

 v

Tables

TABLE 1: EVALUATION OF MOF AND THE UML INFRASTRUCTURE LIBRARY RESPECTIVELY 14

TABLE 2: EVALUATION VON ECORE ... 17

TABLE 3: PRELIMINARY SET OF GENERIC REFERENCE TYPES .. 29

TABLE 4: PRELIMINARY SET OF DOMAIN-SPECIFIC TYPES .. 30

TABLE 5: REPRESENTATION OF TEXTUAL ELEMENTS ... 31

TABLE 6: EVALUATION OF THE MEMO META MODELLING LANGUAGE .. 38

Typographical Conventions

If textual elements of meta (meta) models are referred to in the standard body text, they are

printed in Courier italic, e.g. MetaEntity.

Meta Modelling Languages: Requirements

4

tion-oriented requirements. Note that these are not orthogonal dimensions. These generic

requirements need to be further refined for a specific language. Although the framework was

designed for modelling languages (level M2), its generic structure can be applied to meta

modelling languages, too.

2.1 General Requirements for Meta Modelling Languages

Formal requirements are of special relevance for meta modelling languages, because they are a

prerequisite for the (semi-) formal specification of modelling languages.

User-oriented requirements refer to the prospective users’ perception of meta language con-

cepts and their visualisation.

Application-oriented requirements are determined by the intended modelling domains and ge-

neric modelling purposes. They are related to the question whether a meta modelling lan-

guage should be ontologically complete.

2.1.1 Formal Requirements

A meta modelling language should allow for the unambiguous specification of modelling

languages. The resulting language specifications should also provide a foundation for the

development of corresponding modelling tools. For these reasons, the abstract syntax of a

meta modelling language itself needs to be specified precisely.

Requirement F1: The specification of a meta modelling language should include a

formal specification of its abstract syntax.

In order to foster appropriate interpretations of the modelling languages to be designed with

a meta modelling language, the semantics of a meta modelling language should be defined

precisely, too.

Requirement F2: In the ideal case, there should be a formal specification of a meta

modelling language’s semantics. Hence, the specification should be complete and cor-

rect. Since a complete formalisation of semantics will sometimes imply too much of an

effort, it may be sufficient to specify the semantics in a way that is regarded as unam-

biguous by expert users.

Requirement F3: To foster formalisation and comprehensibility, a meta modelling lan-

guage should satisfy the demand for simplicity (see also requirements A1, A2).

The specification of a meta modelling language requires a meta meta modelling language,

which in turn needs to satisfy certain demands.

Requirement F4: To contribute to a precise or even formal semantics, the meta meta mod-

elling language used to specify the meta modelling language should be a formal lan-

guage. In order to avoid a further language to describe the concepts of a meta modelling

language, it should feature a limited set of concepts only. This set of concepts is sufficient,

if it allows for specifying all concepts required on the meta modelling language level. In

http://www.metacase.com/
http://www.semture.de/

http://www.eclipse.org/modeling/emf/?project=emf
http://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/EReference.html#isContainment()

http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.0/org/eclipse/emf/ecore/package-summary.html

The MEMO Meta Modelling Language – New Edition

 27

through associating MetaModel with MetaAttribute. Instead, this is regarded as a feature

that is relevant for the development of corresponding tools (see chapter 7). The concept of

role is rather overloaded within conceptual modelling (for a comprehensive analysis of the

role concept in conceptual modelling see [Stei00], especially p. 61 ff.). In the meta meta model

it is accounted for only for one pragmatic reason: Sometimes, it is not possible to unambi-

guously identify a particular end of an association, which may be required to specify a con-

straint. In this case, it is possible to assign a role to an entity type that forms the end of an

association. A role can support the identification of an association end only, if its name is

unique within the associations that end at the corresponding instance of MetaEntity (Con-

straint 10). The meta meta model itself includes two roles that are assigned to MetaEntity.

MetaObject

languageName : String

MetaModel

isIntrinsic : Boolean (default = false)

MetaConcept

expression : String

Constraint

id : String

Annotation

designator [0..1] : String

roleName [0..1] : String

minCard : MinCardinality

maxCard : MaxCardinality

predecessor : Boolean (default = false)

MetaAssociationLink

MetaCompAttribute

type : MetaRegularType

MetaSimpleAttribute

text : String

Comment

applies tot

ucomposed of

uassociated to

u
s
p

e
c
if
ie

d
 t
h

ro
u

g
h

uspecialized from

u
fe

a
tu

re
 o

f

0,*

1,1

0,*1,1

0..1

0,*

applies tot

<super>

1,1

0,*

1,1

1,1

<entity>

context Comment inv:

Comment.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.id <> p2.id)

C1

context MetaEntity inv:

MetaEntity.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.name <> p2.name)

C2

context Constraint inv:

Constraint.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.id <> p2.id)

C3

context MetaAssociationLink inv:

self.minCard <= self.maxCard

C4

context MetaCompAttribute inv:

(self.entity.allSupertypes->includes: self.type) = false

and self.entity <> self type

C9

0,*

0,*

context MetaEntity

def: allAttributes: self.metaCompAttribute->union(self.metaSimpleAttributes)

inv: self.allAttributes->forAll (a1, a2 |

a1 <> a2 implies a1.name <> a2.name)

C7

context MetaAssociationLink inv:

self.isIntrinsic = true implies (self.metaAssocationLink.isIntrinsic = true)

and (self.metaEntity.metaAttribute->exists (a | a.isIntrinsic = true)) and

(self.metaAssociationLink.metaEntity.metaAttribute->exists (a |

a.isIntrinsic = true))

C5

context MetaEntity

def: let allSuperTypes: collect (me | me = me.super)

inv: (self.allSuperTypes-> includes self) = false

C8

context MetaEntity inv:

self.isIntrinsic = true implies self.metaAttribute-> forAll (a | a.isIntrinsic = true)

self.isIntrinsic = true implies self.metaAssociationLinks-> forAll (a | a.isIntrinsic = true)

C6

context MetaEntity inv:

self.metaAssociationLinks->forAll (a1, a2 | a1 <> a2

implies a1.roleName <> a2.roleName)

C11

1,* 1,*

context MetaAttribute inv:

self.minCard <= self.maxCard or (self.minCard = nil

and self.maxCard = nil)

C10

context MetaAssociationLink inv:

self.predecessor = true implies

(self.metaAssocationLink.predecessor = false)

C12

set: MetaEnumeration

MetaEnumAttribute

name : String

minCard [0..1]: MinCardinality

maxCard [0..1]: MaxCardinality

derivable: Boolean

obtainable: Boolean

simulation: Boolean

MetaAttribute

interval: MetaInterval

MetaIntervallAttribute

name : String

isAbstract : Boolean

isSingleton : Boolean

isType: Boolean

MetaEntity

0,1

context MetaEntity inv:

self.isType = true implies (self.isIntrinsic = false)

C15

<typed>

context MetaEntity

inv: self.typed->notEmpty implies self.isType = true

C14

context MetaEntity

def: let allSuperTypes: collect (me | me = me.super)

inv: (self.allSuperTypes->forAll (t | t.isType = true) or

(self.allSuperTypes->forAll (t | t.isType = false)

C13

0,* 0,*

Figure 11: The MEMO meta meta model

Language Specification

30

Currency

name: String
multipleOfRef: Float

This type allows for representing currencies. An instance c

of Currency is defined by its name and a factor a unit of a

reference currency has to be multiplied by to produce a

unit of c.

Money

currency: Currency
amount: Float

Money allows for representing an amount of money on a

higher level of abstraction (and semantics) by including the

corresponding currency as an instance of Currency.

Table 4: Preliminary set of domain-specific types

Affirmation

level: {#no need, #could do without,
#needed, #essential}

Whenever an attribute represents an evaluation, Af-

firmation can be used to express the corresponding

judgement. For instance: An organisational unit could

include the attribute ‚subjectOfOutsourcing‛ to indica-

te whether outsourcing this type of organisational unit

is a useful option. Specifying it with Affirmation

would contribute to reuse and model coherence. In

addition to that, it would allow for convenient and safe

revisions at a later time.

Availability

description: String
level: {#critical, #satisfactory, #high}

This type serves to specify attributes that represent an

availability – of a resource or a product.

Fluctuation

description: String
numberOfMonths: Integer
percentage: Float

Fluctuation is primarily intended to represent the

fluctuation of employees within a certain organisatio-

nal position or role. It could be applied to resources in

general, too.

Mission

description: String

An organisational unit, a project etc. may be characte-

rized by a mission. The type Mission serves to speci-

fy respective attributes. In its current state, this auxilia-

ry type does not provide an elaborate specification.

Performance

strengths: String
weaknesses: String
potential: String
perfLevel: {#critical, #satisfactory, #outstanding}

Various types of analysis require accounting for the

performance of subjects such as organisational units,

products etc. Performance defines a concept that

does not only allow for defining a performance level on

an ordinal scale, but to also describe strengths, weak-

nesses and potential.

The MEMO Meta Modelling Language – New Edition

 31

4.6 The Graphical Notation

The concrete syntax or graphical notation of the meta modelling language is much like the

one already used for drawing the meta meta model itself. For the specification of textual des-

ignators/annotations we use a Bachus-Naur form (see Table 5). The non-terminal symbols are

used within the graphical illustration of the notation (see Figure 13 and Figure 14). Notice

that we do not bother with specifying a few basic non-terminal symbols – like LowercaseLet-

ter, UppercaseLetter, LineFeed etc. or String.

Table 5: Representation of textual elements

B
as

ic
 S

y
m

b
o

ls
 &

C
o

m
p

o
si

te
s

<digit> ::= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

<positiveInteger> ::= {< digit >}

<infiniteNumber> ::= ’*’

<separator> ::= ’..’

<lowerString> ::= <LowercaseLetter> <String>

<upperString> ::= <UppercaseLetter> <String>

M
u

lt
ip

li
ci

ty
 <maxCardinality> ::= <PositiveInteger> | <infiniteNumber>

<minCardinality> ::= <PositiveInteger>

<multiplicity> ::= ’(’ <minCardinality> separator <maxCardinality> ’)’

N
am

es
 &

 D
es

ig
n

at
o

rs

<EntityName> ::= <upperString>

<AttributeName> ::= <lowerString>

<backwardArrow> ::= ’t’

<forwardArrow> ::= ’u’

<designator> ::= <lowerString>

<backwardDesignator> ::= <backwardArrow> <designator>

<forwardDesignator> ::= <designator> <forwardArrow>

<roleName> ::= <lowerString>

<constraintkey> ::= ’C’ <number>

<commentkey> ::= ’C’ <number>

To satisfy the demand for a clear visual distinction between meta models and models on the

object level (req. U3), instances of MetaEntity are represented in a different layout: Instead

of a black font on a white (or grey respectively) background, a white font on a black back-

ground is used to depict the name of the instance. If a MetaEntity is instantiated into a

type (indicated by a respective value of its attribute isType), the name of the resulting type

is printed in black on a grey background. Specialisation relationships are depicted using a

common notation: an arrow that is directed towards the generalized concept. In order to fos-

ter the distinction from UML class diagrams, the arrowhead is filled in black. This is the

Language Specification

32

same notation as the one used in the meta meta model already. Usually, one will not use

more than one designator for an association. However, it is possible to assign one designator

for each direction. Comments and constraints are represented through specific boxes with

attached identifiers. As an option, they can be linked to a selected model element through a

dotted line. They are expressed through strings. In the case of constraints it is recommended

to use OCL expressions. Roles within associations are depicted as grey, rounded boxes with

their names printed in white. Intrinsic features are a concept that is specific to the MEMO

meta modelling language. Their semantics is substantially different from ordinary modelling

concepts. Therefore they need to be marked clearly. This is accomplished through a white

‚i‛, which is printed in a black box. The box is attached to the names of attributes and entity

types or to the designators of associations. If an association carries two designators, both

should be marked accordingly. In the case of intrinsic entities, the box has a white frame to

make its shape visible. If an association is not assigned a designator, the box is placed next to

the edge that represents the association. Abstract entity types are marked by printing their

names in italic.

The MEMO Meta Modelling Language – New Edition

 33

<AttributeName> ':' <EntityName> | <Type Name>

<AttributeName> <Multiplicity> ':' <EntityName> | <Type Name>

<EntityName>

<Multiplicity>

<EntityName>

<Multiplicity>

<forwardDesignator>

<backwardDesignator>

<EntityName>

<roleName>

<String>

<commentKey>

 <AttributeName> ':' <EntityName> | <Type Name>

<AttributeName> <Multiplicity> ':' <EntityName> | <Type Name>

<EntityName>

<Multiplicity>
<AttributeName> ':' <EntityName> | <Type Name>

<EntityName>

<Multiplicity>

<forwardDesignator><roleName>

i

ii

abstract type

Focus on intrinsic features:

<EntityName> <EntityName> <EntityName>

belongs to

language A

belongs to

language B

belongs to

languages A & B

<constraintKey>

<String>

<EntityName> <EntityName>

Focus on temporal relationships:

<Multiplicity> <Multiplicity>

<AttributeName> ':' <EntityName> | <Type Name>

<AttributeName> <Multiplicity> ':' <EntityName> | <Type Name>

<EntityName>

Focus on language-level types:

generalisation/specialisation

 <AttributeName> ':' <EntityName> | <Type Name>

<AttributeName> <Multiplicity> ':' <EntityName> | <Type Name>

<EntityName>

Focus on derivable features and simulation:

d o
d

o

derivable

obtainable from external source
s

for simulation purposess

s

s singleton

i intrinsic feature/intrinsic type

Figure 13: Elements of the graphical notation

Enterprise models require the use of various languages that need to be integrated. For this

purpose, the corresponding meta models have to be merged. In the case of complex meta

models, this constitutes a substantial challenge even for experienced language designers. In

order to contribute to a more transparent representation, the elements of a meta model can

be marked by a symbol that indicates the modelling language they belong to. Since the set of

languages that can be specified using the MEMO meta modelling language is not deter-

mined, it is not possible to define symbols in advance. Instead, the language designers have

Language Specification

34

to cater for that. Figure 14 shows possible options for marking entity (meta) types that are

part of the MEMO OrgML meta model.

<EntityName> <EntityName> <EntityName>

belongs to

language A

belongs to

language B

belongs to

languages A & B

Figure 14: Options to mark the elements of a meta model as belonging to a particular language

4.7 Examples

The application of the MEMO meta modelling language allows for constructing a wide range

of meta models. The following examples serve to illustrate the use of both basic concepts that

will be required for most meta models as well as the use of more sophisticated or rarely re-

quired concepts. The first example, depicted in Figure 15 shows a meta model of the ERM.

This is certainly not a typical application, since the MEMO meta modelling language is sup-

posed to be used for the specification of more complex meta models.

name : String

AbstractEntity

EntityType RelationshipType

minCard : MinCardinality

maxCard : MaxCardinality

Link

uspecified thru

2,3

Attribute

E_Attribute R_Attribute

Domain

1,1

1,10,*

1,1

0,*

1,1

0,*
0,*

1,1

u
p

a
rt

 o
f

u
p

a
rt

 o
f

0,1

0,*

Figure 15: A meta model of the ERM

If modelling languages need to be integrated, the corresponding meta models will usually be

placed side by side in order to look for common concepts. The example in Figure 16 shows

the integration of the ERM with the DFD. The symbols used to distinguish both languages

make use of different colours only. The example illustrates the use of roles and constraints,

too.

The MEMO Meta Modelling Language – New Edition

 35

name : String

AbstractEntity

EntityType RelationshipType

minCard : MinCardinality

maxCard : MaxCardinality

Link

uspecified thru

2,3

Attribute

E_Attribute R_Attribute

Domain

FunctionDataFlowDataStore

name : String

AbstractFlowEntity

Interface

1,1

1,10,*

1,1

0,*

1,1

0,*
0,*

1,1

u
p

a
rt

 o
f

u
p

a
rt

 o
f

0,1

u
re

p
re

s
e

n
ts

u
re

p
re

s
e

n
ts

0,*

DFD

ERM

0,* 0,*

0,* 0,* 1,*1,*

0,* 0,*

0,* 0,*

1,1 0,*

0,*

uproduces

uconsumes producest

consumest

uproducesconsumest

Figure 16: Differentiating two meta models through specific symbols

The use of intrinsic features is a more sophisticated option offered by the MEMO meta mod-

elling language. The example in Figure 17 shows all concepts that can be used to express

intrinsic features: intrinsic entity types, intrinsic attributes and intrinsic associations. The

example shows a simplified application of the MEMO OrgML. In order to illustrate the meta

model’s semantic, the type and instance level are represented, too. The meta type Process

is associated to the meta type OrgUnit. To specify a particular organisation model, Pro-

cess is instantiated into OrderManagement and OrgUnit into MarketingDepartment.

Both meta types contain intrinsic attributes that are not instantiated on the type level, but

only on the instance level. The time a process is started or terminated is not a feature of a

type, but of a particular instance. This differentiation is not that obvious for the instantiation

of OrgUnit. This is because MarketingDepartment is defined as singleton (indicated

through the little box with an ‘S’ on top of the box that represents the type). The type does

not have a particular number of employees, nor was it founded at a certain date. Instead,

these features belong to the single instance of MarketingDepartment. Note that Market-

Language Specification

36

ingDepartment does not have to be defined as singleton. If, for example, a multinational

corporation specifies a reference organisation structure for all its national subsidiaries, then

there would be multiple instances. To express that every organisational unit, no matter of

what type it is, is headed by one employee, the type Employee could be associated with

OrgUnit. However, Employee does not apply to the meta level. Therefore, it is specified as

intrinsic. Note that one should be very careful with using this option, because normally a

meta model should not include types.

name : String

averageDuration : Time

 started : Time

 terminated : Time

Process

i

i

M0

M1

M2

instance of

averageDuration = 144

started : Time

terminated : Time

OrderManagement

started = 12:45:00

terminated = 14:55:20

p1: OrderManagement

averageNumberOfEmployes = 56

numberOfEmployees: PositiveInteger

founded: Date

MarketingDepartment

numberOfEmployees = 51

founded = 2002-05-22

o1: MarketingDepartment

0,*

name : String

averageNumberOfEmployees : Float

isSingleton: Boolean

 numberOfEmployees: Integer

 founded: Date

OrgUnit

i

S

i

0,*

in charge oft

i

lastName: String

firstName: String

dateOfBirth: Date

formalQual: String

Employeei

in charge oft iresponsible fort

0,*

lastName: String

firstName: String

dateOfBirth: Date

formalQual: String

Employee

in charge oft

0,*

lastName = Smith

firstName = John

dateOfBirth: 1952-10-15

formalQual: 'MBA'

e1: Employee

1,1

1,1 1,1

1,1

Figure 17: The use of intrinsic features

Figure 18 illustrates the use of language-level types, which are instantiated to instances on

the model level. The concepts shown on the M2 level could be part of a language for model-

ling logistic networks. RegularService serves to specify types of regular services provid-

ed by a shipper. In a corresponding model, a type of a regular service would be described by

the cities it serves. The cities as well as the respective countries are – for plausible reasons –

modelled as instances. The meta type RegularService includes intrinsic feature to allow

for describing particular instances.

The MEMO Meta Modelling Language – New Edition

 37

Figure 18: The use of language-­‐‑level types

4.8 Preliminary Evaluation

The MEMO meta modelling language was designed to meet the requirements presented in
2.1. Table 6 gives an overview of how well the requirements are satisfied. With respect to
some criteria (e.g. U1 or U3), such an assessment suggests to involve a larger number of lan-­‐‑
guage designers. This has not happened yet.

name : String
motorwayChargePerKM : Money
prefix: String

Country

M0

M1

M2

motorwayChargePerKM: 0.224
prefix: 'D'

Germany: Country
trafficDensity = #high
population = 3.504.000

Berlin: City

0..*
name : String
trafficDensity: Level
population: Integer

City

1..1

located inW

id: String
frequence: Frequence
averageLoad: Float
 started: Time
 finished: Time

RegularService

servesW

i

located inW

1..*

servesW

started: 2010-11-7; 4:34
finished: 2010-11-7; 18:12

nw1: NorthWestS2

0..*

i

frequence: '1 per day'
averageLoad: 14.5
started: Time
finished: Time

NorthWestS2

Language Specification

38

Table 6: Evaluation of the MEMO meta modelling language

Req. Eval. Comment

F1 + The abstract syntax of the MML is formalized.

F2 + The semantics of the MML is formalized to a large extent.

F3 o Although the MML includes a few specific concepts, such as intrinsic features, it is restricted

to a small set of concepts. Unfortunately, the complexity of the meta meta model has grown

over time with the emergence of additional requirements for the specification of modelling

languages. As a consequence, it is not as simple as originally intended. Nevertheless, the

additional concepts are regarded as necessary to account for requirements A2 and A3.

F4 o The MML does not make use of an explicit meta meta modelling language. The language

concepts used to specify it correspond to the ERM, which is enhanced by a few concepts

only – such as specialisation and abstract entity types. While more than a dozen OCL con-

straints counter inappropriate interpretations, they are not sufficient for a comprehensive

formalisation.

U1 + Modelling experts should be familiar with most concepts offered by the MML, because they

correspond to the ERM. However, many prospective users will probably not know intrinsic

features.

U2 + The MEMO language architecture provides a clear differentiation of levels of abstraction.

U3 + The specific graphical notation of the MML promotes a clear differentiation of meta models

from models on other levels of abstraction.

A1 o The MML was specifically designed for specifying languages for enterprise modelling. Its

core concepts have been successfully used for this purpose for several years. Nevertheless, it

cannot be excluded that in future times requirements will occur, the MML does not account

for.

A2 + The MML’s sole purpose it the specification of meta models.

A3 + The MML makes use of the OCL, which can be applied to add further constraints on lan-

guage specifications.

A4 + The MML supports a clear mapping to object-oriented implementation languages. It also

supports a transformation of meta models into Ecore representations (see 6).

A5 + The MML features intrinsic features, the semantics of which is precisely defined. Intrinsic

features are also accounted for by specific notation elements.

A6 + The MML allows for specifying a concept of a meta model as type. Hence, it is possible to

specify modelling languages that offer concepts to model instances.

A7 o The MML is clearly not a standard. However, its instances (meta models) can be trans-

formed into Ecore representations or other standard representations such as XMI – which,

however, may cause the loss of semantics.

The MEMO Meta Modelling Language – New Edition

 39

5 The MEMO Language Architecture

MEMO consists of an extensible set of modelling languages. They are integrated through

shared concepts, which in turn are specified through the common meta modelling language.

This construction allows for a coherent integration of new languages that supplement the

existing set of languages. It provides a foundation for designing a corresponding set of inte-

grated modelling tools, too. Figure 19 shows the two levels of the language architecture and

the corresponding models on the type level: The common meta meta model specifies the

abstract syntax and semantics of the MEMO meta modelling language. It is instantiated into

the meta models specify the abstract syntax and semantics of the MEMO modelling lan-

guages, such as the Object Modelling Language (OML, [Fran98c], [Fran98d]), the Organisa-

tion Modelling Language (OrgML), the Strategy Modelling Language (SML) or the IT Model-

ling Language [Kirc08]. Further MEMO languages target modelling of resources [Jung08] or

various aspects of corporate knowledge management [Scha08]. Note that it may be required

to reconstruct the architecture occasionally. If, for instance, two languages share a growing

number of concepts, merging them into one language will improve the architecture’s trans-

parency. The bottom layer represents the models that are created by the modelling lan-

guages.

Meta Meta Model

Meta Models

Models

instance of

instance of

MML

OML OrgML SML ITML

Figure 19: The MEMO language layers

In addition to providing for an integrated set of modelling languages, the architecture should

also account for the construction of a tool environment: While the meta models can be re-

garded as a conceptual foundation for the design of a corresponding modelling tool, they

cannot be used directly for this purpose. Instead, they need to be reconstructed as object

The MEMO Language Architecture

40

models. These object models do not only represent the meta models, they need to be en-

hanced with tool specific features, e.g. features that relate to versioning, to user management

or to analysing and transforming models. In case a tool is supposed to support collaborative

modelling in a distributed setting, there is need to include concepts that allow for model

locking on various levels of detail. In order to provide a conceptual foundation for a tool

suite that allows for integrating various modelling editors, the object models that correspond

to particular meta models are merged into an integrated object model (see Figure 20). The

various editor of an integrated tool provide particular views on instances of this object mod-

el.

Meta Meta Model

Meta Models

Object Models

Integrated

Object Model

MEMO Center

instance of

reconstruction of

integrates

conceptual

foundation of

MML

OML OrgML SML ITML

Figure 20: The MEMO language architecture and corresponding conceptual foundation for modelling tools

The MEMO Meta Modelling Language – New Edition

 41

6 Outline of a Modelling Tool

The meta models specified through the MEMO MML can be used as a conceptual foundation

for the development of modelling tools. This requires reconstructing them as object models

(see chapter 5). With respect to the remarkable gain in productivity provided by the GMF,

we decided to use it as a foundation for the development of MEMO Center. MEMO Center a

is modelling environment that allows for creating various models, which are all integrated.

For this reason, it provides cross-model integrity checks. If, for instance, a business process

model includes a reference to an IT resource with an ITML model, the tool would prevent

deleting this resource or would – on explicit user demand – perform a consistent delete op-

eration in all related models. Furthermore, the tool allows for transforming models of vari-

ous kinds into other representations. For example, a business process model that is integrat-

ed with an ITML model could be transformed into the schema of a workflow management

system – for the description of a prototype, see [Jung04]. The set of MEMO modelling lan-

guages is supposed to be extensible, which implies the development of further model edi-

tors. For this reason, the creation and integration of new model editors as well as the mainte-

nance of editors should be supported by an efficient tool. The tool – which is currently under

construction – is built using the GMF. For this purpose, the meta meta model was recon-

structed as an instance of Ecore.

Figure 21 shows a simplified version of the Ecore instance that was created with the GMF.

Note that this model is represented as an instance of Ecore, while its presentation within the

model editor gives the impression that it is a class diagram. However, its semantics is differ-

ent from a class diagram. The connectors between two instances of EClass – such as

MetaEntity, MetaAttribute etc. – do not represent associations as they are known from

class diagrams. Instead, they represent references as they are used on the implementation

level. Therefore, each association in the MEMO meta meta model is represented by two links

in the Ecore instance. In addition to that, further peculiarities of Ecore have to be accounted

for. For this reason, creating a meta (meta) model in the GMF is certainly more demanding

(and confusing) than using a specialized editor – like the MML editor that is illustrated in

Figure 22.

Outline of a Modelling Tool

42

Figure 21: The MEMO meta meta model as an Ecore instance

The MEMO meta modelling editor allows for specifying MEMO meta models. As soon as a

meta model is finalized, the editor transforms it into a corresponding Ecore instance. This

includes the transformation of OCL statements. Subsequently, further specifications, such as

the concrete syntax, have to be added. This still requires remarkable expertise and effort.

Nevertheless, the MEMO meta modelling editor and the GMF, it is part of, facilitate the con-

struction of additional model editors to a great extent. Figure 22 illustrates through a simpli-

fied workflow how to develop an editor for a new MEMO modelling language.

MML Editor

Eclipse

Modelling

Environment
MEMO Center

create meta model specify concrete syntax modify/add code test model editor

generate compile

Ecore

instance

implemented thru

Figure 22: Simplified workflow for developing additional model editors within MEMO Center

The MEMO Meta Modelling Language – New Edition

 43

7 Future Research

The new version of the MEMO MML reflects more than ten years of experience with design-

ing languages for enterprise modelling. Hence, it is promising a relatively mature foundation

for specifying meta models. Nevertheless, new requirements may evolve that suggest modi-

fying the MML. Hence, we regard the MML as an instrument, but also as an ongoing subject

of our research. This is the case with the language architecture, too. Focussing on new do-

mains motivates the design of new modelling languages. The corresponding meta models

are then added to the language architecture. In order to keep the architecture consistent,

commonalities of the languages need to be analyzed from time to time. This may result in

redesigning the language architecture by merging languages.

MEMO is a method for enterprise modelling. A modelling method does not only consist of

one or more modelling languages, but also of one or more corresponding process models

that guide the application of the languages. A process model is comprised of the control flow

of phases that need to be completed. It also specifies the roles that are required for staffing a

corresponding project. In order to support the individual configuration of process models, a

specific language for designing process models can be applied. This can either be an adapted

version of a business process modelling language or a dedicated language for modelling pro-

ject phases, such as the one specified by Schauer as an extension of the MEMO language fam-

ily ([Scha08], p. 245 f.). A meta modelling language like the MML and a language for model-

ling process models provide the foundation for designing methods that satisfy particular

requirements. However, for many prospective users of a customized method designing it

from scratch would be too much effort. Therefore, our future research on method engineer-

ing will target approaches to reuse and adapt existing modelling languages and process

models.

A method that is specified through meta models for the language(s) and process model(s) it

includes, provides an excellent conceptual foundation for elaborate project management

tools. A process model – as an instance of a corresponding meta model – would represent a

certain type of managing projects. Its phases would be related to role types, types of models

and – as a prescriptive reference – to states of models that are supposed to be accomplished.

A particular project would then be represented through representations of models and a cor-

responding instance of the selected process model. Such a representation could be used to

generate the static structure of an information system that would manage all aspects of a

project that were specified in the method, e.g. states (or versions) of models accomplished (or

not) in any phase.

http://www.jyu.fi/~kelly/
http://www.cs.jyu.fi/~kalle/
http://www.jyu.fi/~mor/

„Leitbild IT-Controller/-in – Beitrag der Fachgruppe IT-Controlling der Gesellschaft für Informatik

e. V.“

No 31 (April 2009)

Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-Referential Enterprise Sys-

tems – Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)

Schauer, Hanno; Wolff, Frank: „Kriterien guter Wissensarbeit – Ein Vorschlag aus dem Blickwinkel der

Wissenschaftstheorie (Langfassung)“

No 29 (January 2009)

Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on Var-

iability Modelling of Software-intensive Systems”

2008

No 28 (December 2008)

Goedicke, Michael; Striewe, Michael; Balz, Moritz: „Computer Aided Assessments and Programming

Exercises with JACK“

No 27 (December 2008)

Schauer, Carola: “Größe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universitäten im

deutschsprachigen Raum - Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)

Milen, Tilev; Bruno Müller‐Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)

Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-Touch beim Softwaredesign am

Beispiel der CRC Card-Methode”

No 24 (August 2008)

Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture – Revised

Version”

No 23 (January 2008)

Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing – Outline of an

Approach Supporting Production Planning”

No 22 (January 2008)

Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International

Workshop on Variability Modelling of Software-intensive Systems"

2007

No 21 (September 2007)

Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess-management-

Kreislauf"

No 20 (August 2007)

Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Software"

Previously published ICB - Research Reports

No 19 (June 2007)

Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the „Relevance

Debate’

No 18 (May 2007)

Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der

Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die Lehre”

No 17 (May 2007)

Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An Analysis of

Model Curricula”

No 16 (May 2007)

Müller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and Mainframe Ca-

pacity Planning”

No 15 (April 2007)

Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT-Professionals – Analyse

und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)

Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden für Soft-

warearchitekturen”

No 13 (February 2007)

Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter

Architekturen”

No 12 (February 2007)

Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to

Markovian Process Algebras”

No 11 (February 2007)

Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben des

IT-Managements – Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)

Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender Lehrbücher der

Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)

Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Qualifizierung des wissen-

schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)

Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag für ein Forschungspro-

gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)

Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re-

search”

No 6 (April 2006)

Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten – Ein Diskussionsbeitrag”

No 5 (April 2006)

Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part III – Results

Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part II – Results Information Sys-

tems Discipline”

No 2 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part I – Research Objectives and

Method”

No 1 (August 2005)

Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und -methoden in

Wirtschaftsinformatik und Information Systems“

	

�������������������

���
���������������������������
���������������������

42
Ulrich Frank

Outline of a Method for Designing
Domain-Specific Modelling Languages

ICB-Research Report No.42

December 2010

Research Group Core Research Topics

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

E-Learning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

E-Business, E-Procurement, E-Government

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. B. Müller-Clostermann
Systems Modelling

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr.-Ing. E. Rathgeb
Computer Networking Technology

Computer Networking Technology

Prof. Dr. E. Rukzio
Mobile Human Computer Interaction

Novel Interaction Technologies, Personal Projectors,
Pervasive User Interfaces, Ubiquitous Computing

Prof. Dr. A. Schmidt
Pervasive Computing

Pervasive Computing, Uniquitous Computing, Automotive User
Interfaces, Novel Interaction Technologies, Context-Aware
Computing

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

	DocumentServlet-1.537.248.871.918
	ICB-Report_No43
	Cover_No43_Vorderseite
	ICB_RR_Rückseite

