Vektor \mathbf{h} ist ein Hilfsvektor, der die Position des zweiten Atoms in der Basis beschreibt. Der Vektor \mathbf{h} hat die Richtung der z-Achse und die Länge $l = (0, 468 + X) R$, daraus folgt:

\[
\mathbf{h} = (0, 468 + X) (\mathbf{l}_1 + \mathbf{l}_2 + \mathbf{l}_3).
\]

(35)

Die Abstandsänderung X wird dabei in Einheiten der Raumdiagonalen gemessen. Die Vorzeichenkonvention ist so beschaffen, daß $X < 0$ bedeutet, daß der Abstand der Basisatome kleiner als der Gleichgewichtsabstand ist. Der Strukturfaktor ist gegeben durch die Summe [89, 98]:

\[
S_{hkl} = f_{Bi} \sum_{j=1}^{8} e^{-i(h\mathbf{l}_1 + k\mathbf{l}_2 + l\mathbf{l}_3) \cdot \mathbf{a}_j}.
\]

(36)
3.3 Experimente an dünnen Wismutschichten

In dieser Gleichung ist \(f_{Bi} \) der Atomformfaktor, tabelliert in [2]. Die Vektoren \(\mathbf{b}_i \) spannen den reziproken Gitterraum auf. Die Vektoren \(\mathbf{b}_i \) und \(\mathbf{t}_i \) stehen senkrecht aufeinander und sind auf bekannte Weise normiert \(\mathbf{b}_i \cdot \mathbf{t}_k = 2\pi \delta_{ik} \) \((i, k = 1, 2, 3)\). Das Symbol \(\delta_{ik} \) steht für das Kronecker-Symbol. Durch Einsetzen der bereits angegebenen Atompositionen \(\mathbf{a}_j \) wird der Strukturfaktor zu einer Funktion der Millerschen Indizes \(h, k, l \) und des Abstandes \(X \). Die Anzahl der gebeugten Photonen ist proportional zum Quadrat des Strukturfaktors \(|S_{hkl}|^2 \). Durch einfaches Ausmultiplizieren können analytische Ausdrücke für den (111)- und (222)-Reflex gewonnen werden. Zur einfachen Interpretation werden diese Ausdrücke im Gleichgewichtsabstand \(X = 0 \) auf 1 normiert:

\[
|S_{111}|^2 \propto \frac{1 + \cos(6\pi (0, 468 + X))}{1 + \cos(6\pi 0, 468)} \quad \quad |S_{222}|^2 \propto \frac{1 + \cos(12\pi (0, 468 + X))}{1 + \cos(12\pi 0, 468)} . \tag{37}
\]

Abb. 34 zeigt die grafische Darstellung des normierten Strukturfaktors als Funktion der Auslenkung für den (111)- und (222)-Reflex\(^{28}\).

\[
\text{Abb. 34: } |S_{hkl}|^2 \text{ berechnet für die Wismutstruktur in den Beugungsrichtungen (111) und (222) als Funktion der Phononenamplitude. Die Abszisse ist in Bruchteilen der Raumdiagonalen von } R = 11,862 \text{ Å unterteilt. Die Auslenkung 0 ist der Gleichgewichtszustand der Elementarzelle ohne Anregung.}
\]

\(^{28}\)Im weiteren wird der quadrierte Strukturfaktor \(|S_{hkl}|^2 \) immer in der normierten Form, wie in Abb. 34 dargestellt, verwendet.
Die DECP-Theorie kann die Phase der Oszillation vorhersagen. Beim Anschwingen des Phonons wird der Abstand zwischen den beiden Basisatomen zuerst vergrößert, d.h. $X > 0$. Die Abb. 34 läßt erkennen, daß der Reflex in (222)-Richtung mit zunehmender Phononenamplitude an Intensität gewinnt, wohingegen der (111)-Reflex abnimmt. Die Auslenkung $X = 0,032$ ist besonders ausgezeichnet, da in dieser Position der Abstand zwischen den Basisatomen gerade die Hälfte der Raumdiagonalen beträgt. Für diese Auslenkung nimmt der Reflex in (222)-Richtung ein Maximum an, wohingegen der Reflex in (111)-Richtung vollständig verboten ist. Im weiteren ist interessant, daß die Größe der zu erwartenden Effekte in den beiden Beugungsrichtungen erheblich unterschiedlich sind. Aus energetischen Gründen wird der Fall $X < 0$ im Experiment nicht vorkommen.
3.3.2 Zeitaufgelöste Messungen

Zu Beginn des Kapitels wird der experimentellen Aufbau sowie die Auswertung für die Experimente an Bi kurz erläutert. Es werden zuerst die Resultate bei niedriger und dann bei hoher Anregungsenergie dargestellt und jeweils die zeitaufgelösten Reflexionskurven in den Beugungsrichtungen (111) und (222) bei ähnlichen Anregungsenergien gegenübergestellt. Im Anschluß folgt jeweils eine Diskussion der Meßdaten. Aus diesen lassen sich, ähnlich wie bei dem Schmelzexperiment, Temperaturen, Drücke und Phononenamplituden abschätzen. Eine Fehleranalyse der Meßdaten befindet sich im Anhang.

Um die Anzahl der gebeugten Photonen im Experiment abschätzen zu können, wurde mit XOP die Beugungskurve Abb. 35 einer 50 nm starken Wismutschicht berechnet. Diese Schichtstärke fand auch in den Experimenten Verwendung. Die integrierten Reflektivitäten ergeben sich aus folgender Tabelle:

<table>
<thead>
<tr>
<th>Bi (111)</th>
<th>R_{int} [μrad]</th>
<th>FWHM [o]</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-pol</td>
<td>13,22</td>
<td>0,15</td>
</tr>
<tr>
<td>p-pol</td>
<td>7,6</td>
<td>0,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bi (222)</th>
<th>R_{int} [μrad]</th>
<th>FWHM [o]</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-pol</td>
<td>21,91</td>
<td>0,2</td>
</tr>
<tr>
<td>p-pol</td>
<td>0,024</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Tab. 10: Integrierte Reflektivität einer 50 nm starken Bi-Schicht.

3.3 Experimente an dünnen Wismutschichten

Da die Phononen direkt durch die Anregung des elektronischen Systems getrieben werden, wird eine Schichtdicke zur Änderung der Röntgenbeugung beitragen, die durch die Eindringtiefe des Lichts bestimmt ist. Die verbleibende Schicht liefert einen konstanten Beitrag zur Reflektivität. Die Eindringtiefe wird ungefähr dem inversen Extinktionskoeffizienten α^{-1} des linearen Absorptionsgesetzes entsprechen. Für eine Wellenlänge von 800 nm werden Werte für die Eindringtiefe zwischen $\alpha^{-1} = 16$ und 22 nm angegeben [33]. Zur Vereinfachung soll im weiteren das Absorptionsprofil in der Tiefe als homogen angenommen werden, das bedeutet insbesondere, daß die Phononenamplitude im angeregten Bereich überall gleich sein soll. Es ergibt sich mit der kinematischen Näherung für Röntgenbeugung die integrierte Reflektivität zu

$$R_{int} = \frac{I_{Bi,gep}}{I_{Bi,ungep}} = \frac{\alpha^{-1} |S_{hkl}|^2 + (d - \alpha^{-1})}{d}.$$ \hspace{1cm} (38)

Der Zähler ist proportional zu der Anzahl der gebeugten Photonen von der Wismutschicht während der Anregung. Wobei der erste Summand im Zähler sich auf die Schichtstärke bezieht, die durch die Modulation des Strukturfaktors beeinflußt wird. Der zweite Summand kommt durch die ungestörte Beugung der verbleibenden Schicht ($d - \alpha^{-1}$) zustande. Der Nenner ist proportional zu der Anzahl der Photonen von der Wismutschicht ohne Anregung. Der Bruch entspricht somit (7). Für die Beugungsrichtung (111) beträgt die Eindringtiefe für s- bzw. p-polarisierte Titan-Kα Strahlung 6 μm bzw. 8 μm, für die Beugungsrichtung (222) ergibt sich 2 μm bzw. 60 μm [84]. In den hier vorgestellten Experimenten beträgt die Stärke der Wismutschicht $d = 50$ nm. Somit ist die Bedingung für kinematische Röntgenbeugung nach (6) erfüllt. Ohne Auslenkung, d.h. $|S_{hkl}|^2 = 1$ ergibt (38) eine Reflektivität von 1. Wird eine Reflektivitätsänderung ΔR auf Grund einer Phononenbewegung im Experiment gemessen, so liefert nur der erste Summand aus (38) einen Beitrag zur Änderung:

$$\Delta R = \frac{\alpha^{-1}}{d} \Delta(|S_{hkl}|^2) \Rightarrow \Delta(|S_{hkl}|^2) \approx 2,27\ldots3,13 \cdot \Delta R.$$ \hspace{1cm} (39)

In diesen Gleichungen bedeutet $\Delta(|S_{hkl}|^2)$ die Abweichung von $|S_{hkl}|^2$ von 1. Wird im Experiment die Reflektivitätsänderung ΔR bestimmt, so ist es möglich, mit (39) die Änderung von $|S_{hkl}|^2$ zu berechnen. Durch Vergleich mit Abb. 34 kann dann die zugehörige Amplitude bestimmt werden. Die hier diskutierte theoretische Re-

29Die angeregte Schichtstärke wird voraussichtlich durch die Absorptionskonstante unterschätzt. Bei der massiven Anregung durch fs-Impulse sind Diffusionseffekte nicht vernachlässigbar.
Erste Seite des Dokuments:

3 Experimente mit hoher Zeitauflösung

Die beobachtete Reflektivität im realen Experiment ist eine Faltung aus der hier diskutierten theoretischen Reflektivität mit dem Röntgenimpuls. Die diskutierten Formeln können als Beispiel auf die statische Lösung der DGL (30) angewendet werden. Abb. 36 a) zeigt die Auslenkung, beschrieben durch $X(t) = \frac{A}{2} \left(1 - \cos(2\pi \nu_{1g} t)\right)$. Die Amplitude von $A = 0,032^{30}$ wurde gewählt, weil so die maximale Modulation des Strukturfaktors im weiteren Eingehen. Die Frequenz beträgt $\nu_{1g} = 3$ THz. Mit der Bewegungsgleichung $X(t)$ läßt sich zu jedem Zeitpunkt der normierte Strukturfaktor mit (37) berechnen. Hieraus läßt sich wiederum die theoretische Reflektivität als Funktion der Zeit mit (38) ableiten. Die rote Kurve in Abb. 36 b) zeigt die Reflektivität in (111)-Richtung, die Funktion in Abb. 36 c) die

30In Einheiten der Raumdiagonalen von 11,862 Å.
Reflektivität in (222)-Richtung. Als angeregte Schichtstärke wurde $\alpha^{-1} = 20 \text{ nm}$ und $d = 50 \text{ nm}$ eingesetzt. In Abb. 34 ist zu erkennen, daß $|S_{hkl}|^2$ bei den Extremwerten der Amplitude flacher verläuft, das spiegelt sich in den Kurven für die theoretische Reflektivität in Abb. 36 in den Umkehrpunkten wider. Die Reflektivität muß dann allerdings noch mit dem Röntgenimpuls gefaltet werden. Dies führt zu einer Minde-
runung der Reflexionsmodulation und der zeitlichen Auflösung, wie die blauen Kurven in Abb. 36 b) und c) zeigen. Als zeitlicher Verlauf des Röntgenimpulses wurde ein Gaussimpuls mit einer vollen Halbwertsbreite von FWHM=200 fs gewählt. Ein kur
zer Röntgenimpuls führt im Gegensatz dazu, daß die Oszillationen besser aufgelöst und somit die Amplituden größer werden.

Die erste zeitaufgelöste Messung wurde in der (222)-Richtung durchgeführt. Die Energiedichte zur Anregung betrug 6 mJ/cm2, die Meßkurve zeigt Abb. 37. Jeder Meßpunkt wurde mehrmals wiederholt und gemittelt (siehe Anhang 5.4 Fehlerana
lyse), die Belichtungszeit betrug 2,5 min bei einer Laserwiederholrate von 10 Hz. In dem oberen Bild ist die Reflektivität auf einer langen Zeitskala zu sehen (rote Kurve). Die blauen Datenpunkte repräsentieren die Dehnung, welche sich aus der Winkelver-
schiebung der Beugungskurve ergibt (siehe Gleichung 23) 31. Die Hauptfehlerquelle bei der Berechnung der Dehnung ist die Bestimmung der Schwerpunkte der Rönt
genbeugungskurven. Auf Grundlage der Diskussion des Strukturfaktors (Abb. 34) wird ein Anwachsen der Reflektivität erwartet. In der Tat ist die erste Auffällig-
keit, daß die Reflektivität im Zeitintervall zwischen 0 und 2 ps größer als 1 ist. Das gemessene Reflektivitätsmaximum beträgt 1,7. Eine signifikante Dehnung setzt ab einer Zeitverzögerung von 4 ps ein, verbunden mit einer Reduktion der Beugungs-
effizienz um 5 %. Die Reflektivität nimmt ab einer Verzögerung von ca. 25 ps einen nahezu konstanten Wert von $R \approx 0,85$ an. Die gemessene maximale Dehnung von $\Delta g/g \approx 0,75\%$ läßt sich nach (29) in eine Temperatur umrechnen. Hier kann jedoch die Temperaturabhängigkeit der Materialkonstanten nicht berücksichtigt werden, da keine Literaturwerte vorliegen. Die Integration (29) zur Bestimmung der Temperatur wird somit zu einer Geradengleichung

$$T = \frac{v_{\text{sol,Bi}}^2}{3B_{\text{sol,Bi}}\beta_{\text{sol,Bi}}} \varepsilon(T) + T_R . \quad (40)$$

31Hinweis: Skala für $\Delta g/g$ befindet sich jeweils auf der rechten Seite der Abbildungen, Vorzei-
chenkonvention $\Delta g/g > 0$ bedeutet Expansion.
Abb. 37: Zeitaufgelöste Röntgenreflexionsmessung an einer Wismutprobe in (222)-Richtung bei einer Anregung von 6 mJ/cm². Die blauen Meßpunkte ergeben sich bei einer Auswertung der Verschiebung der Röntgenbeugungskurven.
3.3 Experimente an dünnen Wismutschichten

Tab. 11 faßt die Materialkonstanten bei einer Temperatur von 300 K zusammen. Es kann davon ausgegangen werden, daß die abgeschätzte Temperatur bei gemessener Ausdehnung eine obere Schranke bildet, wenn die Materialkonstanten bei Raumtemperatur in (40) verwendet werden. Die Begründung kann nur phänomenologisch durch eine Analyse der Steigung (Koeffizient vor der Dehnung $\epsilon(T)$) gegeben werden. Mit steigender Temperatur wird der Kristall „weicher“. Alle Arten von Kompressibilitäten (v, B, usw.) werden kleiner. Daher wird weniger Druck benötigt, um eine bestimmte Volumenänderung herbeizuführen. Der Bruch v^2/B ist somit in erster Näherung konstant. Gleichzeitig wird β bei steigender Temperatur größer. Die nötige Temperaturerhöhung, um eine bestimmte Volumenänderung durchzuführen, wird dadurch geringer.

<table>
<thead>
<tr>
<th>Materialdaten Wismut</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmelztemperatur</td>
<td>$T_{m,Bi}$</td>
</tr>
<tr>
<td>Schallgeschwindigkeit (sol) (111)</td>
<td>$v_{sol,Bi}$</td>
</tr>
<tr>
<td>Dichte (sol)</td>
<td>$\rho_{sol,Bi}$</td>
</tr>
<tr>
<td>Kompressionsmodul (sol)</td>
<td>$B_{sol,Bi}$</td>
</tr>
<tr>
<td>lin. Ausdehnungskoeff. (sol)</td>
<td>$\beta_{sol,Bi}$</td>
</tr>
<tr>
<td>Eindringtiefe @800 nm</td>
<td>α^{-1}</td>
</tr>
</tbody>
</table>

Tab. 11: Zusammenfassung der verwendeten Materialparameter für Bi. Die Daten sind der Referenz [33] entnommen.

Werden in der Steigung temperaturabhängige Materialkonstanten eingesetzt, wird die Steigung mit zunehmender Temperatur kleiner. Die gemessene maximale Dehnung von $\Delta g/g \approx 0,75\%$ entspricht nach (40) einer absoluten Temperatur von 475 K. Die abgeschätzte obere Grenze der Temperatur liegt deutlich unter dem Schmelzwert von Bi. Dies bedeutet, daß die Reflexionsreduzierung zu späten Zeiten nicht mehr durch einen Schmelzvorgang gedeutet werden kann. Eine mögliche Erklärung beruht auf der Erwärmung des Kristallgitters. Die Beugungseffizienz in Abhängigkeit der Temperatur wird durch den Debye-Waller-Effekt beschrieben. In Abb. 38 ist die Reduktion durch den Debye-Waller-Faktor als Funktion der Temperatur berechnet worden [34, 98]. Wird die gemessene Reduktion des Beugungsvermögens von 15% mit dem Debye-Waller-Faktor aus Abb. 38 verglichen, so erhält man eine

32 Vergleiche hierzu auch das Verhalten von Ge und Si, Abb. 66 im Anhang.
Temperatur von 470 K. Diese Temperatur stimmt sehr gut mit der abgeschätzten Temperatur aus der gemessenen Dehnung von 475 K überein.

\[\Delta(|S_{222}|^2) = 2,27 \pm 3,13 \cdot 0,07 \approx 0,16 \pm 0,22 \]
(41)

Diese Werte bedeuten nach Abb. 34 eine Phononenamplitude zwischen 0,077 und
3.3 Experimente an dünnen Wismutschichten

0,11 Å. Da die bereits im Kapitel 3.2.2 abgeschätzte Röntgenimpulsdauer von ca. 300 fs in der Größenordnung der Periodendauer liegt, muß der Wert für die Phononenamplitude noch entfaltet werden. Die Null-Lage der Oszillation wird durch den neuen Gleichgewichtsabstand bestimmt (siehe Abb. 39 links). Bei der Abtastung der Reflektivität mit einem idealisierten deltaförmigen Röntgenimpuls, würde die Reflektivität nach jeder Periode wieder auf 1 zurückgehen. Wird die Amplitude der Reflektivität von der Null-Lage aus gemessen, so ist die Amplitude in negativer Richtung genauso groß wie die Amplitude in positiver Richtung.

$|\Delta S_{222}^2| = 2,27...3,13 \cdot 0,11 \approx 0,25...0,34$.

(42)

Die Änderung des Strukturfaktors resultiert in eine Amplitude zwischen 0,13 und 0,19 Å. Aus der Verschlechterung des Kontrastverhältnisses kann ebenso durch eine einfache Rechnung die Impulsdauer des Röntgenimpulses abgeschätzt werden. Wird eine Kosinusfunktion mit einem infinitesimal kurzen Gaußimpuls gefaltet, ent-

33Dies gilt für kleine Amplituden, d. h. in einem Bereich, wo die Funktion $|S_{hkl}|^2$ Abb. 34 linearisiert werden kann.
Experimente mit hoher Zeitauflosung

Abb. 40: Zeitaufgelöste Röntgenreflexionsmessung an einer Wismutprobe in (111)-Richtung bei einer Anregung von 6 mJ/cm². Die Anregung wurde so gering gewählt, daß sich 2 Perioden der Phononenschwingung ausbreiten können.

...stands wieder dieselbe Kosinusfunktion mit der Modulationstiefe von 1 (von 0 nach 1, bzw. von 0 nach -1). Wird die Halbwertsbreite des Gaußimpulses kontinuierlich vergrößert und jeweils die Modulationstiefe der Faltung berechnet, entsteht die Funktion in Abb. 39 rechts. Dargestellt ist die Modulationstiefe in Abhängigkeit der Halbwertsbreite des Gaußimpulses. Die Kosinusfunktion, die zur Faltung verwendet wurde, hat dabei die gemessene Frequenz von 2,1 THz. Wird die gemessene Modulationstiefe von ca. 0,014 (Abb. 37) ins Verhältnis zur Null-Lage gesetzt, ergibt sich ein Wert von 0,014/0,053 = 0,26. Dies entspricht nach Abb. 39 einer Impulsdauer von 290 fs.

Um die Interpretation der vorherigen Messung zu stärken, wurde eine weitere Messung mit der Anregenergiedichte von 6 mJ/cm² in (111)-Richtung durchgeführt. Abb. 40 zeigt das Verhalten auf der kurzen Zeitskala bis zu einer Zeitverzögerung von 2 ps. Zu sehen sind zwei Perioden der Oszillation; die Interpolation besitzt eine Frequenz von 2,05 THz. Dieser Wert zeigt gute Übereinstimmung mit der Messung in (222)-Richtung. Die Reflexionsmodulation von \(\Delta R \approx -0,19 \) entspricht einer Änderung von:

\[
\Delta (|S_{111}|^2) = 2,27...3,13 \cdot (-0,19) = -0,43... - 0,6 .
\]

(43)
3.3 Experimente an dünnen Wismutschichten

Das bedeutet eine Phononenamplitude von etwa 0,1-0,14 Å. Die Null-Lage der Oszillation liegt bei $R \approx 0,85$. Die entfaltete Reflektivität beträgt somit ca. 0,7.

Mit der Entfaltung ergibt sich eine Änderung des Strukturfaktors um

$$\Delta(|S_{111}|^2) = 2,27...3,13 \cdot (-0,3) = -0,68... -0,94.$$ (44)

Dies entspricht einer Phononenamplitude von 0,17 bis 0,29 Å. Wenn auf eine Entfaltung der Reflektivitäten verzichtet wird, wird die Phononenamplitude um einen Faktor von ca. 2 unterschätzt. Wird die gemessene Modulationstiefe von 0,041 ins Verhältnis zur Null-Lage der Oszillation gesetzt, ergibt sich 0,28. Das entspricht nach Abb. 39 einer Röntgenimpulsdauer von 285 fs. Die abgeschätzten Röntgenimpulsdauern aus den Messungen in (111) sowie in (222)-Richtung stimmen sehr gut überein. Auch sind die berechneten Werte der Phononenamplituden im Rahmen der Genauigkeit konsistent.

Im weiteren stellt sich die Frage nach dem Verhalten der Amplitude und der Frequenz bei stärkerer Anregung. Auch soll das Verhalten bei massiver Anregung über der Schmelzschwelle hinaus untersucht werden. Für die folgende Messung in (111)-Richtung wurde eine Fluenz von 10 mJ/cm2 verwendet. Die zeitaufgelöste Meßkurve zeigt Abb. 41. Die roten Meßpunkte zeigen wieder das Verhalten der gemessenen Reflektivität, im oberen Bild Abb. 41 für den langen Zeitbereich bis zu 40 ps; im unteren Bild ist diese Meßkurve noch einmal vergrößert dargestellt für den Zeitbereich bis zu 2 ps. Im oberen Bild wurde zusätzlich die relative Dehnung $\Delta g/g$ nach (23) für jeden Meßpunkt berechnet. Ähnlich wie bei der Messung mit niedriger Energiehichte in (111)-Richtung ist auch hier ein schneller Abfall der Reflektivität zu beobachten. Die Reflektivität fällt innerhalb von 500 fs auf $R \approx 0,53$. Dann steigt die Reflektivität innerhalb von 5 ps auf $R \approx 0,75$. Dieses Verhalten bildet auf der langen Zeitskala ein aperiodisches Verhalten dem keine Oszillationen in der Reflektivität folgen. Nach dieser Spitze in der Reflektivität fängt die Dehnung bei einer Zeitverzögerung von 7 ps an; vorher ist keine thermische Ausdehnung festzustellen. Das Maximum der Dehnung beträgt ca. 1,5%, was nach (40) einer maximalen Temperatur von ca. 640 K entspricht. Die Temperatur liegt über dem Schmelzpunkt von Bi. Die Reflektivität bleibt ab einer Zeitverzögerung von ca. 10 ps nahezu konstant bei $R \approx 0,83$, dieses entspricht nach (11) einer durchgeschmolzenen Schicht von 10 nm. Der Meßpunkt, welcher mit „∞“ gekennzeichnet ist, wurde durch Überprüfung der Reflektivität nach optischer Anregung der Schicht bestimmt;
Experimente mit hoher Zeitauflosung

Abb. 41: Zeitaufgelöste Röntgenreflexionsmessung an einer Wismutprobe in (111)-Richtung bei einer Anregung von 10 mJ/cm². Die blauen Meßpunkte ergeben sich bei einer Auswertung der Verschiebung der Röntgenbeugungskurven.
die Refraktivität beträgt dort wieder 1. Dies bedeutet, daß die Wismutschicht epitan-
taktisch vollständig wieder aufwächst.

Wird die erste schnelle Refraktivitätsabnahme auf \(R \approx 0,53 \) zu frühen Zeiten durch
eine Phononbewegung hervorgerufen, ergibt sich mit (39):

\[
\Delta(|S_{111}|^2) \approx 2,27...3,13 \cdot (0,53 - 1) \approx -1,07... - 1,47.
\]

(45)

Die Änderung von -1,07 liegt im Bereich der maximal möglichen Änderung von −1 (siehe Abb. 34)\(^{34}\). Die damit verbundene maximale Phononamplitude beträgt ca. 0,4 Å. Ein Entfalten der Meßdaten ist nicht nötig, da im Vergleich zu der Röntgen-
impulsdauer die Refraktivitätsänderung auf einer langen Zeitskala statt-
findet.

Für das Anwachsen der Refraktivität um 30 % ab einer Zeitverzögerung von 3 ps
schlägt der Autor folgende Interpretation vor: Der erste Teil des Anstieges bis zur
Einsetzung der Dehnung (gekennzeichnet durch die gestrichelte Linie), kann durch
die Relaxation der Elektronen und die damit verbundene Rückkehr der gestörten
Gleichgewichtslage zur Ursprungslage erklärt werden. Die Refraktivität wächst in
diesem Bereich von \(R \approx 0,53 \) um ca. 20 % auf \(R \approx 0,75 \). Wenn die Dehnung
einsetzt, wird die Refraktivität weiter erhöht, jedoch geschieht dies nun wesentlich
langsamer. Dieser neue Bereich läßt sich mit der thermischen Expansion des Gitters
klären. Die Expansion übt einen zusätzlichen Einfluß auf den Strukturfaktor
aus. Wie bereits (Kapitel 3.2.2) in den Experimenten zum Schmelzen von German-
nium erörtert, kann die thermische Ausdehnung senkrecht zum Normalenvektor der
Oberfläche vernachlässigt werden (siehe Abb. 29). In dem hier vorgeschlagenen Mo-
dell wird die Ausdehnung des Gitters durch eine Streckung der Elementarzelle von
Bi (Abb. 30) in Richtung der Raumdiagonalen bzw. z-Achse beschrieben, wobei aller-
dings der Abstand der 2-atomigen Basis selbst konstant belassen wird. Unter dieser
Annahme kann – analog zu den Gleichungen (34) bis (36) – der normierte Strukturfak-
tor als Funktion der thermischen Ausdehnung berechnet werden. Die Berechnung
führt zu Abb. 42. Die beschriebene Streckung führt dazu, daß das zweite Atom der
Basis (welches sich in der Nähe der Hälfte der Raumdiagonalen befindet) sich im-
mer weiter vom Zentrum der fcc-Zelle entfernt. Dies führt zu einem gegensätzlichen
Verhalten des Strukturfaktors, der aus der Phononbewegung berechnet wurde (sie-
he Abb. 34). Bei der hier beschriebenen thermischen Ausdehnung wird der Reflex in
(222)-Richtung schwächer, und der Reflex in (111)-Richtung nimmt zu. Die gemesse-

\(^{34}\)Werte von \(\Delta(|S_{111}|^2) \) außerhalb von [-1;1,4] bedeuten, daß die angeregte Schichtstärke in (39)
unterschätzt wurde.
ne maximale Dehnung von $\Delta g/g$ von 1,5 % bedeutet einen Anstieg der Reflektivität nach Abb. 42 um ca. 10 %. Die Reflektivität nimmt ab Einsetzen der Dehnung um ca. 8 % von $R \approx 0,75$ auf $R \approx 0,83$ zu.

Eine weitere Messkurve entstand bei einer Energiedichte von 15 mJ/cm² in der Beugungsrichtung (222). Erwartet wurde nun ein gegenläufiges Verhalten zur zuvor gemessenen Kurve in (111)-Richtung, also eine positive Spitze zu frühen Zeiten. Abb. 43 oben zeigt die gemessene Kurve bis zu einer Verzögerung von 40 ps, das untere Bild ist wieder ein vergrößerter Ausschnitt bis zu 3 ps. In der Tat wird wieder ein aperiodisches Verhalten beobachtet, diesmal jedoch mit einer Reflektivität > 1 über ein Zeitintervall von 2 ps. Die maximale Zunahme in der Reflektivität um $\Delta R = 0,11$ entspricht nach (39) einer Phononenamplitude zwischen 0,1 und 0,18 Å. Die gemessene Dehnung von mehr als einem Prozent entspricht einer maximalen Temperatur von 540 K. Dieser Wert ist identisch mit der Schmelztemperatur von Bi. Die Reflektivität zu späten Zeiten ist wieder konstant und beträgt $R \approx 0,65$. Dies entspricht nach (11) einer geschmolzenen Schichtstärke von ca. 17 nm. Dieser Wert liegt im Bereich der Absorptionstiefe des Lichts. Wenige ps nachdem die Reflektivität auf der absteigenden Flanke wieder R=1 erreicht hat, setzt die Dehnung ein. Trägt diese zur Modifikation des Strukturfaktors bei, wird der Reflex bei einer gemessenen Dehnung von 1 % nach Abb. 42 um 5 % schwächer.
3.3 Experimente an dünnen Wismutschichten

Abb. 43: Zeitaufgelöste Röntgenreflexionsmessung an einer Wismutprobe in (222)-Richtung bei einer Anregung von 15 mJ/cm². Die blauen Meßpunkte ergeben sich bei einer Auswertung der Verschiebung der Röntgenbeugungskurven.
Die Energiedichte zur Anregung wurde auf 15 mJ/cm2 vergrößert und eine zeitaufgelöste Meßkurve in (111)-Richtung aufgenommen. Abb. 44 faßt die Meßergebnisse zusammen: Das obere Bild zeigt den Zeitbereich bis zu 50 ps, im unteren Bild ist diese Meßkurve noch einmal für den Zeitbereich bis zu 4 ps vergrößert dargestellt. Es wird das gleiche globale Verhalten wie bei der (111)-Messung mit 10 mJ/cm2 festgestellt. Es ist ein schneller Abfall der Reflexivität auf $R \approx 0,43$ zu beobachten. Im unteren Bild ist zu erkennen, daß diese Abnahme innerhalb von 2 ps stattfindet, dann steigt die Reflexivität innerhalb von 4 ps auf $R \approx 0,57$. Die Dehnung wird messbar, und die Zunahme der Reflexivität verlangsamt sich. Dieses Verhalten bildet auf der langen Zeitskala wieder die bereits bekannte „negative Spitze“ zu frühen Zeiten. Die thermische Expansion fängt bei einer Zeitverzögerung von 8 ps an, vorher ist keine Ausdehnung festzustellen. Ab einer Zeitverzögerung von 20 ps ist die Reflexivität bei $R \approx 0,65$ nahezu konstant. Auf der kurzen Zeitskala erkennt man Details der negativen Spitze. So ist ein kurzes Plateau von 300 fs in der Nähe der Zeitverschiebung um 1 ps zu erkennen, gefolgt von einem weiteren Abfall auf $R \approx 0,45$. Bei einer Zeitverschiebung von 2 ps steigt die Reflexivität um 10% an, bis sich die Zunahme bei der Zeitverzögerung von 4 ps verlangsamt.\footnote{Da die Datenpunkte auf der kurzen Zeitskala alle sehr nahe beieinanderliegen und es keine Ausreißer gibt, werden die Details in der Spitze als „echt“ angesehen.}

Der Meßpunkt, welcher mit „∞“ gekennzeichnet ist, wurde durch Überprüfung der Reflexivität nach optischer Anregung der Schicht bestimmt; die Reflexivität beträgt dort wieder 1. Bei einer Verzögerungszeit von ca. 50 ps steigt die relative Dehnung auf einen Wert von ca. 1,3%. Schätzt man mit (40) und Tab. 11 die Temperatur ab, so ergibt sich eine maximale Temperatur von $T \approx 600$ K. Diese liegt über der Wismut Schmelztemperatur von 545 K, somit kann das langgestreckte Plateau wieder als Schmelzen gedeutet werden. Mit dieser Interpretation läßt sich die gemessene Reflexivität von $R \approx 0,65$ zu späten Zeiten in eine geschmolzene Schichtdicke umrechnen. Mit (11) ergibt sich eine geschmolzene Schichtdicke von ca. 18 nm, dieser Wert liegt im Bereich der Eindringtiefe des Lichts. Wird die erste schnelle Reflexivitätsabnahme auf $R \approx 0,45$ zu frühen Zeiten durch ein Phonon hervorgerufen, ergibt sich mit (39):

$$\Delta(|S_{111}|^2) \approx 2,27...3,13 \cdot (0,45 - 1) \approx -1,25... -1,72.$$

Die Änderung von -1,25 ist signifikant kleiner als die maximal mögliche Änderung von -1 (Abb. 34). Eine Änderung von $|S_{hkl}|^2$ um einen Wert ≤ -1 kann durch
3.3 Experimente an dünnen Wismutschichten

Abb. 44: Zeitaufgelöste Röntgenreflexionsmessung an einer Wismutschicht in (111)-Richtung bei einer Anregung von 15 mJ/cm². Die blauen Meßpunkte ergeben sich bei einer Auswertung der Verschiebung der Röntgenbeugungskurven.
die Unterschätzung der angeregten Schichtstärke α^{-1} erklärt werden. Die maximale Änderung des Strukturfaktors läßt auf eine Phononenamplitude von ca. 0,4 Å schließen. Ein Entfalten der Messdaten mit der Röntgenimpulsdauer ist wiederum nicht notwendig, da die Reflektivität in der Umgebung von $R \approx 0,45$ nur langsamen Änderungen unterworfen ist im Vergleich zur abgeschätzten Röntgenimpulsdauer von 300 fs (Kapitel 3.2.2). Die abgeschätzte Amplitude ist wesentlich größer als die in den optischen Experimenten nachgewiesene von ca. 0,13 Å.

Wird das Anwachsen der Reflektivität in der Spitze von $R \approx 0,43$ auf $R \approx 0,57$ bis zum Einsetzen der Dehnung wieder durch die Relaxation des Gleichgewichtspunktes erklärt, so läßt sich der weitere Anstieg wieder durch die thermische Expansion interpretieren. Nach Beginn der Dehnung wächst die Reflektivität um 8 % auf den konstanten Wert von $R \approx 0,65$. Nach Abb. 42 bedeutet die gemessene Dehnung von 1,5 % einen Anstieg der Reflektivität um 10 %.

Eine weitere Messkurve wurde in der (222)-Richtung bei einer Energiedichte von 20 mJ/cm2 aufgenommen. Abb. 45 zeigt das zeitliche Verhalten der Reflektivität. Das obere Bild stellt einen langen Zeitbereich bis zu 80 ps dar, das untere zeigt einen Ausschnitt auf einer kurzen Zeitskala. Erwartet wird wieder ein starkes Anwachsen der Reflektivität und ein aperiodisches Verhalten. Das grobe Verhalten der Reflektivität wurde bereits vorhergesagt. Die Reflektivität nimmt zu frühen Zeiten stark zu, das Maximum liegt bei einer Erhöhung um etwa 20 %. Die Reflektivität ist über einen Zeitbereich von etwa 1,5 ps größer als 1. Auf der absteigenden Flanke – bei einer Zeitverzögerung von ca. 1 ps – bildet sich ein kurzes Plateau aus. Ab einer Zeitverschiebung von 1,5 ps nimmt die Reflektivität innerhalb von 15 ps auf $R = 0,4$ stetig ab. Dort bleibt die Reflektivität über einen sehr langen Zeitraum konstant. Die geschmolzene Schicht, die sich auf Grund dieser Reflektivität ergibt, beträgt ca. 30 nm. Wieder wurde die Reflektivität nach Anregung der Schicht überprüft, der Meßpunkt ist mit „∞“ gekennzeichnet, das Ergebnis ist mit der vorherigen Messung konsistent, und die Reflektivität geht auf 1 zurück. Mit der maximalen Reflektivitätsänderung von $\Delta R \approx 0,2$ ergibt sich eine Änderung nach (39) von $\Delta(|S_{222}|^2)$:

$$\Delta(|S_{222}|^2) \approx 2,27...3,13 \cdot 0,2 \approx 0,45...0,63$$

(47)

Die Phononenamplitude liegt diesmal im Bereich der maximalen Änderung von $|S_{222}|^2$. Aus Abb. 34 kann eine Phononenamplitude von etwa 0,3 Å bis 0,4 Å entnommen werden. Die thermische Dehnung fängt bei ca. 5 ps an, also nach der Überhöhung der Reflektivität. Die maximale Dehnung beträgt ca. 1,25 %.
3.3 Experimente an dünnen Wismutschichten

Abb. 45: Zeitaufgelöste Röntgenreflexionsmessung an einer Wismutprobe in (222)-Richtung bei einer Anregung von 20 mJ/cm². Die blauen Meßpunkte ergeben sich bei einer Auswertung der Verschiebung der Röntgenbeugungskurven.
Die damit verbundene absolute Temperatur beträgt nach (40) $T = 590 \, \text{K}$ und bestätigt noch einmal die Idee des Schmelzens zu späten Verzögerungszeiten. Ein direkter Vergleich der Messkurven in den Beugungsrichtungen (111) und (222) bei verschiedenen Energiedichten kann nicht durchgeführt werden, da bisher die Absorption der Laserstrahlung in Abhängigkeit des Einfallswinkels noch nicht bestimmt wurde.

Zur Illustration werden Beugungskurven der Experimente in (111) und (222)-Richtung bei hoher Energiedichte gegenübergestellt. In Abb. 46 sind zu jedem der Experimente je zwei Beugungskurven zu frühen und zu späten Zeitverzögerungen exemplarisch dargestellt. Die roten Kurven sind gemessene Beugungsprofile während der transienten Anregung. Die schwarz-gestrichelten Kurven sind die zugehörigen Normalisierungsbilder, deren Maxima jeweils auf 1 normiert wurden. Auf der linken Seite sind die Beugungsbilder der (222)-Reflexion abgebildet. Bei der kleinen Zeitverzögerung von 0,53 ps ist zu beobachten, daß die Reflexivität bei transierter Anregung im Vergleich zum Normierungsbild zunimmt, wohingegen auf der rechten Seite die (111)-Reflexion zu frühen Zeiten stark abnimmt. Man beachte insbesondere, daß beide Kurven im Vergleich zu ihrer Normierungskurve keinerlei Winkelverschiebung aufweisen; zu späten Zeiten jedoch treten Winkelverschiebungen auf. In den unteren Bildern beträgt die Dehnung für die (111)-Kurve $\Delta g/g \approx 1,3\%$, und für die (222)-Kurve wird eine Dehnung von $\Delta g/g \approx 1,2\%$ berechnet.

Eine weitere Frage ist, wie weit die erste Reflexivitätsänderung zu frühen Zeiten und somit die Phononamplitude getrieben werden kann. Um die Abhängigkeit zwischen Phononamplitude und Fluenz zu erhalten, wurde eine Kalibrierkurve in (222)-Richtung aufgenommen. Hierzu wurde die Zeitverzögerung auf das zuvor gemessene Maximum von Abb. 45 eingestellt. Durch leichte Veränderung der Zeitverschiebung
3.3 Experimente an dünnen Wismutschichten

wurde grob überprüft, ob das Maximum noch an derselben Stelle lag und leichte Korrekturen vorgenommen. Abb. 47 zeigt die Meßkurve. Die maximale Reflexivität von etwa 1,2 aus Abb. 45 konnte nicht mehr verifiziert werden. Die Abweichung ist darin begründet, daß zum einen der Überlapp zwischen Röntgenimpuls und Anregungsimpuls zwischen den beiden Meßtagen nicht perfekt übereinstimmten, zum anderen verschiebt sich auch die Zeitskala durch Nachjustage der Strahlengänge. Die Meßkurve zeigt ein fast lineares Verhalten zwischen den Fluzenzen 5 und 11 mJ/cm².

Bei niedrigeren Fluzenzen geht die Reflexivität auf 1 zurück, bei höheren Fluzenzen gehen die Meßpunkte in eine Sättigung über. Die maximale Reflexivität beträgt \(R \approx 1,12 \). Während der Messung blieb die Zeitverzögerung konstant. Wenn sich das Maximum für unterschiedliche Fluzenzen zeitlich verschiebt, ist dies ebenfalls eine
Experimente mit hoher Zeitauflosung

Abb. 47: Messung der Phononenamplitude in Abhängigkeit der Fluenz des Anregesignals. Die Messung wurde bei einer Zeitverzögerung von ca. 0,7 ps durchgeführt.

Fehlerquelle und kann hier nicht berücksichtigt werden. Die Reflektivitätszunahme von $\Delta R \approx 0,12$ entspricht nach (38) einer Änderung von $|S_{222}|^2$:

$$
\Delta (|S_{222}|^2) = 2,27...3,13 \cdot 0,12 \approx 0,27...0,38 .
$$

Dies entspricht nach Abb. 34 einer Phononenamplitude von etwa 0,14 – 0,22 Å. Mit dergleichen Methode wurde eine Eichung in der Beugungsrichtung (111) durchgeführt, das Resultat zeigt Abb. 48. Aus historischen Gründen wurde eine Schichtstärke von 90 nm verwendet. Um die Zeitverzögerung des absoluten Minimums zu bestimmen, erfolgte zuvor ein Anreges-Abrage-Experiment (ohne Abbildung). Bei der Verzögerung des Minimums wurde die Kalibrierung durchgeführt. Die Messkurve zeigt ein ähnliches Verhalten wie in der (222)-Beugungsrichtung. Die Reflektivität nimmt in einem Bereich zwischen 3 und 8 mJ/cm² nahezu linear ab. Bei höheren Energiedichten geht die Kurve in eine Sättigung über, dort beträgt die Reflektivität $R = 0,67$. Auf Grund der geänderten Schichtstärke muß bei der Abschätzung der maximalen Amplitude der Multiplikant in (39) entsprechend geändert werden.
3.3 Experimente an dünnen Wismutschichten

Abb. 48: Reflektivitätsabnahme der Röntgenbeugung an Bi (111) vs. Fluenz bei einer festen Zeitverzögerung von ca. 600 fs. Die Filmdicke im Experiment betrug 90 nm.

Die Reflexionsänderung auf $R \approx 0,67$ bedeutet eine Änderung des Strukturfaktors um:

\[
\Delta(|S_{111}|^2) = 4,09 \cdot 5,63 \cdot (0,67 - 1) = -1,35 \cdot 1,9.
\]

Auch hier wird wieder die Anregetiefe unterschatzt. Wird die maximal mögliche Änderung zu Grunde gelegt, ergibt sich durch Vergleich mit Abb. 34 eine Amplitude von ca. 0,4 Å.
4 Zusammenfassung und Ausblick

Zusammenfassung

Im zweiten Teil der Arbeit wird demonstriert, wie die incoherenten Röntgenstrahlung mittels eines torisch gebogenen Röntgengitters – bestehend aus Si(311) – auf eine zu untersuchenden Probe fokussiert werden kann. Mit dem gebogenen Kristall konnte die Strahlung der Ti-Ko-Quelle auf ca. 80 μm fokussiert werden [41]. Gegenüber Experimenten mit unfokussierter Strahlung wird dadurch eine Verbesserung des Röntgenflusses um zwei Größenordnungen erreicht.

Die fokussierten Röntgenimpulse stehen dann den eigentlichen Anwendungen zur Verfügung. So konnten Anrege-Abfrage-Experimente realisiert werden, die zeitaufgelöste Braggbeugung auf einer fs-Zeitskala demonstrieren. Bei dieser Technik wird ein Teil des Laserimpulses zur optischen Anregung einer Probe abgepalten und zeitlich zum röntgenerzeugenden Laserimpuls verzögert. Mit der zeitlich exakt synchronisierten Röntgenstrahlung kann der zeitliche Verlauf der Beugungsintensität verfolgt werden. Mit dieser Methode konnte der direkte Übergang eines laserbestrahlten Ma-
terials von der Fest- in die Flüssigphase auf einer fs-Zeitskala beobachtet werden. Als Proben wurden dünne, einkristalline Ge-Schichten (111) auf einem Si-Substrat (111) verwendet. Es wurde nachgewiesen, dass es sich bei dem beobachteten Schmelzvorgang um einen nicht-thermischen, durch elektronische Hochanregung ausgelösten Phasenübergang handelt [78], und beobachtet, dass der Phasenübergang von der Fest- in die Flüssigphase innerhalb von 300 fs stattfindet. Durch Entfalten der Meßdaten kann die Länge des Röntgenimpulses auf ca. 250-300 fs abgeschätzt werden. Aus der Winkelverschiebung der Beugungsprofile lassen sich Drücke, Temperaturen sowie die thermische Expansion des Materials abschätzen.

Die Meßdaten beider Experimente dokumentieren erstmals die Beobachtung schneller Strukturänderungen mit Hilfe zeitaufgelöster Röntgenbeugungsexperimente mit subfs-Zeitauflösung. Die hier vorgestellten Meßdaten und Interpretationen führten zu folgenden Veröffentlichung [7, 14, 78, 41].

Ausblick

Zu Beginn werden technische Verbesserungsvorschläge zusammengefaßt, darauf folgt eine Beschreibung zukünftiger Forschungsvorhaben, die auf der Methode der zeitaufgelösten Röntgenspektroskopie aufbauen.

Bei den vorgestellten zeitaufgelösten Experimenten wurde die Zeitskala so verschoben, dass der eintretende Effekt den Zeitnullpunkt markiert. Ein ständiges Umbauen, um mit einer Kreuzkorrelation vor jeder Messung den absoluten Zeitnullpunkt zu bestimmen, war durch die limitierte Kapazität von Meßzeit und Experimentatoren nicht möglich. Durch einen hereinklapptbaren Spiegel in den Röntgenstrahlengang kann der Umbau umgangen werden. Der Spiegel würde den Anregestrahl sowie das gestreute Licht vom Röntgenspiegel zu einem nichtlinearen Kristall reflektie-
Zusammenfassung und Ausblick

In Zusammenarbeit mit der Arbeitsgruppe von Prof. Förster, Universität Jena, sind zwei langbrennweitige Ge-Spiegel entwickelt worden (im weiteren bezeichnet mit GeA und GeB). Der gebogene Ge-Wafer besitzt die Orientierung (100), wobei der Braggreflex der (400)-Ebenen für die Beugung verwendet wird.

<table>
<thead>
<tr>
<th>Ge (400)-Spiegel</th>
<th>Ge A</th>
<th>Ge B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_h [mm]</td>
<td>296,9</td>
<td>541,6</td>
</tr>
<tr>
<td>R_v [mm]</td>
<td>278,2</td>
<td>511,13</td>
</tr>
<tr>
<td>f_h [mm]</td>
<td>144,26</td>
<td>263,15</td>
</tr>
<tr>
<td>f_v [mm]</td>
<td>143,14</td>
<td>262,99</td>
</tr>
<tr>
<td>vertikale Abmessung [mm]</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>horizontale Abmessung [mm]</td>
<td>6</td>
<td>20</td>
</tr>
</tbody>
</table>

Tab. 12: Eigenschaften der Ge (400)-Spiegel, hergestellt durch die Arbeitsgruppe von Prof. Förster, Universität Jena.
Abb. 49: Röntgenbeugungskurve eines ebenen Ge (400)-Kristalls, berechnet mit XOP [65, 64]. Die Berechnung wurde für einen Kristall mit einer Stärke von 50 μm durchgeführt.

Zusammenfassung und Ausblick

Die ersten Prototypen weisen noch schwerwiegende Probleme auf. Beispielsweise zeigt Abb. 51 die Topographie des kleineren Spiegels Ge A. Im Vergleich zur Topographie des Si (311)-Spiegels (Abb. 7) ist die Verteilung nicht homogen. Es bilden sich zwei Gebiete (dunkelblaue Flächen) mit besonders starker Reflektivität heraus. Um diese Gebiete bilden sich Stellen, die nicht zur Beugung beitragen. Am Rand ist die Fläche ausgefranst. Die Topographie spiegelt die unzureichende Oberflächenqualität wider. Die Ursache wird im Herstellungsprozeß der Spiegel vermutet. Die momentane klassische Prozedur ist:

1. Orientieren und Schneiden des zu biegenden Wafers.
2. Mechanisches Dünnen und Polieren der Waferscheibe auf ca. 70 µm.
5. Nach Aushärten des Klebers wird das formgebende Glassubstrat gelöst, und der Wafer behält die Form bei. Das torische Glassubstrat kann wiederverwendet werden.

Für die Qualität der Spiegel ist insbesondere die Oberflächenqualität nach dem Herunterdünnen sowie das Übertragen des angesprengten Wafers auf die Metallform

Bei der Weiterführung der Experimente an Bi-Schichten könnte eine Änderung der verwendeten Wellenlänge der Röntgenstrahlung in Erwägung gezogen werden.
"\textit{Abb. 52: Fokus des Röntgenspiegels Ge A aus Jena. Die Aufnahme wurde mit der Ti-Kα-Quelle durchgeführt.}

\textit{Abb. 53 zeigt den normierten Strukturfaktor für höhere Beugungsordnungen, analog zur Berechnung in Abb. 34. Aus Abb. 53 ist erkenntlich, daß die höheren Ordnungen wesentlich empfindlicher auf die Phononauslenkung reagieren. Um das Bragggesetz (2) für die gegebenen Ebenenabstände zu erfüllen, muß die Strahlung entsprechend hart sein. Für die Beugung an den (666)-Ebenen wird Röntgenstrahlung mit einer Photonenenergie von ca. 9,5 keV benötigt. Für die Beugung an den (444)-Ebenen nur 6,5 keV, dies wäre mit Cu-Kα-Strahlung von ca. 8 keV möglich.}

Wie bereits in Kapitel 3.2.2 angedeutet, ist es mit der zeitaufgelösten Röntgenbeugung möglich, die zeitliche Änderung des \textit{Debye-Waller-}Faktors zu messen und daraus die momentane mittlere Auslenkung der Gitterbausteine zu bestimmen. Der \textit{Debye-Waller-}Faktor beschreibt die Erniedrigung der Beugungseffizienz, bei Erwärmung eines Kristalls. Diese Größe ist ein Maß für den Austausch von Energie zwischen den Elektronen und dem Kristallgitter. In Abb. 26 (Kapitel 3.2.2 \textit{Zeitaufgelöste Messungen}) wurde der \textit{Debye-Waller-}Faktor für die Reflexe von Ge (111),
|Strukturfaktor|² [normiert] |
|--------------|
|0,00| 1 |
|0,01| 4 |
|0,02| 7 |
|0,03| 10 |

Abb. 53: $|S_{hkl}|²$ berechnet für die Wismutstruktur in höheren Ordnungen der Beugungsrichtung (111) als Funktion der Phononenamplitude. Die Abszisse ist in Bruchteilen der Raumdiagonale von $R = 11,862$ Å unterteilt. Die Auslenkung 0 ist der Gleichgewichtszustand der Elementarzelle ohne Anregung.

male Wellenzahlübertrag durch $2k_0 \approx 10^{-3} \, \text{Å}$, wobei $k_0 = 2\pi/\lambda$ die Wellenzahl des einfallenden Lichts ist. Der Wellenzahlübertrag entspricht ca. $1/1000$ eines reziproken Gittervektors. Mit der Ramanstreuung werden nur Gitterschwingungen in der Nähe des Zentrums der Brillouin-Zone erfaßt. Mit der inelastischen Streuung von Röntgenphotonen im keV-Bereich können Wellenzahlen in der Größenordnung der Gittervektoren übertragen werden. Somit ergibt sich die Möglichkeit, auch kurzwellige Phononen zu beobachten.

In der konventionellen Phononenspektroskopie mit Synchrotronstrahlung ergeben sich durch die Linienbreite der Röntgenstrahlung weitreichende Probleme. Die typischen Energien von Phononen liegen im Bereich von $\Delta E = 1 \, \text{meV}$ bis einige $10 \, \text{meV}$. Um die Energien der Phononen auflösen zu können, muß die Bandbreite der Strahlung durch Monochromatoren entsprechend eingeschränkt werden ($\Delta E / E = 1 \, \text{meV/keV} = 10^{-6}$). Die Anforderungen an die Monochromatoren (bzgl. Verspannungsfreiheit und Bandbreite) ist entsprechend hoch. Auch läßt der Röntgenfluß durch die Dispersion um einige Größenordnungen nach. Mit den neuen ultrakurzen Röntgenimpulsen lassen sich – rein theoretisch – auf eine sehr interessante Weise die Phononen untersuchen [35, 42]. Statt energieaufgelöst zu messen, wird die inelastisch gestreute Intensität zeitaufgelöst beobachtet. Das bedeutet eine Messung außerhalb des eigentlichen Braggpeaks. Beobachtet werden Oszillationen in der Reaktivität. Dabei entspricht die Fouriertransformation dem Frequenzspektrum der Phononen.

steht eine Schockwelle, die in die einkristalline Schicht hineinpropagiert. Mittels der zeitaufgelösten Röntgenbeugung kann diese Schockwelle untersucht werden.

Die herausragende Bedeutung ultrakurzer Röntgenimpulse und ihre Anwendung wird durch die zahlreichen finanziellen Förderungen durch die Deutsche Forschungsgemeinschaft und internationale Kooperationen deutlich.

5 Anhang

5.1 Röntgendetektion

![Diagramm]

\(^{36}\)Hersteller: Princeton Instruments

\[^{37}\text{Winview}\]
\[^{38}\text{in Matlab}\]
Ein einzelnes Photon erzeugt eine bestimmte Anzahl von Elektron-Loch-Paaren im Chip. Die Anzahl hängt von der Energie E_{Ph} des Photons und von der mittleren Energie E_{EL} ab, welche aufgebracht werden muß, um ein Elektron-Loch-Paar zu erzeugen. Der Literaturwert E_{EL} für Si beträgt $E_{EL} = 3,62 \text{ eV}$ [45]. Somit ist die Gesamtzahl der erzeugten Ladungsträger für ein detektiertes Photon gegeben durch $N_e = E_{Ph}/E_{EL}$. Der Analog-Digital-Wandler gibt für ein belichtetes Pixel einen Wert k an den Computer weiter, der proportional zur Anzahl der erzeugten Elektronen ist. Der Hersteller spezifiziert, daß $k = 1$ gerade 6,3 Elektronen entspricht. Somit ist die Gesamtzahl der detektierten Ladungsträger $N_e = 6,3k$. Durch Gleichsetzen ergibt sich eine Kalibrierung der Kamera, die den „k-Wert“ mit der Energie eines einzelnen Photons verknüpft:

$$k \cdot 6,3 \cdot 3,62 \cdot 10^{-3} [\text{keV}] = E_{Ph}.$$ (50)

Für die Photonenenergie von 4,5 keV ergibt sich $k \approx 197$. Diese Kalibrierung ermöglicht nun zwei Möglichkeiten:

- Ist die zu detektierende Röntgenstrahlung monochromatisch (wie es im Experiment der Fall war), kann die Gesamtzahl der detektierten Photonen bestimmt werden, auch wenn die Pixel mehrfach von einigen Photonen belichtet werden. Wird die Summe Σ über alle belichteten Pixel bestimmt, so erhält man die Gesamtzahl der detektierten Photonen durch die Division Σ/k.

5.1 Röntgendetektion

Abb. 56: Akkumulierter Strahlenschaden auf der CCD-Kamera. Die Belichtungszeit betrug 5 min, der Chip wurde heruntergekühlt auf $-30 \, ^\circ C$.
5.2 Auswertungssoftware

Abb. 57: Hauptfenster Auswertungsprogramm.
5.2 Auswertungssoftware

Abb. 58: Hauptfenster Auswertungsprogramm.
Abb. 59: Beugungslinie, erstellt mit dem Auswertungsprogramm.

In der Abb. 59 ist beispielsweise das Fenster zur Berechnung der Anzahl der Photonen abgebildet. Die blaue Funktion ist die Beugungskurve, die sich durch spaltenweises Aufsummieren der Kamerabilder ergibt. Die Beugungskurve im unteren Fenster ist auf 1 normiert, und die Linie ist in Ganzen zu sehen. Im oberen Fenster ist die Linie vergrößert dargestellt, gleichzeitig ist das Integral über diese Kurve berechnet worden und als grüne Kurve abgebildet. Das Integral ist einfachheitshalber auf 1 normiert, der Sprung im Integral ist proportional zur Anzahl der Photonen.
5.3 Winkelkalibrierung der Wismutexperimente

Bei den Beugungsexperimenten an den Bi-Schichten stehen zur Winkelkalibrierung der Beugungsprofile gleichzeitig keine zwei gebeugte Linien auf den Kamerabildern zur Verfügung. Für die Berechnung der Dehnung unter der Verwendung von (23) ist es somit notwendig, eine Winkelkalibrierung durchzuführen. Wird die Bi-Probe um einen bekannten Winkel gedreht, so verschiebt sich das Maximum der gebeugten Röntgenstrahlung auf der CCD-Kamera um denselben Winkel. Dabei ist darauf zu achten, daß nur Winkel sinnvoll sind, die in dem vom Röntgenspiegel angebotenen Konus liegen. Abb. 60 zeigt ein Beispiel für eine Kalibrierung des (111)-Reflexes von Bi. Da die Kalibrierung abhängig ist von dem Abstand zwischen Probenoberfläche und CCD-Kamera, ist es notwendig, nach jedem Umbau zwischen (111)- und (222)-Reflex eine neue Kalibrierung durchzuführen.

Abb. 60: Winkelkalibrierung der Kamerabilder für einen Bi (111)-Reflex. Aufgetragen ist die Drehung der Probe um einen festen Winkel gegen die Verschiebung der Linie auf dem CCD-Chip.
5.4 Fehleranalyse

Die Fehleranalyse für die Experimente an dünnen Wismutschichten besteht aus zwei Teilen. Im ersten Teil wird nach einer sinnvollen Belichtungszeit gesucht, um den Fehler der Reflektivität auf einen Wert von $\leq \pm 2\%$ zu beschränken. Im zweiten Teil wird versucht, den Fehler auf eine Verteilungsfunktion zurückzuführen.

Wird die Belichtungszeit vergrößert, bewirkt dies eine längere Mittelung über die Schwankungen, die in Abb. 13 gemessen worden sind. Zur Untersuchung der Auswirkung der Mittelung auf den Fehler wurden bei verschiedenen Belichtungszeiten Beugungskurven von Bi aufgenommen. Bei jeder festen Belichtungszeit wurden bis zu $n = 20$ Aufnahmen durchgeführt und innerhalb dieser Gruppe jeweils der arithmetische Mittelwert μ der gebeugten Photonen, die Varianz σ^2 bzw. die Standardabweichung σ, der relative Fehler σ/μ und der Fehler von Spitzenwert-zu-Spitzenwert bestimmt. Sei I_i die Gesamtanzahl der gebeugten Photonen in der i-ten Aufnahme, so sind die statistischen Größen wie folgt definiert:

\[
\mu = \frac{1}{n} \sum_{i=1}^{n} I_i \quad (51)
\]

\[
\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (I_i - \mu)^2 \quad (52)
\]

\[
\frac{\sigma}{\mu} = \frac{\sigma}{\mu} \times 100 \% \quad (53)
\]

\[
\frac{\text{Peak-zu-Peak}}{\mu} = \frac{\text{Maximum}(I_i) - \text{Minimum}(I_i)}{\mu} \times 100 \% \quad (54)
\]

Abb. 61 zeigt als Beispiel den relativen Fehler sowie den Fehler von Peak-zu-Peak in Abhängigkeit der Belichtungszeit für ein Experiment in (222)-Richtung. Der relative Fehler nimmt erwartungsgemäß bei längerer Integration schnell ab, bis der Fehler gegen einen Grenzwert konvergiert. Ab einer Belichtungszeit von 120 s fällt der Fehler auf ca. 2%. Ab dieser Belichtungszeit ist keine Veränderung des Fehlers mehr feststellbar. Der Peak zu Peak Fehler weist dort einen Wert von 7% auf und ändert sich zu längeren Belichtungszeiten ebenfalls nicht mehr. Bei dem Peak zu Peak Fehler wurde eigentlich erwartet, daß dieser für alle Belichtungszeiten konstant bleibt. Eine wiederholte Auswertung der Meßdaten brachte leider keine Klärung der großen Fehler bei kleinen Belichtungszeiten. Aus dieser Beobachtung ergibt sich, daß längere Belichtungszeiten nicht sinnvoll sind und zu keiner wesentlichen Verbesserung der Meßergebnisse führen.
5.4 Fehleranalyse

Im weiteren wird diskutiert, wie sich der Fehler für ein einzelnes Bild von ca. 2% bei der festen Belichtungszeit von 120 s auf die Reflektivität R auswirkt. Der Fehler in der Reflektivität $\sigma(R)$ wird nach dem Fehlerfortpflanzungsgesetz bestimmt:

$$\sigma(R) = \left| \frac{\partial R}{\partial I_{Bi,gep}} \right| \sigma(I_{Bi,gep}) + \left| \frac{\partial R}{\partial I_{Bi,unglep}} \right| \sigma(I_{Bi,unglep})$$ \hspace{1cm} (55)

Die Reflektivität als Funktion von $I_{Bi,gep}$ und $I_{Bi,unglep}$ wurde bereits in (7) eingeführt und lautete

$$R = \frac{I_{Bi,gep}}{I_{Bi,unglep}}.$$

Die Schwankung der Anzahl der detektierten Photonen im Bild mit optischer Anregung und ohne optischer Anregung ist mit $\sigma(I_{Bi,gep})$ bzw. $\sigma(I_{Bi,unglep})$ bezeichnet. Werden die Ableitungen in (55) ausgeführt, ergibt sich mit Hilfe der Partiellen Ableitungen:

$$\left| \frac{\partial R}{\partial I_{Bi,gep}} \right| = \frac{1}{I_{Bi,unglep}} \quad \left| \frac{\partial R}{\partial I_{Bi,unglep}} \right| = \frac{I_{Bi,gep}}{I_{Bi,unglep}^2} = R \frac{1}{I_{Bi,unglep}}$$ \hspace{1cm} (56)

der Fehler zu:

$$\sigma(R) = \left(\frac{1}{I_{Bi,unglep}} \right) \sigma(I_{Bi,gep}) + R \left(\frac{1}{I_{Bi,unglep}} \right) \sigma(I_{Bi,unglep}).$$ \hspace{1cm} (57)

Die Anzahl der Photonen in den Aufnahmen ohne optischer Anregung $I_{Bi,unglep}$ kann durch den Mittelwert μ und der Fehler $\sigma(I_{Bi,unglep})$ kann durch die Standardabweichung σ aus der obigen Messung ersetzt werden. Auch der Fehler in dem Bild

Abb. 61: Fehleranalyse für die Experimente an Wismutschichten.
während der optischen Anregung $\sigma(I_{Bi,gep})$ wird dem Fehler σ entsprechen, da in den Gleichungen (51) und (52) die Anzahl der detektierten Photonen I_i jeweils durch RI_i zu ersetzen ist. Somit kann aber in der Gleichung für die Standardabweichung (54) die Reflektivität wieder herauskürzt werden. Der Fehler wird somit zu:

$$\sigma(R) = \{1 + R\} \frac{\sigma}{\mu} \leq 2, 2\frac{\sigma}{\mu} \approx 4,5\%$$

(58)

Im letzten Schritt wurde R durch 1,2 nach oben abgeschätzt. Dies ist der maximal gemessene Wert in den Beugungsexperimenten in (222)-Richtung. Die obere Grenze des Fehlers liegt also bei ca. 4,5 % und kann durch längere Integration nicht verbessert werden. Eine Möglichkeit, die Fehlergrenze weiter zu reduzieren, ist die mehrmals Bestimmung der Reflektivität. Wird die Reflektivität n-mal durch unabhängige Experimente bestimmt, so fällt der Fehler mit $1/\sqrt{n}$.

Bei den Experimenten wurde jede Belichtung bei einer festen Zeitverzögerung mehrmals wiederholt. Steht der Buchstabe n_i für das i-te Normierungsbild und p_i für ein angeregtes Bild, so ergibt sich folgende Abfolge der Bilder bei einer festen Zeitverzögerung τ (also für einen Meßpunkt):

Abb. 62: Abfolge der Aufnahmen bei den Experimenten an Bi-Schichten. Das Symbol n_i steht für das i-te Normierungsbild, p_i für das i-te angeregte Bild. Aus den 8 Werten für die Reflektivität R_i – bei einer festen Zeitverzögerung τ – wird ein Mittelwert berechnet.

Wie aus der Abfolge zu erkennen ist, entsteht mit dieser Methode ein Mittelwert aus 8 unterschiedlichen Werten für die Reflektivität. Der bereits abgeschätzte Fehler von ca. 4,5 % fällt somit um $1/\sqrt{8}$ auf 1,6 %.

Nun soll noch einmal, mit Hilfe der gemessenen Verteilung aus Abb. 13, der gemessene Fehler verifiziert werden. Die Verteilung aus Abb. 13 wird mit Hilfe der statistischen Funktionen, die in (51) bis (53) definiert sind, beschrieben. Die Auswertung der Daten ergibt eine mittlere Photonenzahl im Röntgenfokus von $\mu = 1,9 \cdot 10^4$ pro Laserimpuls, bei einer Standardabweichung von $\sigma = 3953$. Es entsteht ein relativer Fehler von $\sigma/\mu \approx 21\%$. Für statistisch unabhängige Ereignisse addieren sich die
Mittelwerte und Varianzen. Werden „theoretische“ Bilder mit der festen Belichtungszeit τ aus Einzelimpuls-messungen zusammengesetzt, wobei jeder einzelne Impuls der Verteilung in Abb. 13 gehorcht, ergibt sich eine neue Verteilung mit einem Mittelwert μ_1 und einer Varianz σ_1^2 von:

$$
\mu_1 = 10\tau \mu \left(\frac{R_{int}}{\pi} \right) \text{1/rad}
$$

$$
\sigma_1^2 = 10\tau \sigma^2 \left(\frac{R_{int}}{\pi} \right)^2 \text{1/rad}^2
$$

Die Belichtungszeit wurde mit 10 multipliziert, da die Belichtungen im Experiment bei einer Laserwiederholrate von 10 Hz durchgeführt worden sind. Die Anzahl der Photonen wird um die Reflexivität R_{int} vermindert, wobei die Photonen wieder homogen über den Öffnungswinkel von 2,5° verteilt werden. Der relative Fehler ergibt:

$$
\frac{\sigma_1}{\mu_1} = \frac{1}{\sqrt{10\tau}} \frac{\sigma}{\mu} 100\% = \frac{1}{\sqrt{10\tau}} 21\% (61)
$$

Wird eine Belichtungszeit von 120 s eingesetzt, ergibt sich ein Fehler von 0,6%. Der gemessene Fehler, der durch eine 120 s lange Integration entsteht, beträgt nach Abb. 61 2% und ist um einen Faktor 3 größer als der zuvor abgeschätzte aus den Einzelimpulsen. Bei der Abschätzung wurde jedoch nicht berücksichtigt, daß die geringe Reflexivität von $R_{int} \approx 10 \mu\text{rad}$ die Photonenzahlen auf unter 10 pro Impuls erniedrigt; somit kann eine weitere Wahrscheinlichkeitsverteilung maßgebend sein. Die Poissonverteilung beschreibt die Verteilung seltener Ereignisse, sie ist durch ihren Mittelwert μ_2 vollständig bestimmt. Die Varianz der Poissonverteilung σ_2^2 ist gleich dem Mittelwert der Verteilung. Bei den Bi-Experimenten aus Abb. 61 wurden bei einer Belichtungszeit von 120 s im Mittel $\mu_2 = 8000$ Photonen detektiert. Der relative Fehler beträgt $\sigma_2/\mu_2 = 100/\sqrt{\mu_2} \approx 1,1\%$. Da die Einzelschußverteilung und die Poissonverteilung unabhängig sind, werden sich die Varianzen und die Mittelwerte wiederum addieren:

$$
\sigma_3 = \sqrt{\sigma_1^2 + \sigma_2^2}
$$

$$
\mu_3 = \mu_1 + \mu_2
$$

Für beide Verteilungen zusammen ergibt sich ein Fehler von $\sigma_3/\mu_3 = 0,7\%$. Es läßt sich somit zusammenfassen, daß keine der Verteilungen den festgestellten und gemessenen Fehler von 2% reproduzieren kann.

Um die Langzeitstabilität der Quelle zu beobachten und um Fehlmessungen zu ver-
meiden, wurde während der Experimente auch die Abfolge der Anzahl der Photonen in den Normierungsbildern grafisch dargestellt und beobachtet.

\[\text{Abb. 63: Aufgetragen ist die Anzahl der detektierten Photonen in den Normierungsbildern in chronologischer Reihenfolge während eines Beugungsexperiments an Bi (222).}\]

5.5 Materialdaten

<table>
<thead>
<tr>
<th>Materialdaten für Germanium</th>
<th>Symbol</th>
<th>Wert</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmelztemperatur</td>
<td>$T_{M,Ge}$</td>
<td>1210 K</td>
<td>[33]</td>
</tr>
<tr>
<td>spezifische Wärme (sol)</td>
<td>$c_{sol,Ge}$</td>
<td>1,98 J/(cm³K)</td>
<td>[33]</td>
</tr>
<tr>
<td>Absorptionskoeffizient (bei 800 nm, sol)</td>
<td>$1/\alpha_{sol,Ge}$</td>
<td>200 nm</td>
<td>[48]</td>
</tr>
<tr>
<td>Schallgeschwindigkeit (sol 300 K)</td>
<td>$v_{sol,Ge}$</td>
<td>5555 m/s</td>
<td>[33]</td>
</tr>
<tr>
<td>Dichte (sol)</td>
<td>$\rho_{sol,Ge}$</td>
<td>5323 kg/m³</td>
<td>[33]</td>
</tr>
<tr>
<td>Dichte (liq)</td>
<td>$\rho_{liq,Ge}$</td>
<td>5510 kg/m³</td>
<td>[33]</td>
</tr>
<tr>
<td>Kompressionsmodul (sol 300 K)</td>
<td>$B_{sol,Ge}$</td>
<td>70 GPa</td>
<td>[33]</td>
</tr>
<tr>
<td>lin. Ausdehnungskoeff. (sol 300 K)</td>
<td>$\beta_{sol,Ge}$</td>
<td>5,9 ⋅ 10⁻⁶ 1/K</td>
<td>[33]</td>
</tr>
<tr>
<td>lin. Ausdehnungskoeff. (sol 1000 K)</td>
<td>$\beta_{sol,Ge}$</td>
<td>8,5 ⋅ 10⁻⁶ 1/K</td>
<td>[33]</td>
</tr>
<tr>
<td>latente Wärme</td>
<td>$L_{M,Ge}$</td>
<td>2,71 kJ/cm³</td>
<td>[33]</td>
</tr>
<tr>
<td>spezifische Wärme (liq)</td>
<td>$c_{liq,Ge}$</td>
<td>1,98 J/(cm³K)</td>
<td>[72]</td>
</tr>
<tr>
<td>Schallgeschwindigkeit (liq)</td>
<td>$v_{liq,Ge}$</td>
<td>2660 m/s</td>
<td>[97]</td>
</tr>
<tr>
<td>Kompressionsmodul (liq)</td>
<td>$B_{liq,Ge}$</td>
<td>40 GPa</td>
<td>[72]</td>
</tr>
<tr>
<td>lin. Ausdehnungskoeffizient (liq)</td>
<td>$\beta_{liq,Ge}$</td>
<td>3,3 ⋅ 10⁻⁵ 1/K</td>
<td>[18]</td>
</tr>
<tr>
<td>Debye-Temperatur</td>
<td>T_D</td>
<td>374 K</td>
<td>[33]</td>
</tr>
<tr>
<td>Atommasse</td>
<td>m_{Ge}</td>
<td>72,61</td>
<td>[33]</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit (sol)</td>
<td>$\eta_{sol,Ge}$</td>
<td>60 W/m/K</td>
<td>[33]</td>
</tr>
</tbody>
</table>

Tab. 13: Zusammenfassung der Materialdaten und Referenzen für Ge in verschiedenen Phasenzuständen (sol: Festkörper, liq: Flüssigkeit). Die Schallgeschwindigkeit $v_{sol,Ge}$ bezieht sich auf eine longitudinale Welle in der Ausbreitungsrichtung (111), d. h. $v_{sol,Ge}^2 = 1/(3 \rho_{sol,Ge})(C_{11} + 2C_{12} + 4C_{44})$. Die Materialdaten für $v_{sol,Ge}$, $B_{sol,Ge}$ und $\beta_{sol,Ge}$ sind eigentlich temperaturabhängige Konstanten (Abb. 64, 65, 66). Eine Auflistung von Meßdaten bis $T = 1200$ K findet sich in [33]. Werden Temperaturen über 1200 K erreicht, werden die Daten aus den bekannten Daten genähert.
Abb. 64: Schallgeschwindigkeit in Ge und Si senkrecht zu den (111) Ebenen in Abhängigkeit von der Temperatur [33].

Abb. 65: Kompressionsmodul in Ge und Si in Abhängigkeit von der Temperatur [33].
5.5 Materialdaten

Abb. 66: Linearer Ausdehnungskoeffizient in Ge und Si in Abhängigkeit von der Temperatur [33].

<table>
<thead>
<tr>
<th>Materialdaten für Silizium</th>
<th>Symbol</th>
<th>Wert</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>spezifische Wärme (sol)</td>
<td>$c_{sol, Si}$</td>
<td>0,296 J/(cm³ K)</td>
<td>[33]</td>
</tr>
<tr>
<td>Absorptionskoeffizient (bei 800 nm, sol)</td>
<td>$1/\alpha_{sol, Si}$</td>
<td>10 µm</td>
<td>[48]</td>
</tr>
<tr>
<td>Dichte (sol)</td>
<td>$\rho_{sol, Si}$</td>
<td>2329 kg/m³</td>
<td>[33]</td>
</tr>
<tr>
<td>Schallgeschwindigkeit (sol)</td>
<td>$v_{sol, Si}$</td>
<td>9360 m/s</td>
<td>[33]</td>
</tr>
<tr>
<td>Kompressionsmodul (sol 570 K)</td>
<td>$B_{sol, Si}$</td>
<td>90 GPa</td>
<td>[33]</td>
</tr>
<tr>
<td>lin. Ausdehnungskoeffizient (sol 550 K)</td>
<td>$\beta_{sol, Si}$</td>
<td>3, 73 · 10⁻⁶ 1/K</td>
<td>[33]</td>
</tr>
</tbody>
</table>

Tab. 14: Zusammenfassung der Materialdaten für Si in der Festphase.

Abb. 68: Uniaxiale thermische Ausdehnung vs. Temperatur für Germanium und Silizium. Die Ausdehnung kann nur in (111)-Richtung stattfinden [34].
Literaturverzeichnis

[58] Roperscientific: *Data Sheet, PI,LCX1300*.

[73] Siders, C. W., A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kamlar, M. Horn-von Hoegen, K. R. Wilson,

[95] X-ray optics group, Institute of Optics and Quantum Electronics, Friedrich Schiller-Universität Jena: Herstellerangabe.

Mein DANK gilt:

In besonderer Weise Herrn Prof. Dr. von der Linde für die hilfreiche Unterstützung bei meiner Arbeit am Institut für Laser und Plasmaphysik der Universität Essen. Herr Prof. Dr. von der Linde hat den Fortgang meiner Dissertation stets mit großem Interesse und fruchtbaren Anregungen begleitet.

Herrn Prof. Dr. Horn-von Hoegen für die freundliche Übernahme der Begutachtung der Dissertation.

Der Arbeitsgruppe von Herrn Prof. Dr. Horn-von Hoegen und Herrn Dr. Kammler für die Überlassung der notwendigen Wismut- und Germanium Proben.

Herrn Dr. Sokolowski-Tinten für die eingehenden Diskussionen der Daten und die intensive Betreuung während der Labortätigkeit. Insbesondere für die gemeinsam durchwachten Nächte im Labor. Ohne seinen Einsatz wäre diese Arbeit nicht zustande gekommen.

Herrn Prof. Förster und Herrn Dr. Uschmann für die Präparierung und Bereitstellung der Röntgenoptiken.

Herrn Dipl.-Ing. Proff und Herrn Handwerksmeister Bieske für die technische und mechanische Hilfestellung.

Allen Mitarbeitern und Kollegen des Instituts für die kameradschaftliche Zusammenarbeit. Insbesondere Clemens für die Mitarbeit an der Forschungsfront bis zur „Erstschlagfähigkeit“, aber auch für erholsame Abende in unserer Stammkneipe.

Nicht zuletzt meinen Eltern, die mir mit Tat und Rat zur Seite standen, diese Arbeit erfolgreich zu beenden und mein Ziel zu erreichen.
Lebenslauf

Christian Blome
geboren am 10.11.1971 in Essen

<table>
<thead>
<tr>
<th>Schulausbildung</th>
<th>1978–1982</th>
<th>Grundschule in Essen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1982–1991</td>
<td>Bischöfliche Tagesheimschule</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schulzentrum Am Stoppenberg in Essen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abschluss: Abitur</td>
</tr>
<tr>
<td>Hochschulausbildung</td>
<td>09/1992–05/1999</td>
<td>Universität Essen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Studiengang Physik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abschluss: Diplom Physiker</td>
</tr>
<tr>
<td></td>
<td>seit 05/1999</td>
<td>Universität Essen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wissenschaftlicher Mitarbeiter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>am Institut für Laser- und Plasmaphysik</td>
</tr>
<tr>
<td>Lehrerfahrung</td>
<td>seit 99</td>
<td>Übungsleiter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Praktikum für Fortgeschrittene:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Färbstofflaser und Lasergrundversuch</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Abgabe 05/2003</td>
<td>Untersuchung schneller Strukturänderungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mit Hilfe kurzer Röntgenimpulse *</td>
</tr>
<tr>
<td>Mitgliedschaften</td>
<td>Deutschen Physikalische Gesellschaft (DPG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Katholisch Studierenden Jugend (KSJ)</td>
<td></td>
</tr>
</tbody>
</table>

Essen, 01.05.2003

* siehe Publikationsliste
Publikationsliste

1999 Blome C.: Röntgenstrahlung aus lasererzeugten Femtosekunden-Plasmen. Diplomarbeit, Universität Essen, Institut für Laser- und Plasmaphysik

