Schaltbare polymere Hydrogеле für die reversible Immobilisierung von Enzymen

Dissertation

zur Erlangung des akademischen Grades
Dr. rer. nat.
des Fachbereichs Chemie
der Universität Duisburg-Essen

vorgelegt von
Christian Fänger
aus Oberhausen

Essen 2005
Vorsitzender: Prof. Dr. R. Sustmann
Referent: Prof. Dr. M. Ulbricht
Koreferent: Prof. Dr. C. Maier
Tag der mündlichen Prüfung: 20.12.2005
Die hier vorliegende Arbeit wurde in der Zeit von April 2002 bis November 2005 im Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT in Oberhausen sowie am Lehrstuhl für Technische Chemie II der Universität Duisburg-Essen unter der Leitung von Herrn Prof. Dr. M. Ulbricht angefertigt.

Ich danke:

Herrn Prof. Dr. M. Ulbricht
für die Anregung zu dieser Arbeit, für die gewährte Freiheit bei der Durchführung, sowie seine stete Diskussionsbereitschaft und großzügige Unterstützung,

Herrn Prof. Dr. C. Maier
für die Übernahme des Koreferates

Herrn Holger Wack
für die hilfreichen Diskussionen, die gute Arbeitsatmosphäre und die gute Betreuung,

Herrn Christian Hettgen
für die hilfreiche Unterstützung bei den Messungen,

Frau Lina Schade
für die hilfreiche Unterstützung bei den Messungen und Hilfen bei der Korrektur dieser Arbeit.

Ferner bedanke ich mich bei meinen Eltern und Geschwistern, die mir durch ihre Unterstützung und Geduld privaten Rückhalt gaben.
1 EINLEITUNG ...5

2 THEORETISCHE GRUNDLAGEN ...8

2.1 IMMOBILISIERUNG VON ENZYMEN ..8
 2.1.1 Definition ...8
 2.1.2 Gründe für die Immobilisierung ...9
 2.1.3 Immobilisierungsmethoden ...9
 2.1.3.1 Adsorptive Bindung ...10
 2.1.3.2 Ionische Bindung ..11
 2.1.3.3 Kovalente Bindung ..12
 2.1.3.4 Quervernetzung ..13
 2.1.3.5 Matrixeinhüllung ..14
 2.1.3.6 Membranabtrennung ...15

2.2 GELE ..16
 2.2.1 NIPA-Gele ...17
 2.2.2 Redox-Systeme für die Polymerisationsinitiierung18
 2.2.3 Polymerisation von NIPA zu PNIPA ..18
 2.2.4 Vernetzung von NIPA während der Polymerisation19
 2.2.5 Einbau des ionischen Comonomers ..20
 2.2.6 Herstellung ..21
 2.2.7 Theoretische Überlegungen zum Quellungsgleichgewicht22
 2.2.8 Quellgrad ..24
 2.2.9 Netzwerkparameter ...25
 2.2.10 Fundamentale Wechselwirkungen bei dem Volumen- Phasenübergang in Geln 26
 2.2.10.1 Van der Waals Wechselwirkung ..27
 2.2.10.2 Hydrophobe Wechselwirkungen ..28
 2.2.10.3 Wasserstoffbrückenbindung ...28
 2.2.10.4 Elektrostatische Wechselwirkungen ..29
 2.2.11 Volumenphasenübergänge in Geln ..31
 2.2.12 Makroporöse Gele ...33
 2.2.13 Stand der Technik auf dem Gebiet der PNIPA-Gele36

3 AUFGABENSTELLUNG ..42

4 EXPERIMENTELLER TEIL ...45
 4.1 ALLGEMEINE SYNTHESEVORSCHRIFT FÜR KONVENTIONELLE GELE45
 4.2 ALLGEMEINE SYNTHESEVORSCHRIFT FÜR GELE MIT VARIIERENDEN PEG-ANTEIL.46
4.3 ALLGEMEINE SYNTHESEVORSCHRIFT FÜR GELE MIT IONISCHEN COMONOMER

4.4 ZUSAMMENFASSUNG ALLER DURCHGEFÜHRTEN SYNTHESEN

4.4.1 Vorsynthesen

4.4.2 Synthese von konventionellen Gelen

4.4.3 Synthese von Gelen mit varierendem PEG-Anteil

4.4.4 Synthese von Gelen mit ionischem Comonomer

4.5 STANDARD-CHARAKTERISIERUNGSMETHODEN

4.5.1 Polymerisation im Rheometer

4.5.2 TOC-Messungen des Waschwassers

4.5.3 Messungen zur Entquellungskinetik

4.5.4 Messungen zur Quellungskinetik

4.5.5 Messungen des Gleichgewichtsquellgrades

4.5.6 Messung von Raman-Spektren

4.5.7 Rasterelektronenmikroskopische Aufnahmen

4.5.8 Untersuchung der Porenstruktur

4.5.9 Dynamic Scanning Calorimetry

4.6 SPEZIELLE CHARAKTERISIERUNGSMETHODEN

4.6.1 Ausbeuteberechnung

4.6.2 Qualitative Be- und Entladungsversuche mit Bromphenol-Blau-Na-Lösung

4.6.3 Qualitative Be- und Entladungsversuche mit FITC-Dextran-Konjugat M₆ = 70 kDa

4.6.4 Bestimmung von Diffusionskoeffizienten im Hydrogel

4.6.5 Bestimmung der Dextrankonzentration

4.6.6 Überprüfung der Anreicherung von FITC-Dextran

4.6.7 Quantitative Be- und Entladungsversuche mit FITC-Dextran-Konjugat

4.6.8 Ausbeuteberechnung

4.7 UMSATZMESSUNG EINES IMMOBILISIERTEN ENZYMVS

5 ERGEBNISSE

5.1 SYNTHESEBEDINGUNGEN

5.1.1 Optimierung des Starterverhältnisses

5.1.2 Vorbehandlung und Zusammensetzung der Polymerisations-Lösung

5.1.3 Vorbehandlung des Basismonomers

5.1.4 TOC-Messungen des Waschwassers

5.1.5 Ramanmessungen

5.2 STANDARD-CHARAKTERISIERUNGSMETHODEN

5.2.1 Polymerisation im Rheometer

5.2.2 Kriechtest mit anschließender Kriecherholung

5.2.3 Messungen zur Entquellungskinetik

5.2.4 Messungen zur Quellungskinetik

5.2.5 Messungen des Gleichgewichtsquellgrades
5.2.6 Berechnung der Maschenweiten ... 102
5.2.7 Rasterelektronenmikroskopische Aufnahmen ... 111
5.2.8 Dynamic Scanning Calorimetry ... 115
5.3 SPEZIELLE CHARAKTERISIERUNGSMETHODEN .. 121
5.3.1 Qualitative Be- und Entladungversuche mit Bromphenol-Blau-Na-Lösung 121
5.3.2 Qualitative Be- und Entladungversuche mit FITC-Dextran-Konjugat $M_w = 70$ kDa ... 123
5.3.3 Bestimmung des Diffusionskoeffizienten eines Hydrogels 123
5.3.4 Überprüfung der Anreicherung von FITC-Dextran 126
5.3.5 Quantitative Be- und Entladungsversuche .. 128
 5.3.5.1 Fehlerabschätzung .. 131
 5.3.5.2 Beladungseffizienzen der Gele mit FITC-Dextran 70 kDa 135
 5.3.5.3 Beladungseffizienzen der Gele mit FITC-Dextran 150 kDa 139
 5.3.5.4 Beladungseffizienzen der Gele mit FITC-Dextran 4 kDa 143
 5.3.5.5 Beladungseffizienzen der Gele mit FITC-Albumin 147
5.4 UMSATZMESSUNG EINES IMMOBILISIERTEN ENZYMS 151
6 DISKUSSION .. 152
 6.1 SYNTHESEUNTERSUCHUNGEN .. 152
 6.1.1 Variation des Starterverhältnisses ... 152
 6.1.2 Parameter der Monomerlösung .. 152
 6.1.3 Vorbehandlung Basismonomer ... 153
 6.1.4 Synthese von konventionellen Gele ... 154
 6.1.5 Synthese von Gelen mit variierendem PEG-Anteil 155
 6.1.6 Synthese von Gelen mit ionischem Comonomer 155
 6.1.7 TOC-Messungen ... 156
 6.1.8 Raman-Messungen .. 157
 6.1.9 Polymerisation im Rheometer .. 157
 6.1.9.1 Einfluss des Gesamtmonomergehalts bei Gelen ohne ionisches Comonomer ... 159
 6.1.9.2 Einfluss der PEG-Konzentration bei Gelen ohne ionisches Comonomer 159
 6.1.9.3 Einfluss des ionischen Comonomers bei konventionellen Gelen 160
 6.1.9.4 Einfluss der PEG-Konzentration bei Gelen mit ionischem Comonomer 160
 6.1.9.5 Einfluss des ionischen Comonomers bei makroporösen Gelen 160
 6.2 STRUKTURUNTERSUCHUNGEN ... 161
 6.2.1 Kriechtests mit anschließender Kriecherholung 161
 6.2.2 Messungen des Gleichgewichtsquellgrades ... 161
 6.2.2.1 Einfluss des Gesamtmonomergehalts .. 163
 6.2.2.2 Einfluss der Synthesetemperatur ... 164
 6.2.2.3 Einfluss der Vernetzerkonzentration ... 165
 6.2.2.4 Einfluss des PEG-Anteils .. 167
6.2.2.5 Einfluss des ionischen Comonomers ... 169
6.2.2.6 Maschenweiten in kollabierten Gelen .. 170
6.2.3 Rasterelektronenmikroskopische Aufnahmen .. 170
6.3 FUNKTIONSUNTERSUCHUNGEN .. 171
 6.3.1 Messungen zur Entquellungskinetik .. 171
 6.3.2 Messungen zur Quellungskinetik ... 173
 6.3.3 Dynamic Scanning Caloriemetry (DSC) ... 175
 6.3.4 Be- und Entladung eines Gels mit Bromphenol-Blau ... 176
 6.3.5 Diffusion von FITC-Dextran durch ein Gel .. 177
 6.3.6 Überprüfung der Anreicherung von FITC-Dextran ... 179
 6.3.7 Quantitative Be- und Entladungen ... 182
 6.3.8 Umsatzmessung des im Gel immobilisierten Enyzms ... 187
7 ZUSAMMENFASSUNG UND AUSBLICK .. 188
8 LITERATUR .. 193
9 ABKÜRZUNGSVERZEICHNIS .. 210
10 ANHANG .. 215
 10.1 CHEMIKALIENLISTE .. 215
 10.2 TOC-BERECHNUNGEN DES WASCHWASSERS .. 216
 10.3 TEMPERATURPROGRAMM DER DSC ... 218
 10.4 OPTIMIERUNG DES STARTERVERHALTENS .. 218
 10.5 GEMESSENE DATEN DER ÜBERPRÜFUNG DER ANREICHERUNG 219
 10.6 TABELLEN ZUR BERECHNUNG DER BEISPIELBELADUNG 220
 10.7 BE- UND ENTLADUNGSEFFIZIENZDIAGRAMME ... 223
 10.7.1 Be- und Entladung der Gele mit FITC-Dextran 70 kDa 223
 10.7.2 Be- und Entladung der Gele mit FITC-Dextran 150 kDa 226
 10.7.3 Be- und Entladung der Gele mit FITC-Dextran 4 kDa 230
 10.7.4 Be- und Entladung der Gele mit FITC-Albumin ... 233
1 Einleitung

Es werden ca. 4-5 % der Chemikalien und Medikamente auf dem gesamten Weltmarkt mit Hilfe von Enzymen produziert. Diese sind besonders im Bereich der Synthese von chiralen Substanzen in enantiomerenreiner Form geeignet. Die Syntheseverfahren mit Hilfe von Enzymen wurden in den letzten Jahren immer mehr zu Alternativen im Bereich von gefährlichen oder energieintensiven chemischen Verfahren, da sie eine größere Selektivität und eine geringere Aktivierungsenergie als die konventionellen Verfahren besitzen [Lies00].

Eine spezielle Gruppe von Gelen stellen die so genannten „intelligenten“ Gele dar. Diese sind in der Lage bei Änderung einer Umgebungsbedingung, wie z.B. pH-Wert [Zhou01], [Hira04], [Hsin02], Temperatur [Ilma91], [Tana78], Konzentration der äußeren Lösung [Zhan97], chemischer Umgebung und Belichtung [Irie93] usw. ihre eingelagerte Flüssigkeit an die Umgebung zu entlassen. Zurück bleibt das entquollene Polymer mit einem vernachlässigbaren Anteil an Restflüssigkeit. Wird die Änderung der Umgebungsbedingung in der Flüssigkeit wieder zurückgenommen, so erfolgt die erneute Einlagerung von Flüssigkeit in dem Polymer, und es entsteht wieder ein Gel.

Eine der am einfachsten zu kontrollierenden Umgebungsbedingungen ist die Temperatur. Die bekannteste Gruppe von thermosensitiven Hydrogelen sind die auf Poly-N-Isopropylacrylamid-
Basis (PNIPA). Deswegen wurden diese Gele in dieser Arbeit untersucht und auf ihren späteren Anwendungszweck als Immobilisierungsmatrix hin angepasst.
2 Theoretische Grundlagen

2.1 Immobilisierung von Enzymen

2.1.1 Definition

Eine Einteilung von immobilisierten Enzymen kann nach der Immobilisierungsmethode (siehe Abb. 2) erfolgen.

Abb. 2: Einteilung immobilisierter Biokatalysatoren nach der Immobilisierungsmethode. B=Biokatalysator-Einheit, C=Trägerstoff-Einheit [Hart86]

2.1.2 Gründe für die Immobilisierung

2.1.3 Immobilisierungsmethoden

Enzyme sind biologische Katalysatoren aus Proteinen. Sie ermöglichen den Stoffwechsel aller Lebewesen, beschleunigen chemische Reaktionsabläufe durch Herabsetzung der Aktivierungsenergie, beeinflussen das thermodynamische Gleichgewicht nicht und treten wieder unverändert aus der Reaktion hervor. Im Gegensatz zu anorganischen Katalysatoren wirken die Enzyme zumeist selektiver, gerade auch im Hinblick auf die Stereospezifität.

Von der hier verwendeten Carbonyl-Reduktase beispielsweise weiß man, dass sie negative Ladungen im neutralen pH-Bereich tragen [Zeli99].

2.1.3.1 Adsorptive Bindung

Diese Methode ist die älteste und einfachste zur Bindung von Enzymen an einen wasserunlöslichen Träger (siehe Abb. 3).

Abb. 3: Durch Adsorption an einen Träger gebundene Biokatalysatoren (K) [Hart86]

Vorteile der Adsorption sind ihre einfache Ausführbarkeit und ihr geringer Einfluss auf die Konformation der adsorbierten Enzyme. Zur Ausbildung dieser Bindung genügt es, den
geeigneten Träger (z.B. Aktivkohle) und das in Wasser gelöste Enzym miteinander in Kontakt zu bringen. Enzym- oder zellschädigende Chemikalien, wie sie bei anderen Immobilisierungsmethoden häufig verwendet werden müssen, sind hierbei nicht vonnöten.

Nachteil ist die relativ schwache Binding, die sich zwischen Enzym und Träger bildet. Diese kann schon durch Temperaturschwankungen oder durch Änderung der Substratkonzentration wieder aufgebrochen werden. Bei der Anwendung von adsorptiv gebundenen Enzymen muss deshalb sehr auf konstante Reaktionsbedingungen geachtet werden [Hart86].

2.1.3.2 Ionische Bindung

Die ionische Bindung basiert auf der elektrostatischen Anziehung zwischen entgegengesetzt geladenen Gruppen des Trägermaterials und des Enzyms (siehe Abb. 4).

![Abb. 4: Heteropolar an einen polyanionischen Träger (Kationenaustauscher) gebundene Biokatalysatoren (K) [Hart86]](image)

Den gegengesetzten Fall gibt es natürlich auch. Hierbei werden Kationenaustauscher, welche negative Ladungen tragen, verwendet. Mit ihnen werden positiv geladene Gruppen der Enzyme gebunden.

Die ionische Enzymbindung an Ionenaustauscher ist zwar fester als die rein adsorptive Bindung, verglichen mit der kovalenten Bindung von Enzymen an einen Träger ist sie aber noch schwach und recht störanfällig gegenüber anderen Ionen. Um zu verhindern, dass sich ionisch immobilisierte Enzyme wieder vorzeitig ablösen, muss auf konstante Ionenstärken und pH-Werte bei den Reaktionsbedingungen geachtet werden [Hart86].

2.1.3.3 Kovalente Bindung

[Abb. 5: Kovalent mit und ohne Spacer an einen Träger (T) gebundene Biokatalysatoren (K) (siehe [Hart86])]

Oft erfolgt eine Aktivierung der zur Bindung vorgesehenen Gruppe am Träger und nicht am Enzym. Auf diese Art und Weise wird die katalytische Aktivität des Enzyms geschont.

Eine Verbindung von Träger und Enzym kann direkt erfolgen oder über ein entsprechend langes Zwischenstück (Spacer). Dieses Spacermolekül bewirkt eine größere Beweglichkeit des angekoppelten Enzyms und somit ist die Aktivität unter Umständen höher, als bei dicht an den Träger gekoppelten Molekülen [Hart86].

2.1.3.4 Quervernetzung

Bei der Quervernetzung, auch Crosslinking genannt, werden die einzelnen Enzyme durch bi- oder mehrfunktionelle Substanzen miteinander verknüpft. Auf diese Art entstehen sehr hochmolekulare, in der Regel unlösliche Aggregate (siehe Abb. 6).

![Crosslinking und Co-Crosslinking](image.png)

Abb. 6: Durch Crosslinking und Co-Crosslinking immobilisierte Biokatalysatoren (siehe [Hart86])

Beim so genannten Cocrosslinking werden neben der vernetzenden Komponente und dem Enzym auch noch andere inaktive Moleküle in das Netzwerk mit eingebunden. Hierdurch können die mechanischen und katalytischen Eigenschaften der immobilisierten Enzyme verbessert werden.

Die Quervernetzung ist präoperativ recht einfach durchzuführen. Nachteil so dargesteller Partikel ist die meist gelartige, wenig feste Beschaffenheit, die eine Anwendung im Packbett verhindert, oder zumindest erschwert. Ein weiterer Nachteil ist, dass sich, aufgrund der Struktur viele der
aktiven Enzyme im Innern der entstandenen Partikel befinden, und somit besonders für hochmolekulare Substrate nur schwer zu erreichen sind.

Da die Bindung beim Crosslinking und beim Cocrosslinking in der Regel kovalenter Natur ist, kann es zu Konformationsänderungen und somit zu Aktivitätsverlust der immobilisierten Enzyme kommen [Hart86].

2.1.3.5 Matrixeinhüllung

Hier werden die Enzyme in natürliche oder synthetische Polymere, welche meist eine gelartige Struktur besitzen, eingebettet. Um auch weiter eine Enzymaktivität gewährleisten zu können, müssen die Substrate und die Produkte die Hüllensubstanz passieren können. Die Maschen müssen allerdings eng genug sein, um die Enzyme zurück zu halten (siehe Abb. 7).

![Matrixeingehüllte Biokatalysatoren in Kugel- oder Faserform (siehe [Hart86])](image)

Abb. 7: Matrixeingehüllte Biokatalysatoren in Kugel- oder Faserform (siehe [Hart86])

Für die Einhüllung von Enzymen sind diese Naturstoffe allerdings ungeeignet, da ihre Netzwerke zu grobmaschig für die Zurückhaltung von Enzymen sind [Hart86].
2.1.3.6 Membranabtrennung

Gemäß der Definition gehören auch nicht an Trägerstoffe gebundene, aber in ihrer Bewegungsfreiheit eingeschränkte Enzyme, zur Gruppe der immobilisierten Enzyme.

Die Membrantrennung schränkt den Reaktionsraum der Enzyme ein, belässt sie aber in wässriger Lösung. Hierbei sind die Mikroverkapselung und der Einsatz in Membranreaktoren zu unterscheiden.

Die Variante der Membranabtrennung findet sich beim Einsatz in Membranreaktoren. Die Enzyme werden hierbei durch Hohlfasermembranen oder durch blattförmige Filtermembranen zurückgehalten, und damit längere Zeit eingesetzt (siehe Abb. 8).

Abb. 8: Enzymanwendung in einem Röhren-Membranreaktor [Hart86]

Hierbei können die Reaktionsprodukte die Membran passieren und somit laufend aus dem Reaktor entfernt werden, während die Enzyme durch die Membran zurückgehalten werden. Der Vorteil dieser Art von Immobilisierung ist, dass als Membranen kommerziell erhältliche, relativ preiswerte Ultrafiltrationsmembranen eingesetzt werden können, so dass die Enzyme durch die Art der Immobilisierung nicht deaktiviert werden können. Beim Einschluss von Enzymen in Mikrokapseln werden die Enzyme in gelöster Form in einer Membran eingeschlossen, welche für Produkt und Substrat durchlässig sein muss. Die Mikroverkapselung kann als Grenzschichtpolymerisation vorgenommen werden. Hierbei werden die wässrig gelösten Enzyme zusammen mit einem hydrophilen Monomer in einem mit Wasser nicht mischbaren Lösungsmittel emulgiert, und dann die Polymerisation initiiert. Anschließend werden die Kapseln gewaschen, um eventuell noch vorhandene Monomerreste zu entfernen [Hart86]. Ein Nachteil dieser Grenzschichtpolymerisation ist, dass die Enzyme mit den wässrig gelösten Monomeren in Kontakt kommen und so teilweise deaktiviert werden können.
2.2 Gele

Abb. 9: Schematische Darstellung eines Gelnetzwerks. Die Linien zeigen die Polymerketten, teilweise mit Verschlaufungen (physikalische Vernetzung), die Punkte die chemischen Vernetzungspunkte

Ein anderer Aspekt ist, dass ein chemisch vernetztes Gel ein „Ein-Polymer-Molekül“ sein kann. Dies bedeutet, dass alle Monomermoleküle in einem einzigen Makromolekül vereinigt sein können und so ein makroskopisches Molekül bilden.

Es gibt viele technische Anwendungen für Gele. Einmalwindeln und Binden nutzen Gele als Flüssigkeitsabsorber. Gelblätter werden verwendet, um Fisch und Fleisch frisch zu halten. Gele sind unerlässliche Materialien als Molekularsiebe für molekulare Separation, z.B. in der...

Wie bereits erwähnt, sollen in dieser Arbeit Hydrogele auf N-Isopropylacrylamid-Basis (NIPA) untersucht werden. Deren Darstellung wird nun im Folgenden beschrieben.

2.2.1 NIPA-Gele

N-Isopropylacrylamid (NIPA) kann in wässriger Lösung leicht zu Poly-N-Isopropylacrylamid polymerisiert werden:

\[
\begin{align*}
 \text{H}_2\text{C} & \quad \text{CH}_3 \\
 & \quad \text{HN} \quad \text{C}=\text{O} \\
 \text{H}_2\text{C}=\text{C} & \quad \text{H}
\end{align*}
\]

\[
\begin{align*}
 \text{H}_3\text{C} & \quad \text{CH}_3 \\
 & \quad \text{HN} \quad \text{C}=\text{O} \\
 \text{H}_2\text{C}=\text{C} & \quad \text{H}
\end{align*}
\]

\[= R\]

Abb. 10: Struktur von N-Isopropylacrylamid (NIPA)

Die Polymerisation erfolgt im Allgemeinen über einen radikalischen Mechanismus und kann daher mit Hilfe von Radikalstartern initiiert werden. Bei Poly-NIPA handelt es sich um ein thermosensitives Polymer, welches bei erhöhter Temperatur in Wasser unlöslich und kollabiert vorliegt (siehe [Hiro84], [Kats04], [Ohmi82]). Da dies im Allgemeinen während der Polymerisation nicht gewünscht wird, können hierbei keine thermischen Radikalstarter eingesetzt werden. Als Alternative hierzu bieten sich Redox-Systeme an, bei welchen auch schon bei Raumtemperatur Radikale in ausreichender Anzahl gebildet werden.
2.2.2 Redox-Systeme für die Polymerisationsinitiierung

Redox-Systeme können die Polymerisation bereits bei Raumtemperatur initiieren. Sarac et al. [Sara99] beschreiben die Radikalbildung bei einer Reihe von Redox-Systemen. Eines der bekanntesten für die Polymerisation ist die Radikalbildung bei einem Persulfat-Metabisulfit-System (siehe Gl. 2-1, Gl. 2-2).

\[
S_2O_8^{2-} + S_2O_5^{2-} \rightarrow SO_4^- + SO_4^{2-} + S_2O_5^{-} \quad \text{(Gl. 2-1)}
\]

\[
SO_4^- + H_2O \rightarrow HO^- + HSO_4^- \quad \text{(Gl. 2-2)}
\]

Der Nachteil dieses Systems ist allerdings, dass der pH-Wert während der Radikalbildung jeden Fall im neutralen bis basischen Bereich liegen muss. Im sauren Medium würde das Metabisulfit die freie Säure bilden, welche sofort zerfallen würde, da sie instabil ist. Ein weiteres, sehr bekanntes System für die NIPA-Polymerisation beschreiben Feng et al. [Feng88], [Cade01]. Hierbei werden die Radikale durch ein Persulfat- N,N,N',N’-Tetramethylethylenediamin (TEMED)-System gebildet. Der Initiatorzerfall und die Radikalbildung geschehen dort in folgender Weise (siehe Gl.2-3).

\[
S_2O_8^{2-} + (CH_3)_2NCH_2CH_2N(CH_3)_2 \rightarrow (CH_3)_2NCH_2CH_2N^+(CH_3)_2 + SO_4^{-} + SO_4^{2-} \quad \text{(Gl. 2-3)}
\]

Der Vorteil dieser Methode ist, dass dieses System unabhängig vom pH-Wert eingesetzt werden kann. Allerdings handelt es sich bei dem TEMED um ein Amin. Da Amine vielfach recht kostenintensiv sind, können sie für die Produktion im industriellen Maßstab nur bedingt eingesetzt werden, wohingegen das Metabilsulfit günstiger ist.

2.2.3 Polymerisation von NIPA zu PNIPA

Die Polymerisation von NIPA zu PNIPA kann leicht im wässrigen Medium erfolgen und mit Hilfe der eben erwähnten Redox-Systeme initiert werden. Diese Polymerisation erfolgt nach folgendem Mechanismus (siehe [Lech93]).

Zunächst reagiert das NIPA mit dem vom Redox-System erzeugten Starterradikal (') (siehe Gl. 2-4).
Diese Reaktion wird auch als Kettenstartreaktion bezeichnet. Danach erfolgen die so genannten Kettenwachstumsreaktionen, bei denen das eben gebildete Monomerradikal mit weiteren Monomereinheiten reagiert (siehe Gl. 2-5).

\[
\text{I}^* + \text{H}_2\text{C} = \text{C}^\text{R} \xrightarrow{} \text{I} = \text{C} - \text{CH}^* \quad \quad \text{(Gl. 2-4)}
\]

Für den Kettenabbruch bieten sich die Möglichkeiten der Rekombination (siehe Gl. 2-6) oder die der Disproportionierung (siehe Gl. 2-7) an.

\[
\text{R'} - \text{C} - \text{CH}^* + \text{CHR}^* - \text{CH}_2\text{R''} \xrightarrow{} \text{R'} - \text{C} - \text{C} - \text{C} - \text{R''} \quad \quad \text{(Gl. 2-6)}
\]

Rekombination

\[
\text{R'} - \text{C} - \text{CH}^* + \text{CHR}^* - \text{CH}_2\text{R''} \xrightarrow{} \text{R'} - \text{C} = \text{CH} + \text{CH}_2\text{R} - \text{CH}_2\text{R''} \quad \quad \text{(Gl. 2-7)}
\]

Disproportionierung

Die durchschnittliche Kettenlänge des Poly-NIPA steigt mit sinkender Starterkonzentration (Redox-Systemkomponenten), also größerem Starterverhältnis.

2.2.4 Vernetzung von NIPA während der Polymerisation

Die am häufigsten gebrauchte Verbindung hierfür ist das N,N'-Methylenbisacrylamid (Bis). Es besitzt die folgende Struktur:

\[\text{Abb. 11: Struktur des Vernetzers N,N'-Methylenbisacrylamid (Bis)} \]

Aufgrund der zwei C=C-Doppelbindungen können zwei lineare PNIPA-Ketten miteinander verbunden werden.

Der Einbau des Bis erfolgt statistisch. Hierbei wird ein Copolymer in Form eines dreidimensionalen Netzwerks gebildet [Henn02].

2.2.5 Einbau des ionischen Comonomers

In der Literatur sind PNIPA-Gele neben dem Vernetzer bereits oft mit verschiedensten Comonomeren polymerisiert worden, um deren Eigenschaften zu verändern. Der Einbau ionischer Comonomere beispielsweise hat eine Erhöhung der Phasenübergangstemperatur (LCST) zu Folge (siehe [Durm00], [Geor01], [Tana80]). Dies begründet sich in einer Verringerung des chemischen Potentials des Gels (näheres siehe 2.2.7). Die meisten dieser erwähnten ionischen Comonomore sind jedoch anionischer Natur. Da das spätere zu immobilisierende Enzym (Carbonylreduktase aus Candida parapsilosis [Zeli99], [Mats01]) jedoch bei neutralem pH-Wert selber negative Ladungen aufweist, können anionische Comonomere hierbei nicht verwendet werden, da die gleichsinnigen Ladungen sich abstoßen würden. Es wäre also nicht möglich, dieses Enzym in Gele mit anionischen Gruppen einzulagern. Deswegen wurde ein kationisches Comonomer ausgewählt, von denen auch in der Literatur einige beschrieben sind.
Diese sind beispielsweise in [Lee02], [Muta02], [Simm00] erwähnt. Solche kationischen Ladungen bilden attraktive Kräfte zwischen diesem Enzym und Gel mit Comonomer aus. Der Nachteil eines solchen Systems allerdings ist, dass die attraktiven Kräfte zwischen Gel und Enzym ein Entfernen des Enzmys nach der Einlagerung verhindern, sofern eine permanente Ladung vorliegt. Deswegen wurde ein kationisches Comonomer ausgewählt, dessen Ladung durch eine Aminhydrochlorid-Gruppe begründet ist.

Diese lässt sich durch Zugabe einer Base jederzeit entfernen (siehe Gl. 2-9).

$$R\text{NH}^+ + \text{Cl}^- + \text{NaOH} \rightarrow R\text{NH}_2 + \text{NaCl} + \text{H}_2\text{O}$$

(Gl. 2-9)

Anschließend kann sie aber auch durch Zugabe einer Säure wieder hergestellt werden (siehe Gl. 2-10).

$$R\text{NH}_2 + \text{HCl} \rightarrow R\text{NH}^+ + \text{Cl}^-$$

(Gl. 2-10)

![Struktur des ionischen Comonomers N-(3-Aminopropyl)methacrylamidhydrochlorid (Comonomer (CM) C)](image)

Dies wird, wie der Vernetzer auch, statistisch in die PNIPA-Gele mit einpolymerisiert.

2.2.6 Herstellung

Die einfachste Methode vernetzte PNIPA-Gele darzustellen ist die Lösungs-Polymerisation. Hierbei wird eine wässrige Lösung mit bis zu 15 Gew.-% Gesamtmonomer und einer
definierten Menge Vernetzer mit dem Radikalstarter versehen und für 24 h stehengelassen. Anschließend kann die erstarrte Lösung aus ihrer Form befreit, und gewaschen werden. Diese Methode ist apparativ wenig aufwendig, hat jedoch auch einige Nachteile. Die Hauptnachteile sind, dass durch den starken Anstieg der Viskosität eine vollständige Durchmischung und eine Abführung der Polymerisationswärme nicht mehr gewährleistet werden. Hierdurch kann es zu Inhomogenitäten innerhalb des erhaltenen Produktes kommen [Groß01], [Ranf01], [Arnd04]. Alternativen hierzu wären beispielsweise die Gelsynthese mit Hilfe einer inversen Suspensionspolymerisation [Dowd00], in der die entstehende Reaktionswärme durch das Suspensionsmedium abgeführt werden kann. Die Inhomogenitäten werden durch die geringe Größe (200 - 700 µm) vermieden, da dort kaum Transportprozesse in Erscheinung treten.

2.2.7 Theoretische Überlegungen zum Quellungsgleichgewicht

Kommt ein getrocknetes Hydrogel mit Wasser in Kontakt, beginnt das Wasser in das Polymer einzudringen. Dies ist durch die Affinität zu den hydrophilen Gruppen innerhalb des Polymers begründet. Damit das Polymer sich nicht in einem Überschuss an Wasser löst, muss das Polymer vernetzt sein. Hierdurch wird aber die Dehnbarkeit des Polymernetzwerks begrenzt. Bei den hier verwendeten PNIPA-Gelen erfolgte die Vernetzung statistisch und somit quellen sie isotrop, d.h. die Quellung erfolgt gleichmäßig in alle Raumrichtungen. Der Grund hierfür ist, dass die Polymerketten zwischen den Vernetzungsstellen gedehnt werden und somit entfernen sich die Vernetzungspunkte gleichmäßig in alle Richtungen [Duse69], [Rutt04].

Das Quellungsgleichgewicht ist der Punkt, bei dem sich die Kraft des in das Gel diffundierenden Wassers (osmotischer Druck) und die entgegengesetzte Rückstellkraft des Polymernetzwerks (Kontraktion) sich im Gleichgewicht befinden. Es handelt sich hierbei um ein isotherm-isobares Gleichgewicht. In diesem Gleichgewicht kann sich das System nur befinden, wenn das chemische Potential des Wassers im Gel (µ₁) gleich dem chemischen Potential des reinen Wassers (µ₀) ist. Somit ist der Unterschied beider Potentiale (∆µ) gleich Null, wie auch die Änderung der Freien Enthalpie (∆G).

\[µ₁=µ₀ \text{ und } ∆µ=µ₁-µ₀=0 \] (Gl. 2-11)

Wasser kann nur solange in das Polymernetzwerk eindringen, wie µ₁ kleiner als µ₀ und somit auch ∆µ<0 ist. Die Änderung des chemischen Potentials setzt sich aus drei Termen zusammen, welche durch Addition miteinander verknüpft sind. Hier handelt es sich um den Mischungsterm (∆µ)_{mix}, um den Netzwerkterm (∆µ)_{net} und um den ionischen Term (∆µ)_{ion}.
\[\Delta \mu = (\Delta \mu)_{\text{mix}} + (\Delta \mu)_{\text{net}} + (\Delta \mu)_{\text{ion}} \quad \text{(Gl. 2-12)} \]

Der Mischungsterm \((\Delta \mu)_{\text{mix}}\) des Wassers beschreibt die Änderung des chemischen Potentials beim Mischen des Polymers mit dem Wasser. Er ist gegeben durch die Flory-Huggins-Theorie mit:

\[(\Delta \mu)_{\text{mix}} = RT \left[\ln (1 - \phi) + \phi + \chi \phi^2 \right] \quad \text{(Gl. 2-13)} \]

wobei \((\Delta \mu)_{\text{mix}}\) = Mischungsterm des chemischen Potentials
\[R = \text{allgem. Gaskonstante} \]
\[T = \text{abs. Temperatur} \]
\[\phi = \text{Volumenanteil des Polymers im Gel} \]
\[\chi = \text{Flory-Huggins-Wechselwirkungsparameter} \]

Der Flory-Huggins-Wechselwirkungsparameter beschreibt die Wechselwirkungen zwischen dem Polymer und dem Wasser, welche beim Mischen auftreten. Je kleiner dieser Wert ist, umso besser ist die Qualität des Wassers als Lösungsmittel für das Polymer, und umso höher ist die spätere Gleichgewichtsquellung des Gels [Flor43], [Arnd00].

\[(\Delta \mu)_{\text{net}} = RT \frac{n_e}{V_0} \phi^{1/3} \quad \text{(Gl. 2-14)} \]

Wobei \((\Delta \mu)_{\text{net}}\) = Netzwerkterm des chem. Potentials
\[R = \text{allgem. Gaskonstante} \]
\[T = \text{abs. Temperatur} \]
\[V_i = \text{molares Volumen des reinen Wassers} \]
\[n_e = \text{Anzahl der elastisch effektiven Ketten im Netzwerk} \]
\[V_0 = \text{Volumen des trockenen Polymers} \]
\[\phi = \text{Volumenanteil des Polymers im Gel} \]

Teilt man die Anzahl der elastisch effektiven Ketten im Netzwerk \((n_e)\) durch das Volumen des trockenen Polymers \((V_0)\), so erhält man den Vernetzungsgrad des Polymers, den man aus dem

Der ionische Term des chemischen Potentials des Wassers berücksichtigt zusätzliche Beiträge durch die Anwesenheit von Ionen innerhalb und außerhalb des Gels. Diese werden durch den Einbau von ionischen Comonomeren in das Netzwerk erreicht. Der Beitrag dieser Ionen errechnet sich wie folgt.

\[
(\Delta \mu)_{ion} = -RTV_1 \sum_j (c_j^{Gel} - c_j^{ext})
\]

wobei \((\Delta \mu)_{ion} = \) ionischer Term des chem. Potentials
\(R = \) allgem. Gaskonstante
\(V_1 = \) molares Volumen des reinen Wassers
\(c_j^{Gel} = \) Stoffmengenkonzentration der mobilen Ionen im Gel
\(c_j^{ext} = \) Stoffmengenkonzentration der mobilen Ionen in der umgebenden Lösung

Im gequollene Zustand erniedrigen die mobilen Gegenionen im Gel das chemische Potential. Aufgrund der Elektroneutralität können diese Ionen das Gel nicht verlassen. Wegen dieses Beitrags zur Freien Enthalpie, der auch als Donnan-Potential bezeichnet wird, verfügen Gele mit ionischen Comonomeren über ein stärkeres Quellungsvermögen, als ungeladene Polymere. Außerdem begünstigen die abstoßenden Kräfte zwischen den gleichsinnig geladenen stationären ionischen Gruppen im Gel die Quellung, da diese sich gegenseitig abstoßen. Auf diese Weise wird das Netzwerk noch zusätzlich aufgeweitet [Shib93].

2.2.8 Quellgrad

Der Quellgrad bei Hydrogelen ist ein Maß für die Menge an Wasser, die von einer bestimmten Menge an Polymer aufgenommen werden kann. Hier muss zwischen dem volumenbezogenem Quellgrad \((QG_v)\) und dem massenbezogenem Quellgrad \((QG_m)\) unterschieden werden. Der volumenbezogenem Quellgrad wird durch Division des Volumens des gequollenen Gels \((V_{Gel})\) durch das Volumen des trockenen Polymers \((V_{Pol})\) bestimmt. Der massenbezogene Quellgrad wird durch Division der Masse des gequollenen Gels \((m_{Gel})\) durch die Masse des trockenen Polymers \((m_{Pol})\) bestimmt.
Der volumenbezogene Quellgrad ist der Kehrwert des Volumenanteils des Polymers im Gel (ϕ), der massenbezogene Quellgrad entspricht dem Kehrwert des Massenanteils vom Polymer im Gel (ω):

$$ QG_v = \frac{1}{\phi} \text{ bzw. } QG_m = \frac{1}{\omega} \quad (\text{Gl. 2-17}) $$

Bei Kenntnis der Dichten von Polymer (ρ_{Pol}) und Gel (ρ_{Gel}) kann der volumenbezogene Quellgrad in den massenbezogenen umgerechnet werden.

$$ QG_m = \frac{m_{Gel}}{m_{Pol}} = \frac{\rho_{Gel} V_{Gel}}{\rho_{Pol} V_{Pol}} = \frac{\rho_{Gel}}{\rho_{Pol}} QG_v \quad (\text{Gl. 2-18}) $$

Da es bei den in dieser Arbeit verwendeten Gelen nicht möglich ist deren Volumen genau zu bestimmen, bezieht sich die Angabe des Quellgradaes hierbei zunächst immer auf den massenbezogenen Quellgrad (QG_m). Nach [Abe90] ist es aber zulässig die Dichte des trockenen Polymers mit der Dichte des Gels näherungsweise gleichzusetzen. Auf diese Weise lässt sich dann trotzdem der volumenbezogene Quellgrad über das Verhältnis der Massen bestimmen. Diese Vereinfachung ist deswegen zulässig, da die Gele einen sehr großen Wassergehalt (Wasser/Polymer >10/1) aufweisen, und da es nur einen geringen Dichteunterschied zwischen dem trockenen NIPA ($\rho_{NIPA} = 1,097 \text{ g/cm}^3$) und dem Wasser ($\rho_{Wasser} = 1,000 \text{ g/cm}^3$) gibt. Da nun nicht mehr zwischen dem volumenbezogenem und dem massenbezogenem Quellgrad unterschieden wird, trägt dieser die Bezeichnung QG [Groß01].

2.2.9 Netzwerkparameter

Nach [Cana89], [Pepp00], [Gand89] kann der Abstand zweier Vernetzungspunkte im ungequollenen Zustand durch folgenden Ausdruck berechnet werden:

$$ r = \left(\frac{2M_c}{M} \right)^{1/2} \left(\frac{1}{N} \right)^{1/2} \quad (\text{Gl. 2-19}) $$

Hierbei bedeuten

- r = Abstand der beiden Vernetzungspunkte im ungequollenen Zustand
- l = Bindungslänge einer C-C-Einfachbindung (0,154 nm)
- M_c = Molmasse zwischen zwei Vernetzungsstellen (kann aus dem molaren Verhältnis
von Vernetzer zu Gesamtmonomer berechnet werden, es wird ein statistischer Einbau des Vernetzers angenommen

\[M = \text{Molmasse des Monomers} \text{ (wird theoretisch aus der Molmasse des NIPA und dem Anteil des Vernetzers errechnet)} \]

\[C_N = \text{charakteristisches Verhältnis} \text{ (ist ein Maß für die Ausdehnung der Polymerkette im ungestörten Zustand [Uhli95], [Flor43])} \]

Weiterhin lässt sich hieraus die Maschenweite des gequollenen Netzwerks mit Gl. 2-20 ermitteln.

\[\xi = \frac{r}{v_{2m}^{1/3}} \]

(GL. 2-20)

wobei \(\xi \) = Maschenweite des gequollenen Netzwerks
\(r \) = Abstand der beiden Vernetzungspunkte im ungequollenen Zustand
\(v_{2m} \) = Volumenbruch des Polymers im gequollenen Gel im Gleichgewichtszustand
(reziproker Gleichgewichtsquellgrad)

Um theoretisch abschätzen zu können, ob ein Enzym in der Lage ist, in ein solches Gelnetzwerk einzudringen, wird die Maschenweite des gequollenen Netzwerks benutzt. Diese ist die maximale Größe die ein Molekül besitzen darf, um in das Netzwerk einzudringen.

Hierbei ist allerdings noch anzumerken, dass diese Maschenweite nur ein Mittelwert ist, und dass auch größere und kleinere Maschen im Netzwerk vorkommen können. Hierdurch ist auch das teilweise Eindringen größerer Moleküle möglich.

2.2.10 Fundamentale Wechselwirkungen bei dem Volumen-Phasenübergang in Gelen

Abb. 13: Schematische Darstellung der vier fundamentalen molekularen Wechselwirkungen [Shib93]

Wie bereits erwähnt kann ein Gel theoretisch aus einem einzigen makroskopischen Molekül bestehen. Deshalb kann die Größe eines Gels sehr empfindlich auf eine Änderung in den molekularen Wechselwirkungen reagieren. Daher kann man durch Messung der Größe eines Gels mit Hilfe der Variation von Parametern wie Temperatur, pH, Lösungsmittelzusammensetzung, die nähere Umgebung der Polymerketten untersuchen [Shib93].

2.2.10.1 Van der Waals Wechselwirkung

Bei einem Polyacrylsäure-Gel ereignet sich ein Phasenübergang in Aceton/Wasser-Mischungen. Die Hauptanziehungs Kraft der Polymerketten untereinander begründet sich auf van der Waals Wechselwirkungen. Aceton, ein nicht polares, schlechtes Lösungsmittel für Polyacrylsäure, wurde zu Wasser hinzugefügt, um die attraktiven Wechselwirkungen zwischen den Seitengruppen im Netzwerk und dem Wasser abzuschwächen. Somit werden die van der Waals-
Wechselwirkungen der Seitengruppen der Polymerketten untereinander erhöht. Es kommt zum Zusammenschrumpfen der Netzwerke [Shib93].

2.2.10.2 Hydrophobe Wechselwirkungen

2.2.10.3 Wasserstoffbrückenbindung

Wenn sich Wasserstoffatome zwischen zwei Atomen mit hoher Elektronegativität befinden, wie z.B. O und N, wird eine Wasserstoffbrückenbindung ausgebildet. Auch hierbei ist die Bindungsenergie nicht sehr groß (bis 50 kJ/mol), verglichen mit der einer kovalenten Bindung (50 bis 1000 kJ/mol). Wasserstoffbrückenbindungen spielen aber eine wichtige Rolle bei den
physikalischen und chemischen Eigenschaften von Biopolymeren. Bemerkenswert ist außerdem, dass die Wasserstoffbrückenbindung eine bevorzugte Richtung hat, d.h. eine charakteristische Konfiguration innerhalb einer lokalen Polymersequenz (Intrakettenwasserstoffbrückenbindung) oder zwischen Polymersequenzen (Interkettenwasserstoffbrückenbindung) sind nötig, um Wasserstoffbrücken zu bilden. Umgekehrt werden die Wasserstoffbrücken durch die charakteristische Konfiguration stabilisiert [Shen99], [Hira04].

2.2.10.4 Elektrostatische Wechselwirkungen

Die elektrostatische (Coulomb) Wechselwirkung ist eine recht weit reichende Wechselwirkung. Sie verhält sich invers proportional zu der Dielektrischen Konstante des Mediums. Im Falle von synthetischen Polymeren können positive oder negative Ladungen in die Polymerketten eingebaut werden, durch Copolymerisation oder durch partielle Ionisierung von z.B. schwachen Ionenaustauscherpolymeren. Die gleichsinnigen Ladungen erzeugen eine starke Abstoßung in den Ketten. Da die freie Bewegung der Ladungen nicht möglich ist, aufgrund der Tatsache, dass die Ladungen auf den Polymerketten fixiert sind, sind die Gegenionen nahe der Polymerketten lokalisiert und somit elektroneutral. Als Ergebnis wird das Donnan Potential (siehe 2.2.7) zwischen dem Gelinneren und dem Geläußeren gebildet, was einen Anstieg des osmotischen Drucks bewirkt [Shib93].

Ein anderer Aspekt wurde in polyampholytischen Gelen gefunden, die sowohl kationische wie auch anionische Gruppen besitzen. Diese Polymere können sowohl positiv wie auch negativ geladen sein und sich auf kurzen Distanzen abstoßen, aber sich über längere Distanzen anziehen. Bei der Studie solcher Gele wurde bei neutralem pH-Wert ein Schrumpfen
beobachtet, sowohl bei höherem, wie auch bei niedrigerem pH-Wert quollen sie auf. In pH-
neutralen Medien sind sowohl die Kationen, als auch die Anionen geladen, welche sich
gegenseitig anziehen. Daher schrumpft das Gel. Bei nicht neutralem pH-Wert ist eine der
ionisierbaren Gruppen neutralisiert, die andere Gruppe aber weiter ionisiert. Deshalb quillt das
Gel. Der Volumenwechsel ist abgestuft und kontinuierlich [Shib93].

Abb. 14: Volumen-Phasenübergang von Gelen, ausgelöst durch die vier fundamentalen Kräfte,
(a) van der Waals, (b) hydrophobe, (c) Wasserstoffbrücken und (d) elektrostatische Kräfte
[Shib93]

Diese Beobachtungen bei den Phasenübergängen zeigen ein generelles Bild wie Polymere
untereinander wechselwirken. Abb. 14 zeigt die Phasenübergänge schematisch auf. Sowohl die
van der Waals Wechselwirkungen, wie auch die Wasserstoffbrückenbindungen bewirken ein
Schrumpfen bei niedrigeren Temperaturen, wohingegen die hydrophoben Wechselwirkungen
den gegenteiligen Effekt haben. In jedem Fall begünstigt die Ionisierung einen
diskontinuierlichen „kritischen“ Phasenübergang, welcher in den Diagrammen (siehe Abb. 14,
a, b, c) durch die Pfeile angezeigt wird. Elektrostatische Wechselwirkungen können sowohl
anziehende, wie auch abstoßende Wirkung haben, abhängig von der chemischen Struktur des
jeweiligen Gels. Wenn es sich bei einem Gel um einen Polyampholyten handelt, ist eine inverse
Quellungskurve der Fall (Abb. 14, d) [Shib93].
2.2.11 Volumenphasenübergänge in Gelen

Abb. 15: Phasenübergang von Gelen in einem Lösungsmittel durch Änderung einer Umgebungsbedingung [Shib93]

Der Übergang findet bei einem infinitesimalen Wechsel der Umweltvariablen statt. Er bewirkt eine große Änderung des Volumens.
Abb. 16: Quellgrad eines PNIPA-Gels mit unterschiedlichen Anteilen an ionischen Gruppen (Zugesetzte Masse an Acrylsäure in mM bezogen auf 700 mM NIPA nach [Shib93]). Mit steigendem Anteil dieser Gruppen steigt auch die LCST

Das Verhalten von Polymeren in Wasser ist immer durch anziehende und abstoßende Wechselwirkungen des Polymers mit dem Lösungsmittel gegeben. Der hydrophobe Effekt (siehe 2.2.10.2) hat zur Folge, dass die Mischungsentropie (ΔS_{mix}) absinkt, ΔS wird negativ. Diese Mischungsentropie beeinflusst den Flory-Huggins-Wechselwirkungsparameter. Diese Abhängigkeit kann wie folgt beschrieben werden:

$$\chi = \frac{\Delta H_{\text{mix}} - T\Delta S_{\text{mix}}}{k_B T} \quad (\text{Gl. 2-21})$$

wobei
- χ = Flory-Huggins-Wechselwirkungsparameter
- ΔH_{mix} = Mischungsenthalpie
- T = absolute Temperatur
- ΔS_{mix} = Mischungsentropie
- k_B = Boltzmann-Konstante

Bei niedrigeren Temperaturen (unterhalb der Phasenübergangstemperatur, LCST) dominiert der Enthalpieterm. Da die Mischung von Wasser und Polymer exotherm abläuft ist die Enthalpie hierbei negativ und dies hat einen sehr kleinen Flory-Huggins-Wechselwirkungsparameter zur Folge. Wie bereits in 2.2.7 beschrieben bedeutet ein kleiner Wert für χ ein gutes Lösungsvermögen für das Wasser, d.h. es können gut Wasserstoffbrückenbindungen zwischen dem Wasser und den polaren Gruppen im NIPA aufgebaut werden. Die Folge ist eine Quellung des Gels. Bei höheren Temperaturen dominiert der Entropieterm und der Wert für χ steigt. Die Folge ist, dass das chemische Potential positiv wird, was die Separation der Wasserphase und

2.2.12 Makroporöse Gele

Eine Erklärung für die Entstehung einer heterogenen Netzwerkstruktur lieferten Okay et al. [Okay00] und Wu et al. [Wu92], welche besagt, dass es durch den Polyethylenzusatz in der Monomermischung zu einer Beeinflussung der Löschlichkeiten der einzelnen Komponenten in der Monomermischung kommt. Hierdurch können während der Bildung des Polymernetzwerks nicht mehr alle Lösungsmittel- und PEG- Moleküle gelöst bleiben, und es kommt zur
Phasenseparation während der Gelbildung. Diese Phasenseparation läuft in Form der Makro- oder Mikrosynärese ab (siehe Abb. 17).

Abb. 17: Schematische Darstellung der Makrosynärese und der Mikrosynärese während der vernetzenden Polymerisation

Das Modell der Mikrosynärese besagt, dass die Phasenseparation aus der Bildung einer Dispersion im Reaktionssystem infolge der Entquellung erfolgt. Also separiert die flüssige Phase während der Gelbildung in Form von kleinen Tröpfchen innerhalb des Gels und wird diskontinuierlich. Verglichen mit dem Makrosynärese-Prozess ändert sich das Volumen der Gelphase nach der Mikrosynärese nicht sehr. Das Gel wird aufgrund der Lichtstreuung der separierten Flüssigkeitstopfenden trübe. Weitere Polymerisations- und Vernetzungsreaktionen fixieren die Zweiphasenstruktur im Endmaterial. Die Frage, ob bei einem Gel eher die Makro- oder die Mikrosynärese ausschlaggebend ist, hängt von der Vernetzerkonzentration ab. Es wurde gezeigt, dass bei niedriger Vernetzerkonzentration die Phasenseparation in Form der Mikrosynärese stattfindet. Dies ist darin begründet, dass bei niedrigeren Vernetzerkonzentrationen längere Netzwerkketten vorhanden sind, als bei hohen Vernetzerkonzentrationen. Diese kollabieren langsamer als kürzere Ketten, so dass ihr
gequollener Zustand durch weitere Vernetzung stärker fixiert wird. Die Lösemittelmoleküle verbleiben innerhalb des Gels in Form von Tröpfchen.

Dieser Nichtgleichgewichtszustand, welcher sich durch die Mikrosynäresierung einstellt, wird im Endmaterial durch die Polymerbildung stabilisiert. Hierbei kann aber die Verlangsamung der Vernetzungsgeschwindigkeit während der Gelbildung den Makrosynäreseprozess begünstigen. Außerdem kann sich bei hohen Vernetzerkonzentrationen die separierte Flüssigphase mit anderen verbinden, um eine große Flüssigphase zu bilden. Dort ziehen sich die Netzwerkketten schnell an und bilden einen kugelförmigen Kern. Es wurde beobachtet, dass der Mikrosynäreseprozess sich auch bei hochgequollenen Hydrogelen in schlechten Lösemitteln (z. B. Polyethyenglycol) ereignet. In diesem Fall trennt sich der gequollene Gelkern bei Kontakt mit dem schlechten Lösemittel, in eine lösemittelreiche und in eine polymerreiche Phase auf. Wenn die polymerreiche Region durch den Glaseffekt erstarrt ist, können die Lösemitteldiffusion und die Entquellung blockiert werden. Daher kann das Gel im schlechten Lösemittel nicht den homogenen Lösungsgleichgewichtszustand erreichen und so wird die heterogene Struktur stabilisiert (siehe Abb. 18).

Abb. 18: Vergleich Netzwerkstruktur der konventionellen (links) und der makroporösen (rechts) Netzwerke [Wu92]

2.2.13 Stand der Technik auf dem Gebiet der PNIPA-Gele

Eine Übersicht der wichtigsten Arbeitsgruppen ist in Tab. 1 gegeben.
Tab. 1: Wichtigste Arbeitsgruppen, die sich mit PNIPA-Gelen beschäftigen

<table>
<thead>
<tr>
<th>Leiter</th>
<th>Institut</th>
<th>Arbeitsgebiete</th>
<th>Anzahl Artikel</th>
<th>Beispiel Artikel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teruo Okano</td>
<td>Institute of Advanced Biomedical Engineering and Science, Women’s Medical University, Tokyo, Japan</td>
<td>Zellkulturen auf PNIPA-Gelen, PNIPA-Gele in der Chromatographie, Züchtung von Organen im Labor</td>
<td>78</td>
<td>[Akiy04], [Saka03], [Shir03], [Okad02]</td>
</tr>
<tr>
<td>Shoji Ito</td>
<td>National Institute of Advanced Industrial Science and Technology, Tokyo, Japan</td>
<td>Variationen der Gelsynthese</td>
<td>28</td>
<td>[Ito99], [Ito92], [Ikaw91]</td>
</tr>
<tr>
<td>Chi Wu</td>
<td>University of Science and Technology of China, China</td>
<td>Lichtstreuung an polymeren Netzwerken, Makromoleküle in Lösung, Entwicklung neuer Laser Licht Streuungsmethoden, Fortsetzung der Arbeit des Entdeckers des Phasenübergangs bei PNIPA-Gelen T. Tanaka</td>
<td>26</td>
<td>[Wang99], [Zhan01], [Zhou95]</td>
</tr>
<tr>
<td>Allan S. Hoffman</td>
<td>Department of Bioengineering, University of Washington, USA</td>
<td>intelligente Polymere in Verbindung mit Biomolekülen</td>
<td>24</td>
<td>[Malm03], [Stay00], [Fong99]</td>
</tr>
<tr>
<td>Xian-Zheng Zhang</td>
<td>Department of Textiles and Apparel and Biomedical Engineering, Cornell University, Ithaca, USA</td>
<td>schnell reagierende thermosensitive Hydrogelen für die kontrollierte Freisetzung von Medikamenten (drug delivery)</td>
<td>21</td>
<td>[Zhan05], [Chu04], [Zhan04]</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Title</td>
<td>Seite</td>
<td>Literatur</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Mitsuru Akashi</td>
<td>Department of Nanostructured and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, Japan</td>
<td>Einbindung und Schutz von Platinpartikeln in PNIPA-Gelen, PNIPA-Gelen zum Einsatz für drug delivery</td>
<td>18</td>
<td>[Chen02], [Suzu00], [Chen00], [Saku02]</td>
</tr>
<tr>
<td>Yuichi Mori</td>
<td>Department of Engineering, Waseda University, Japan</td>
<td>Zellkultivierung in PNIPA-Gelen</td>
<td>16</td>
<td>[Yosh98], [Yosh95], [Yosh94]</td>
</tr>
<tr>
<td>Oguz Okay</td>
<td>Department of Chemistry, Istanbul Technical University, Istanbul, Türkei</td>
<td>Phasenübergang von PNIPA-Gelen, Phasenübergang von makroprösen Gelen</td>
<td>11</td>
<td>[Gund02], [Sayi02], [Mele02]</td>
</tr>
<tr>
<td>Toyoichi Tanaka</td>
<td>Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge MA, USA</td>
<td>Phasenübergang in PNIPA-Gelen mit Hilfe von Lichtstreuungsexperimenten</td>
<td>10</td>
<td>[Alva00], [Hara00], [Tana78]</td>
</tr>
<tr>
<td>Dirk Kuckling</td>
<td>Technische Universität Dresden, Deutschland</td>
<td>NMR-Untersuchungen von PNIPA-Gelen, Hydrogelen mit definierten Morphologien, Gele für Sensormaterialien, selektive Rezeptoren, Hydrogеле in biomedizinischen Anwendungen</td>
<td>6</td>
<td>[Arnd04], [Harm03], [Knor99]</td>
</tr>
</tbody>
</table>

Eine ganze Reihe von Artikeln auf dem Gebiet der PNIPA-Gele beschäftigt sich hauptsächlich mit der Synthese dieser Gele (siehe Tab. 2). Diese wurden mit verschiedenen Comonomeren zu einem bestimmten Zweck synthetisiert.
Tab. 2: Übersicht der Artikel zum Hauptthema Synthese

<table>
<thead>
<tr>
<th>Comonomere</th>
<th>Zweck</th>
<th>Artikel</th>
</tr>
</thead>
<tbody>
<tr>
<td>versch. an- und kationische Comonomere</td>
<td>Untersuchung der Quellungskinetiken der Gele</td>
<td>[Cher04]</td>
</tr>
<tr>
<td>Glycidylmethacrylat</td>
<td>Spätere Vernetzung der Gele</td>
<td>[Hosh97]</td>
</tr>
<tr>
<td>Zwitterionische Comonomere</td>
<td>Massive Beeinflussung der Quellungseigenschaften der Gele</td>
<td>[Lee99a]</td>
</tr>
<tr>
<td>Allyldibenzo-Kronenether</td>
<td>Selektive Einlagerung von Metallionen in die Gele</td>
<td>[Zhan02b]</td>
</tr>
<tr>
<td>Hydroxypropylcellulose</td>
<td>Abbaubare Gele</td>
<td>[Chau04]</td>
</tr>
</tbody>
</table>

Die Erzeugung von so genannten IPN (interpenetrierende Polymernetzwerke), also NIPA-Gel-Netzwerke, in denen andere Polymernetzwerke miteinpolymerisiert wurden, werden u.a. von [Diez02] (mit Polymethylmethacrylat), [Zhan03] und [Zhan04] beschrieben.

Besonderheiten bei der Polymerisationstechnik beschreiben [Bris00], bei denen Acrylamid-Gele unter Mikrogravitätsbedingungen erzeugt werden. PNIPA-Minigelpartikel synthetisieren [Dowd00] mit Hilfe der inversen Suspensionspolymerisation, welche eine Suspensionspolymerisation mit inversen Phasen (Monomerphase = wässrige Phase, Toluol = kontinuierliche Phase) beschreibt.

Da die üblichen Synthesebedingungen Gele erzeugen, welche eine recht lange Zeit bis zum Erreichen des Quellungsgleichgewichts benötigen, werden auch PNIPA-Gele untersucht, welche dieses Gleichgewicht schnell erreichen können (siehe Tab. 3).
Tab. 3: Übersicht der Artikel zum Thema schnell quellende PNIPA-Gele

<table>
<thead>
<tr>
<th>Erzeugung solcher Gele durch:</th>
<th>Artikel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kamm-Pfropf-Polymere, Chitosan</td>
<td>[Lee04], [Yosh95]</td>
</tr>
<tr>
<td>Gefrierpolymerisation (starkes Absenken der Temperatur während der Polymerisation)</td>
<td>[Xue02]</td>
</tr>
<tr>
<td>Kamm-Polymere mit Makroporen (PEG), Acrylsäure</td>
<td>[Chen95]</td>
</tr>
<tr>
<td>Makroporen (PEG)</td>
<td>[Chen03]</td>
</tr>
<tr>
<td>Makroporen (PEG), Methylmethacrylat</td>
<td>[Zhan02]</td>
</tr>
<tr>
<td>Makroporen (NaCl)</td>
<td>[Chen02]</td>
</tr>
</tbody>
</table>

Mit der Struktur der Gele beschäftigten sich zunächst die Arbeiten [Okay00] und [Okay00a]. Diese betrachten die Struktur von PNIPA-, Natriumacrylat- und Acrylamid-Gelen in Hinblick auf den Quellgrad. Der Einfluss der Vernetzungsichte auf den Phasenübergang wird in [Inom94], die mikromechanischen Eigenschaften in [Mats02] und der Einfluss der Netzwerkstruktur wird in [Hiro84] untersucht.

Die Untersuchung von PNIPA-Gelen wird in fast allen Arbeiten beschrieben. Deshalb werden die in dieser Arbeit durchgeführten Untersuchungen in der Diskussion mit einigen Literaturstellen verglichen.

3 Aufgabenstellung

Abb. 20: Möglichkeiten der Hydrogelbeladung. A: Das gequollene Gel wird in die Enzymlösung gelegt und das Enzym diffundiert in das Gel hinein. B: Das entquollene Gel wird in die Enzymlösung gelegt und wird während des Quellens beladen.

Danach wird überprüft, ob es möglich ist, die Referenzmoleküle durch Kollabieren wieder aus den Gelen zu entfernen (siehe Abb. 21).

Abb. 21: Entfernung der Enzyme aus dem Hydrogel

Diese Untersuchungen werden zunächst qualitativ durchgeführt. Da nicht damit zu rechnen ist, dass alle Referenzmoleküle bereits nach dem ersten Entquellen aus dem Gel entfernt sind, soll das Gel zunächst wieder im Wasser aufquellen (durch T<LCST) und dann entquollen werden, mit einem Wechsel des Wassers bei jedem Schritt. Dieser Vorgang soll noch einige Male wiederholt werden. Die Reaktion im Rührreaktor soll bei Temperaturen stattfinden, welche

Anschließend wird die Be- und Entladung der Gele anhand der Beladungseffizienz quantifiziert. Dann erfolgt die Auswahl eines Gels, in welchem das Beispielenzym (Carbonyl-Reductase aus Candida Parapsilosis) immobilisiert wird. Mit der Beispielreaktion der stereospezifischen Reduktion von Acetophenon zu Phenylethanol soll dann der Umsatz des im Gel immobilisierten Enzyms mit dem Umsatz des nativen Enzyms verglichen werden.
4 Experimenteller Teil

4.1 Allgemeine Synthesevorschrift für konventionelle Gele

Die Methode zur Darstellung von Hydrogelen in Blockform war bereits nach [Groß01] erprobt und wurde nun auf die hier zu entwickelnden Hydrogele angepasst. Bei dem Verfahren nach [Groß01] wurden die Polymere dargestellt, in dem zunächst das N-Isopropylacrylamid (Basismonomer, NIPA) und das N,N-Methylenbisacrylamid (Vernetzer, Bis) in einem Phosphat-Puffer (pH = 7) in Lösung gebracht wurden. Um den bei der späteren Polymerisation störenden Luftsauestoff zu entfernen, wurde die Lösung danach für 10 min mit Stickstoff durchperlt, und anschließend in einem Eisbad für weitere 10 min gekühlt. Danach wurde das Redoxstartersystem (Ammoniumperoxodisulfat / Natriummetabisulfid; APS/Na$_2$S$_2$O$_5$) in 20fachen Überschuss abgewogen, und in 20 mL an vorher entgastem und gekühlten (ebenfalls Eisbad für 10 min) VE-Wasser gelöst. Mittels einer Eppendorfipette wurde so 1 mL abgenommen, zu der Monomerlösung geben, kurz gerührt und das Glas mit der Lösung in ein vortemperiertes Wasserbad zur Synthese gegeben. Nach 24 h war die Reaktion beendet, und das Gel wurde durch Zerschlagen des Glases aus dem Reaktionsgefäß entfernt. Anschließend wurden die Gele in ein Glas mit VE-Wasser eingelagert. Das VE-Wasser wurde über einen Zeitraum von einer Woche täglich gewechselt wurde, um so noch eventuell vorhandene Monomere und Oligomere aus dem Gel auszuwaschen.

Die Bezeichnung der Gele ist wie folgt definiert:

- Basismonomer (BM)
- Comonomer (CM)
- Vernetzergehalt (V)
- Gesamtmonomer (mit NIPA als Basismonomer = NI = BM + CM + V)
- Synthesetemperatur (T)
- Initiator (I)
- Starterverhältnis (S)
- Stoffmenge (n)

Die Berechnung der einzelnen Anteile geschah folgendermaßen:
Gesamtmonomerergehalt (NI) = \frac{\text{Masse (GM)} \cdot 100}{\text{Masse (LM + GM)}} \text{, in [%]} \quad \text{(Gl. 4-1)}

Vernetzerergehalt (V) = \frac{\text{Masse (V)} \cdot 100}{\text{Masse (BM + CM)}} \text{, in [%]} \quad \text{(Gl. 4-2)}

Comonomergehalt (CM) = \frac{n_{CM} \cdot 100}{n_{GM}}, \text{ in [mol-%]} \quad \text{(Gl. 4-3)}

Starterverhältnis (S) = \frac{\text{Masse (BM + CM)}}{\text{Masse (l)}}, \text{ in [-]} \quad \text{(Gl. 4-4)}

Das Starterverhältnis wird immer in 1 zu der errechneten Zahl für S angegeben (in Tab. 4 ist S = 1 zu 1000). Für das Beispiel des Standard-Gels NI10-V5-T15-S1000 ergibt sich also für einen 50 g Ansatz folgende Zusammensetzung:

Tab. 4: Zusammensetzung des Gels NI10V5T15S1000

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Masse [g]</th>
<th>Abkürzungen</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIPA</td>
<td>4,3290</td>
<td>NI</td>
<td>10 %</td>
</tr>
<tr>
<td>Bis</td>
<td>0,2165</td>
<td>V</td>
<td>5 %</td>
</tr>
<tr>
<td>Puffer pH = 7</td>
<td>44,4545</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>APS, Na₂S₂O₅</td>
<td>jeweils 0,004329</td>
<td>S</td>
<td>1 zu 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
<td>15 °C</td>
</tr>
</tbody>
</table>

4.2 Allgemeine Synthesevorschrift für Gele mit variierendem PEG-Anteil

Einige Gele wurden mit Porogenen während der Polymerisation modifiziert [Zhan00]. Diese Porogene sind Moleküle, welche inert sind und das Lösungsvermögen der Polymere während der Polymerisation herabsetzen müssen. Als Standardporogen wurde bisher immer Polyethylenglycol 400 (PEG400) verwendet [Zhan00]. Es wurden Gele mit verschiedenen
Anteilen an PEG400 synthetisiert, wobei die Zusammensetzung hierbei wie folgt definiert wurde:

\[
\text{PEG}_{xx} = \frac{\text{Masse PEG400}}{\text{Masse Gel gesamt}} \cdot 100 \text{ in [%]}
\]

(Gl. 4-5)

Die Synthese erfolgte analog zu den konventionellen Gelen. Für das Beispiel des Standard-Gels mit einem Porogenanteil von 20 % und der Bezeichnung NI10V5T15S100PEG20 ergibt sich also für einen 50 g Ansatz folgende Zusammensetzung:

Tab. 5: Zusammensetzung des Gels NI10V5T15S100PEG20

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Masse [g]</th>
<th>Abkürzungen</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIPA</td>
<td>4,3290</td>
<td>NI</td>
<td>10 %</td>
</tr>
<tr>
<td>Bis</td>
<td>0,2165</td>
<td>V</td>
<td>5 %</td>
</tr>
<tr>
<td>Wasser</td>
<td>34,4545</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>PEG 400</td>
<td>10,0</td>
<td>PEG</td>
<td>20 %</td>
</tr>
<tr>
<td>APS, TEMED</td>
<td>0,004329 / 0,01732</td>
<td>S</td>
<td>1 zu 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
<td>15 °C</td>
</tr>
</tbody>
</table>

4.3 Allgemeine Synthesevorschrift für Gele mit ionischem Comonomer

Zunächst wurden Gele mit verschiedenen Konzentrationen an N-(3-Aminopropyl)methacrylamidhydrochlorid (Comonomer C) synthetisiert. Hierbei erfolgte die Berechnung des Comonomer-Anteils wie folgt.

\[
\text{Comonomergehalt (CM)} = \frac{n_{CM} \cdot 100}{n_{GM}} \text{ in [mol-%]}
\]

(Gl. 4-6)

Ein Gel mit der Bezeichnung NI10-CMC1-V5-T15-S100-PEG0 hätte also bei einem 50 g Ansatz folgende Zusammensetzung:
Tab. 6: Zusammensetzung des Gels NI10CMC1V5T15S100PEG0

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Masse [g]</th>
<th>Abkürzungen</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIPA</td>
<td>4,2610</td>
<td>NI</td>
<td>10 %</td>
</tr>
<tr>
<td>Comonomer C</td>
<td>0,0680</td>
<td>CMC</td>
<td>1 mol-%</td>
</tr>
<tr>
<td>Bis</td>
<td>0,2165</td>
<td>V</td>
<td>5 %</td>
</tr>
<tr>
<td>Wasser</td>
<td>44,4545</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>PEG 400</td>
<td>0,0</td>
<td>PEG</td>
<td>0 %</td>
</tr>
<tr>
<td>APS, TEMED</td>
<td>0,866 / 0,01732</td>
<td>S</td>
<td>1 zu 100</td>
</tr>
</tbody>
</table>

4.4 Zusammenfassung aller durchgeführten Synthesen

4.4.1 Vorsynthesen

Tab. 7: Variation des Starterverhältnisses beim Standardgel NI10V5T15

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 8: Variation der Syntheseparameter der Monomerlösung

<table>
<thead>
<tr>
<th>Nummer des Gels</th>
<th>Vorbehandlung der Monomerlsg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mit N₂-Begasung</td>
</tr>
<tr>
<td>2</td>
<td>Ohne N₂-Begasung</td>
</tr>
<tr>
<td>3</td>
<td>Puffer durch Wasser ersetzt, Startersystem APS/Na₂S₂O₅</td>
</tr>
<tr>
<td>4</td>
<td>Puffer durch Wasser ersetzt, Startersystem APS/TEMED</td>
</tr>
</tbody>
</table>

Tab. 9: Variation der Monomervorbehandlung

<table>
<thead>
<tr>
<th>Gel-Bezeichnung</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIPA neu, ungereinigt S100</td>
<td>Frisch geliefert, nicht umkristallisiert, S = 1:100</td>
</tr>
<tr>
<td>NIPA neu, ungereinigt S1000</td>
<td>Frisch geliefert, nicht umkristallisiert, S = 1:1000</td>
</tr>
<tr>
<td>NIPA alt, gereinigt S100</td>
<td>Nach längerer Lagerung*, umkristallisiert, S = 1:100</td>
</tr>
<tr>
<td>NIPA alt, gereinigt S1000</td>
<td>Nach längerer Lagerung*, umkristallisiert, S = 1:1000</td>
</tr>
<tr>
<td>NIPA neu, gereinigt S100</td>
<td>Frisch geliefert, umkristallisiert, S = 1:100</td>
</tr>
</tbody>
</table>
4.4.2 Synthese von konventionellen Gelen

Es wurden 18 verschiedene NIPA-Gele dargestellt, bei denen jeweils die konventionellen Parameter Gesamtmonomergehalt, Vernetzergehalt sowie Synthesetemperatur variiert wurden. Hierdurch ergaben sich folgende Gelbezeichnungen:

Tab. 10: Synthese konventioneller Gele mit NI = 5; 7,5 und 10 %, V = 5 und 10 % und T = 15; 25 und 40 °C

<table>
<thead>
<tr>
<th>Gesamtmonomergehalt [%]</th>
<th>5</th>
<th>7,5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI5V5T15S100</td>
<td>NI7,5V5T15S100</td>
<td>NI10V5T15S100</td>
<td></td>
</tr>
<tr>
<td>NI5V10T15S100</td>
<td>NI7,5V10T15S100</td>
<td>NI10V10T15S100</td>
<td></td>
</tr>
<tr>
<td>NI5V5T25S100</td>
<td>NI7,5V5T25S100</td>
<td>NI10V5T25S100</td>
<td></td>
</tr>
<tr>
<td>NI5V10T25S100</td>
<td>NI7,5V10T25S100</td>
<td>NI10V10T25S100</td>
<td></td>
</tr>
<tr>
<td>NI5V5T40S100</td>
<td>NI7,5V5T40S100</td>
<td>NI10V5T40S100</td>
<td></td>
</tr>
<tr>
<td>NI5V10T40S100</td>
<td>NI7,5V10T40S100</td>
<td>NI10V10T40S100</td>
<td></td>
</tr>
</tbody>
</table>

Lagerung ca. 6 Monate bei –15 °C
4.4.3 Synthese von Gelen mit variierendem PEG-Anteil

Tab. 11: Synthese der Gele mit variierendem PEG-Anteil NI = 15 %, T = 15 °C, S = 1 zu 100, V = 2 und 5 % und PEG = 0, 5, 10, 20, 30 und 40 %

<table>
<thead>
<tr>
<th></th>
<th>V2</th>
<th></th>
<th>V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15S100PEG0</td>
<td></td>
<td>NI15V5T15S100PEG0</td>
<td></td>
</tr>
<tr>
<td>NI15V2T15S100PEG5</td>
<td></td>
<td>NI15V5T15S100PEG5</td>
<td></td>
</tr>
<tr>
<td>NI15V2T15S100PEG10</td>
<td></td>
<td>NI15V5T15S100PEG10</td>
<td></td>
</tr>
<tr>
<td>NI15V2T15S100PEG20</td>
<td></td>
<td>NI15V5T15S100PEG20</td>
<td></td>
</tr>
<tr>
<td>NI15V2T15S100PEG30</td>
<td></td>
<td>NI15V5T15S100PEG30</td>
<td></td>
</tr>
<tr>
<td>NI15V2T15S100PEG40</td>
<td></td>
<td>NI15V5T15S100PEG40</td>
<td></td>
</tr>
</tbody>
</table>

Die Gele, deren Bezeichnung grau unterlegt ist, waren nach der Synthese milchig weiss, mechanisch instabil und makroporös

Tab. 12: Synthese von makroporösen Gelen mit NI = 15 %, T = 15 °C, S = 1 zu 100, PEG = 40 % und V = 10, 20, 30 und 40 %

<table>
<thead>
<tr>
<th></th>
<th>PEG40</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V10T15S100PEG40</td>
<td></td>
</tr>
<tr>
<td>NI15V20T15S100PEG40</td>
<td></td>
</tr>
<tr>
<td>NI15V30T15S100PEG40</td>
<td></td>
</tr>
<tr>
<td>NI15V40T15S100PEG40</td>
<td></td>
</tr>
</tbody>
</table>

Die Gele, deren Bezeichnung grau unterlegt ist, waren nach der Synthese milchig weiss, mechanisch instabil und makroporös
4.4.4 Synthese von Gelen mit ionischem Comonomer

Tab. 13: Synthese konventioneller Gele mit ionischem Comonomer, bestehend aus NI = 15 %, V = 2 %, T = 15 °C, S = 1 zu 100, PEG = 0 % und CMC = 10; 5; 2,5 und 1 mol-%

<table>
<thead>
<tr>
<th>NI15CMC10V2T15S100PEG0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC5V2T15S100PEG0</td>
</tr>
<tr>
<td>NI15CMC2,5V2T15S100PEG0</td>
</tr>
<tr>
<td>NI15CMC1V2T15S100PEG0</td>
</tr>
</tbody>
</table>

Tab. 14: Synthese makroporöser Gele mit ionischem Comonomer, bestehend aus NI = 15 %, V = 2 %, T = 15 °C, PEG = 30 % und CMC = 10; 5; 2,5 und 1 mol-%

<table>
<thead>
<tr>
<th>NI15CMC10V2T15S100PEG30</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC5V2T15S100PEG30</td>
</tr>
<tr>
<td>NI15CMC2,5V2T15S100PEG30</td>
</tr>
<tr>
<td>NI15CMC1V2T15S100PEG30</td>
</tr>
</tbody>
</table>

Die Gele, deren Bezeichnung grau unterlegt ist, waren nach der Synthese milchig weiss, mechanisch instabil und makroporös

4.5 Standard-Charakterisierungsmethoden

4.5.1 Polymerisation im Rheometer

Abb. 22: Modellvorstellung von viskoelastischen Stoffen, \(G' \) = elastischer Modul, \(G'' \) = viskoser Modul, \(G^* \) = Komplexer Schubmodul, \(\delta \) = Phasenwinkel, \(\gamma \) = Deformation, \(\omega \) = Kreisfrequenz, [Groß01]

\[
\eta''(\omega) = \frac{G''(\omega)}{\omega}
\]
werden, da das System durch die Polymerisation immer fester wird und somit auch die elastischen Anteile steigen. Aus der ursprünglichen Flüssigkeit wird eine erstarrte Lösung. Diese besitzt nun kaum noch viskose und überwiegend elastische Anteile.

Ein Kriechtest dient zur Beobachtung des zeitlichen mechanischen Verhaltens des realen (viskoelastischen) Systems. Hierbei wird der Stoff in einem bestimmten Zeitraum einer konstanten Spannung σ_0 ausgesetzt (siehe Abb. 23).

![Eingangssignal beim rheologischen Kriechtest](image)

Abb. 23: Eingangssignal beim rheologischen Kriechtest [Lech01]

Bei der anschließenden Kriecherholung wird die angelegte Spannung zurückgenommen. Für die hier beschriebenen drei (viskos, elastisch und viskoelastisch) Systeme gibt es nun drei mögliche Antworthsignale:

![Mögliche Antworthsignale des Kriechtests mit anschließender Kriecherholung](image)

Abb. 24: Mögliche Antworthsignale des Kriechtests mit anschließender Kriecherholung [Lech01]

Beim viskoelastischen System tritt, mit einsetzender Spannung σ_0 bei $t = t_0$, ein Teil der Deformation γ sofort auf. Der restliche Teil bildet sich erst mit zunehmender Dauer der Beanspruchung aus. Bei der Kriecherholung ($t > t_1$) federt ein Teil der Deformation wieder zurück, und zwar der Betrag, welcher beim Kriechversuch anfänglich deformiert wurde. Der restliche Anteil kann bleibend sein oder geht erst nach einiger Zeit zurück. Dieser Teil ist auf das

Abb. 25: Schematische Darstellung des Zylinder-Spalt-Systems des Rheometers

wurden empirisch ermittelt. Es wurden eine Schubspannung von 200 Pa eingestellt, sowie eine
Zeit von 100 s für den Kriechtest und eine Zeit von 150 s für die Kriecherholung gewählt.

4.5.2 TOC-Messungen des Waschwassers

Nach der Polymerisation wurden die Rollrandgläser (50 mL, Firma Roth, Durchmesser ca. 2,5
cm) zerschlagen, die darin befindlichen Gele isoliert und in 1 cm hohe Stücke geschnitten. Diese
wurden wiederum in vier gleichmäßige Teile zerschnitten. Diese Stücke wurden dann in ein 250
mL Schraubdeckelglas überführt und mit VE-Wasser über mehrere Tage hinweg gewaschen, um
eventuelle Anteile an Restmonomer, Oligomer und PEG zu entfernen. Um abzuschätzen, nach
wie vielen Waschschritten alle Anteile aus dem Gel entfernt waren, wurden von einigen dieser
Gele Waschwasserproben entnommen und diese hinsichtlich ihres Kohlenstoffgehalts
untersucht.

Das Verfahren, welches hierbei zur Anwendung kam, wird auch als TOC-Messung (total organic
carbon) bezeichnet. Bei dem Messgerät handelt es sich um das Shimadzu TOC-5050 mit ASI-
5000. Das Prinzip der C-Bestimmung beruht auf der Oxidation des Kohlenstoffs zu
Kohlendioxid. Anschließend wird dieser quantitativ detektiert. Die Oxidation erfolgt entweder
thermisch, mit Hilfe eines Katalysators (hier der Fall) oder nasschemisch durch Bestrahlung mit
UV-Licht in Anwesenheit eines Oxidationsmittels. Die quantitative Messung des Kohlendioxids
kann mit nicht dispersiver Infrarot-Spektroskopie (hier der Fall), Wärmeleitfähigkeitsdetektion,
Leitfähigkeitsmessung, Coulometrie oder nach Reduktion zu Methan durch
Flammenionisationsdetektion erfolgen.

Der TOC wird anschließend in mg/L erhalten [Wass98].

Bei der Berechnung wird zunächst der erhaltene TOC-Wert mit der Flüssigkeitsmasse
multipliziert, um die Gesamtmasse des ausgewaschenen Kohlenstoffs zu erhalten.

\[m_{c,\text{ges}} = \text{TOC} \cdot V_{\text{Lsg}} \]

(Gl. 4-7)

wobei \(m_{c,\text{ges}} \) = Masse Kohlenstoff gesamt [mg]
\(\text{TOC} \) = Konzentration an Kohlenstoff in der Lösung [mg/mL]
\(V_{\text{Lsg}} \) = Volumen der Lösung (entspricht der Masse der Lösung unter Annahme, dass 1 mL
Lösung 1 g Lösung entspricht)

Diese Gesamtmasse an Kohlenstoff wird nun auf die Masse des Gels bezogen, um die Werte für
versehende Gele vergleichbar zu machen.
\[\frac{m_{\text{Cges}}}{m_{\text{Gel}}} \]
\hspace{1cm} (Gl. 4-8)

wobei \(m_{\text{Gel}} \) = Masse des Gels [g] ist.

Anschließend werden die Werte noch für jeden Waschschritt (TOC-Nr.) aufsummiert.

\[\sum \frac{m_{\text{Cges}}}{m_{\text{Gel}}}_{i} \]
\hspace{1cm} (Gl. 4-9)

4.5.3 Messungen zur Entquellungskinetik

Die Bestimmung des Quellgrades erfolgte gravimetrisch. Hierzu wird eine Masse von ca. 2-3 g des gequollenen Gels (vortemperiert bei 4 °C, 24 h) in einen handelsüblichen Papierbeutel (Firma Reinsch & Held GmbH&Co KG, 21005 Hamburg, Größe M, ohne Bodennaht) gegeben, und dieser dann mittels eines Bügeleisens zugeschweißt. Dieser Beutel wird nun in ein Temperierbecken mit VE-Wasser gegeben, welches auf 60 °C vortemperiert ist. Nach bestimmten Zeitabständen wird der Papierbeutel für 1 min zum Abtrocknen aufgehängt, und dann dessen Masse mit einer handelüblichen Laborwaage (Genauigkeit ± 0,001 g) bestimmt. Nun wird der Beutel erneut in das Temperierbecken gelegt, die nächste Zeiteinheit abgewartet, und erneut gemessen. Nach Abschluss der Messungen wird der Papierbeutel, zur exakten Bestimmung der Trockenmasse des Gels, in einen Vakuumtrockenschrank für 24 h bei 80 °C gelegt und mittels einer Membranpumpe evakuiert. Nachdem die Beutel nun getrocknet waren, wurden ihre Massen (m) bestimmt. Vorher wurden noch die Blindwerte der Massen der Papierbeutel mit berücksichtigt.

Der Quellgrad errechnet sich nun wie folgt aus den gemessenen Massen:

\[\text{Quellgrad(QG)} = \frac{m_{\text{Gel,GQ}}}{m_{\text{Gel,Getr}}} \]
\hspace{1cm} (Gl. 4-10)

wobei
\(m_{\text{Gel,GQ}} \) = Masse des gequollenen Gels [g]
\(m_{\text{Gel,Getr}} \) = Masse des getrockneten Gels [g]

Eine in diesem Zusammenhang wichtige Größe ist der Wärmestrom innerhalb des Gels, also der Wärmemenge, welche pro Zeiteinheit übertragen wird. Diese korrespondiert mit dem Wärmestrom. Dieser Wärmestrom muß bei kinetischen Messungen berücksichtigt werden, da
er die Zeit berücksichtigt, welche nötig ist, um die Temperatur im Gelinnern über die LCST anzuheben. Der Wärmestrom hängt u.a. von der Oberfläche ab und ist nach Gl. 4-11 definiert.

\[Q = -\lambda A \frac{dT}{dx} \]

(Gl. 4-11)

wobei
\(Q \) = Wärmestrom (Wärmemenge pro Zeiteinheit)
\(\lambda \) = Wärmeleitfähigkeit
\(A \) = Austauschfläche
\(\frac{dT}{dx} \) = Temperaturgradient senkrecht zur Fläche

Gele mit großer Oberfläche und großem Temperaturgradienten werden schneller entquellen, als Gele mit kleiner Oberfläche und kleinem Temperaturgradienten.

4.5.4 Messungen zur Quellungskinetik

Die Messung der Quellungskinetik erfolgte analog der Messung der Entquellungskinetik (siehe 4.5.3), mit dem Unterschied, dass die Gele zunächst für 1 h bei 60 °C gelagert wurden und dann bei 4 °C vermessen wurden. Die Bestimmung des Quellgrades erfolgte ebenfalls analog.

4.5.5 Messungen des Gleichgewichtsquellgrades

Auch die Messungen der Gleichgewichtsquellung erfolgten analog 4.5.3 und 4.5.4. Hierbei wurde die Messung nach Einstellung des Gleichgewichts (nach 24 h) durchgeführt. Auch die Berechnung des Quellgrades erfolgte analog 4.5.3 und 4.5.4.
4.5.6 Messung von Raman-Spektren

4.5.7 Rasterelektronenmikroskopische Aufnahmen

Zur Anfertigung dieser Aufnahmen wurden Gele in Form von Zylindern mit 0,5 cm Durchmesser ausgestanzt, und in einer Höhe von ca. 3-4 mm abgeschnitten. Diese Scheiben wurden dann mit flüssigem Stickstoff eingefroren und bei –50 °C, 0,102 mbar und 2 Tage lang gefriergetrocknet. Danach wurden die Scheiben gebrochen, auf dem Probenträger fixiert und mit Kohlenstoff beschichtet. Von der Bruchkante dieser Scheiben wurden dann die rasterelektronenmikroskopischen Aufnahmen angefertigt.

4.5.8 Untersuchung der Porenstruktur

4.5.9 Dynamic Scanning Calorimetry

Die ermittelten Messkurven wurden dann in die Ausweise-Software eingeladen und bearbeitet. Hierbei wurde der Onset-Punkt des Phasenübergangs bestimmt.

Abb. 26: Temperaturprogramm der DSC zur Ermittlung der Phasenübergangstemperatur bei NIPA-Gelen (Details siehe 10.3)
4.6 Spezielle Charakterisierungsmethoden

4.6.1 Ausbeuteberechnung

Die unter 4.4.1 Tab. 7 dargestellten Gele wurden hinsichtlich der Ausbeute des erhaltenen Gels untersucht. Hierzu wurden die Masse der gesamten eingesetzten Flüssigkeit und die Masse des anschließend erhaltenen Gels bestimmt.

4.6.2 Qualitative Be- und Entladungsversuche mit Bromphenol-Blau-Na-Lösung

Es wurden qualitative Versuche des modifizierten Standard-Gels NI10V5T15 mit dem Natriumsalz des Bromphenol-Blau-Farbstoffs (M = 691,94 g/mol) durchgeführt. Zur Beladung des Gels gibt es grundsätzlich zwei Möglichkeiten: Zuerst kann das gequollene Gel durch Diffusion des Farbstoffs in das Gel beladen werden.

Hierzu wurde das gequollene Gel (Blockform, 1 cm Durchm., 1 cm Höhe), welches vorher für 24 h bei 4 °C gelagert wurde, nun wiederum 24 h bei 4 °C in eine wässrige Bromphenol-Blau-Na-Lsg. (0,025 g/L) eingelegt (siehe Abb. 27). Danach wurde das Gel aus der Lösung genommen und die Oberfläche kurz mit 4 °C temperiertem Wasser gewaschen.

Abb. 27: Einlegen des gequollenen Gels in die Farbstofflsg.

Die zweite Möglichkeit, ein Gel zu beladen, ist indem man es vor der Beladung kollabiert (1 h bei 60 °C) und dann in der Farbstofflösung aufquellen lässt (siehe Abb. 28).

Abb. 28: Aufquellen des Gels in der Farbstofflsg.
Nun wurde untersucht, wie sich Gel und Farbstoff nach Temperaturerhöhung verhalten. Dazu wurde das Gel für 1 h auf 60 °C erhitzt (siehe Abb. 29).

Abb. 29: Entquellen des beladenen Gels

4.6.3 Qualitative Be- und Entladungsversuche mit FITC-Dextran-Konjugat $M_w = 70 \text{ kDa}$

Zunächst wurden 20 mL einer Lösung von FITC-Dextran ($M_w = 70 \text{ kDa}$) der Konzentration 1,5 g/L in VE-Wasser angesetzt und für 1 h bei 4 °C gelagert. Die vorher kollabierten Gele (durch Lagerung bei 60 °C, 1 h, Blockform 1 x 1 cm)) wurden dann in diese Lösung gegeben und bei 4 °C für 24 h aufgequollen. Danach wurde kurz die Oberfläche mit VE-Wasser (4 °C) gewaschen. Dann wurden die Gele mit flüssigem Stickstoff eingefroren und bei – 50 °C, 0,102 mbar und 4 Tagen gefriergetrocknet. Nach der Gefriertrocknung wurde das Gel durchgeschnitten und die Schnittdicke mit VE-Wasser benetzt. Dann wurde mikroskopiert (Lichtmikroskop).

4.6.4 Bestimmung von Diffusionskoeffizienten im Hydrogel

Um eine Dauer der Diffusion des Dextrans durch die Gele abschätzen zu können, wurde der Diffusionskoeffizient bestimmt.

Um eine möglichst kurze Diffusionsstrecke zu gewährleisten, wurde eine handelsübliche PET-Kernspur-Membran (Oxyphen, Dresden) mit eine Dicke von $x = 23 \mu\text{m}$ benutzt. Diese besitzt einen Porendurchmesser von 400 µm. Hierin wurde ein Gel mit der Bezeichnung NI15V2T15PEG0 einpolymerisiert.
Abb. 30: Versuchsaufbau Membranpolymerisation

Zur Bestimmung des Diffusionskoeffizienten wurde die gerade beschichtete Membran in einer Spannvorrichtung fixiert, dann wurden auf beiden Seiten der Membran jeweils ein Glas zur Aufnahme der Lösung bzw. des Wassers befestigt [Chu03].
Abb. 31: Versuchs anlage zur Bestimmung der Diffusionskoeffizienten in Membranen

In die beiden Gläser werden jeweils links und rechts der Membran die bereits vortemperierte Dextran-Lösung und das Wasser gegeben. Beide Lösungen wurden mit etwa gleicher Geschwindigkeit und in gleichem Volumen in die Behälter gefüllt, damit kein Übergang der Lösungen durch die Membran durch einen Druckunterschied stattfinden konnte. Anschließend wurde die Apparatur in einem Wasserbad während der gesamten Messungen temperiert und die Magnetrührer eingeschaltet. Direkt nach Beginn der Messung wurde auf beiden Seiten eine Probe von ca. 2 mL abgenommen. Diese wurden dann fluoreszenspektroskopisch (Em$_{\text{max}}$: 518 nm; Exc.: 492 nm) mit dem Fluoreszenz-Spektrometer mit Microplatereader Cary Eclipse der Firma Varian untersucht und die beiden Proben in die Behälter zurückgeführt. Diese Prozedur wurde nach jeweils einer Stunde wiederholt.

Da die Emissionswerte bereits während der Messung schwankten, wurde aus 5 Messungen der Mittelwert gebildet.

Die Werte, welche anschließend in Gl. 5-8 eingesetzt wurden, waren für x, t und A für alle Messungen gleich und betrugen:

$$x = 23 \, \mu m$$
$$\Delta t = 3600 \, s$$
$$A = \text{Austauschfläche, mit einem Radius von } 2 \, \text{cm } \Rightarrow \pi \cdot 2^2.$$

Da aber die Membran, laut Hersteller eine Porosität von 12,6 % hat, können nur diese 12,6 % der berechneten
Fläche gewertet werden, weil diese die reine Austauschfläche sind.

\[A = 1,58 \text{ cm}^2. \]

Die Berechnung des Diffusionskoeffizienten geschah nach Gl. 5-3 [Atki96].

\[
D = \frac{\Delta N \cdot x}{\Delta t \cdot A \cdot c}
\]

(Gl. 4-12)

wobei

- \(D \) = Diffusionskoeffizient \([\text{m}^2/\text{s}]\)
- \(N \) = Stoffmenge \(\Rightarrow \Delta N = N \text{ (Anfang Messung)} - N \text{ (Ende Messung)} \) \([\text{mol}]\)
- \(x \) = Diffusionsstrecke \((\text{Membrandicke}) \) \([\text{m}]\)
- \(t \) = Zeit \(\Rightarrow \Delta t = t \text{ (Anfang Messung)} - t \text{ (Ende Messung)} \) \([\text{s}]\)
- \(A \) = durchströmte Fläche \([\text{m}^2]\)
- \(c \) = Gradient der molaren Stoffmengenkonzentration \((\text{aktueller Mittelwert aus } c(\text{Behälter Dextranlsg}) \) und \(c(\text{Behälter Wasser}) \) \) \([\text{mol/L}]\)

Aus den erhaltenen Werten für die Emission lässt sich mit Hilfe einer Kalibriergeraden direkt die Konzentration der entsprechenden Lösungen bestimmen.

4.6.5 Bestimmung der Dextrankonzentration

Zunächst wurde die Be- und Entladung mit der Standardreferenzsubstanz (FITC-Dextran 70 kDa) durchgeführt. Die Konzentration des Dextrans in der Lösung wurde mittels UV/Vis-Spektroskopie ermittelt.

Die Angaben des Herstellers bezüglich der Wellenlänge bezogen sich auf die Verwendung eines Fluoreszensspektrometers, da die Konzentration aber hier mit einem UV/VIS-Spektrometer (Shimadzu UV-2102PC) ermittelt werden sollte, musste zunächst die Wellenlänge zur Ermittlung der Konzentration bestimmt werden. Dazu wurde eine wässrige Lösung der Referenzsubstanz angesetzt und gegen VE-Wasser als Hintergrund das Spektrum gemessen. Nachdem die Lösung für einige Stunden stehengelassen wurde, wurde erneut ein Spektrum aufgenommen.
Abb. 32: UV/VIS-Spektren einer wässrigen FITC-Dextran-Lsg. \((M_w = 70 \text{ kDa})\) frisch angesetzt (vor Lagerung) und nach einigen Stunden (nach Lagerung)

Es wurde die Wellenlänge bei 465,2 nm gewählt, also der isosbestische Punkt, da hier die zeitliche Veränderung des Dextrans keine Rolle spielt. Gleichzeitig wurde aber auch immer eine Probe der Referenzsubstanzlösung mit bekannter Konzentration demselben Programm unterworfen, wie auch die Gele.

4.6.6 Überprüfung der Anreicherung von FITC-Dextran

Die Versuche fanden in einer Petrischale mit 20 mm Durchmesser statt. Zum Entfernen der Flüssigkeit wurde diese mittels einer Pipette abgesaugt. Das Gel verblieb während des gesamten Versuchs in der Schale. Danach wurde das folgende Experiment durchgeführt.

Abb. 33: Überprüfung der Anreicherung des Dextrans im Gel
Zunächst wurden das Gel in VE-Wasser und die FITC-Dextranlösung ($M_w = 70 \text{kDa}$) bei 4°C über Nacht getrennt voneinander temperiert. Dann wurden Masse des Gels ($m_{\text{Gel},0}$) und die Konzentration der FITC-Dextranlösung ($c_{\text{Dex},0}$) bestimmt. Nun wurden 10 mL der Dextranlösung zu dem Gel gegeben und die Gesamtmasse ($m_{\text{Lsg},0} + m_{\text{Gel},0} = m_{\text{Ges},0}$) bestimmt. Diese Lösung mit Gel wurde nun für 24 h bei 4 °C stehengelassen. Dann wurde erneut die Gesamtmasse der Petrischale ($m_{\text{Ges},1}$) bestimmt. Durch Abpipettieren wurde die Lösung vom Gel entfernt und die Massen von Lösung ($m_{\text{Lsg},1}$) und Gel ($m_{\text{Gel},1}$) getrennt bestimmt. Dann wurde die Konzentration der Dextranlösung ($c_{\text{Dex},1}$) gemessen.

Es wurden die 4 exemplarischen Gele aus 4.5.3 und 4.5.4 untersucht.

4.6.7 Quantitative Be- und Entladungsexperimente

Die Versuche wurden in einer Petrischale durchgeführt und wurden bei der Beladung dem Programm in Abb. 34 unterworfen.

Abb. 34: Versuchsdurchführung der quantitativen Beladung

Das Gel wurde vorher entquollen, in die Lösung mit der Referenzsubstanz gegeben und bei 4 °C aufgequollen. Danach erfolgte eine Separierung des Gels von der Lösung. Nach der Beladung wurde das Gel nun, wie in Abb. 35 dargestellt, entladen.
Abb. 35: Versuchsdurchführung der quantitativen Entladung

Nach einem kurzen Waschen der Oberfläche, um Anhaftungen der Oberfläche zu entfernen (ebenfalls mit 4 °C temperiertem Wasser, um eine Quellgradänderung auszuschließen), wurde das Gel bei 60 °C für 1 h entquollen. Danach wurde das Gel wieder für 24 h bei 4 °C quellen gelassen. Nach jedem der Schritte erfolgte ein Wechsel des Wassers.

Nach jedem dieser Schritte wurden die Konzentration der umgebenden Lösung, die Masse der Lösung und die Masse des Gels bestimmt. Anschließend erfolgte dann die Bilanzierung der Beladung.

4.7 Umsatzmessung eines immobilisierten Enzyms

Bei dem hier durchgeführten Versuch, sollte die Carbonyl-Reduktase Acetophenon zu Phenylethanol reduzieren.

Die Untersuchungen hierzu wurden wie folgt durchgeführt:
Alle Materialien wurden zunächst eine Stunde bei 60 °C entwässert und im Anschluss daran in einer enzymhaltigen wässrigen Lösung bei 4 °C für 24 Stunden gequollen. Die Konzentrationen in dieser Lösung betrugen 4 mM Cofaktor, 1 mM DTT sowie 2 Unit, jeweils pro Gramm Immobilisierungsmatrix, die Cosubstratkonzentration betrug 100 mM. Vor dem ersten Einsatz der Immobilisierungsmatrix wurde diese zunächst mehrmals erhitzt und wieder gequollen, um eventuell noch vorhandene Monomerbestandteile, Vernetzermoleküle oder andere, die Aktivität möglicherweise beeinflussende Komponenten, aus der Matrix zu entfernen. Nach der Quellung der Matrices wurden diese zunächst mit Hexan gespült, um überschüssige Lösung zu entfernen und anschließend im organischen Lösungsmittel eingesetzt.

Tab. 15: Zusammensetzung des Standardansatzes

<table>
<thead>
<tr>
<th>Standardansatz 1:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 g Immobilisate</td>
<td></td>
</tr>
<tr>
<td>9 % (Vol-%) Isopropanol</td>
<td></td>
</tr>
<tr>
<td>150 mM Substrat</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 16: Daten des Gaschromatographen

<table>
<thead>
<tr>
<th>Säule</th>
<th>FS-FFAP-CB-0,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säulenlänge</td>
<td>25 m</td>
</tr>
<tr>
<td>Innendurchmesser</td>
<td>0,25 mm</td>
</tr>
<tr>
<td>Detektor</td>
<td>FID</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Split</td>
<td>1:50</td>
</tr>
<tr>
<td>Druck</td>
<td>60 kPa</td>
</tr>
<tr>
<td>Träergas</td>
<td>Stickstoff</td>
</tr>
<tr>
<td>Injektortemperatur</td>
<td>220 °C</td>
</tr>
<tr>
<td>Detektortemperatur</td>
<td>220 °C</td>
</tr>
</tbody>
</table>

Abb. 36: Temperaturprogramm des Gaschromatographen

Die Dauer eines Laufes im Gaschromatographen betrug 16,67 Minuten. Es wurde die Umsatzkurve eines auf NI15CMC1V2T15S100PEG30 immobilisierten Enzyms gemessen und zum Vergleich die Umsatzkurve des nativen Enzyms.

Die gemessenen Retentionszeiten bei der Kalibrierung des Gaschromatographen sind in Tab. 17 dargestellt.
Tab. 17: Gemessene Retentionszeit zur Identifizierung der Substanz im Gaschromatographen

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Retentionszeit [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexan</td>
<td>1,2 – 1,5</td>
</tr>
<tr>
<td>Aceton</td>
<td>1,62</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>2,16</td>
</tr>
<tr>
<td>Dekan</td>
<td>2,86</td>
</tr>
<tr>
<td>Acetophenon</td>
<td>10,09</td>
</tr>
<tr>
<td>Phenylethanol</td>
<td>10,96</td>
</tr>
</tbody>
</table>
5 Ergebnisse

5.1 Synthesebedingungen

Die Vorsynthesen dienten zur Optimierung der Synthesebedingungen. Hierbei wurden die Einstellung des Starterverhältnisses, die Parameter der Reaktionslösung sowie eine Vorbehandlung des Basismonomers untersucht.

5.1.1 Optimierung des Starterverhältnisses

Zuerst wurde untersucht, inwieweit das Starterverhältnis (S) von APS / Natriummetabisulfid die Ausbeute an Gel beeinflusst. Bei dem Standard-Starterverhältnis von 1:1000 [Groß01] kamen teilweise nur recht geringe Ausbeuten zustande. Deshalb wurde das Starterverhältnis zu 1:1000, 1:500, 1:250, 1:100 und 1:50 variiert (Synthese Kap. 4.4.1, Tab. 7) und die Ausbeute bestimmt. Das benutzte Gelsystem bestand aus 10 % Gesamtmonomer, 5 % Vernetzer und die Synthesetemperatur betrug 15 °C (NI10V5T15, Standardgelsystem [Groß01]). Die Messung und Berechnung der Ausbeute (Y) erfolgte anhand der eingesetzten Lösungsmassen (Lsg) und erhaltenen Gelmassen (Gel) mit Gl. 5-1.

\[
Y [\%] = \frac{m_{\text{Gel}}}{m_{\text{Lsg}}} \cdot 100 \quad \text{(Gl. 5-1)}
\]

wobei
- \(m_{\text{Gel}} \) = Masse des Gels [g]
- \(m_{\text{Lsg}} \) = Masse der Monomerlösung [g]

Die Ergebnisse sind in Abb. 37 dargestellt.
Abb. 37: Die erhaltene Ausbeute in Abhängigkeit vom Starterverhältnis der Gele

Es ist zu beobachten, dass erst ab einem Starterverhältnis von 1 zu 100 eine nahezu 100%ige Ausbeute erhalten werden kann.

5.1.2 Vorbehandlung und Zusammensetzung der Polymerisations-Lösung

Im Folgenden wurden Gele der Zusammensetzung NI10V5T15S100 (4.4.1, Tab. 8) dargestellt. Um die Synthese im Hinblick auf einen späteren technischen Prozess weitestgehend zu vereinfachen, wurden verschiedene Maßnahmen bei der Herstellung der Monomerlösung variiert und unter Berücksichtigung der erhaltenen Ausbeute die Effektivität dieser Maßnahme beurteilt. Maßnahme und die erhaltene Ausbeute sind in Tab. 18 dargestellt.
Tab. 18: Ausbeute der Gele mit NI = 10 %, V = 5 %, T = 15 °C u. S = 1 zu 100 bei variierenden Syntheseparametern

<table>
<thead>
<tr>
<th>Maßnahme bei Herstellung der Monomerlsg.</th>
<th>Ausbeute [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer, mit N₂-Begasung</td>
<td>99,97</td>
</tr>
<tr>
<td>Puffer, ohne N₂-Begasung</td>
<td>99,95</td>
</tr>
<tr>
<td>Puffer durch Wasser ersetzt,</td>
<td>2,01</td>
</tr>
<tr>
<td>Startersystem APS/Na₂S₂O₅</td>
<td></td>
</tr>
<tr>
<td>Puffer durch Wasser ersetzt,</td>
<td>99,96</td>
</tr>
<tr>
<td>Startersystem APS/TEMED*</td>
<td></td>
</tr>
</tbody>
</table>

*Die Masse an TEMED entspricht der doppelten Masse an eingesetztem APS.

Es ist zu beobachten, dass die N₂-Begasung der Monomerlösung keinen Einfluss auf die Ausbeute zu haben scheint. Beim APS/Na₂S₂O₅-Startersystem ist aber ein Puffer für eine hohe Ausbeute nötig, während beim APS/TEMED-System auch Wasser verwendet werden kann.

5.1.3 Vorbehandlung des Basismonomers

Da die Synthesen in einem technischen Prozess eingesetzt werden sollen, sollte überprüft werden, inwieweit eine Vorbehandlung des Basismonomers (Umkristallisieren in Cyclohexan) die Qualität der späteren Gele beeinflussen kann. Weiterhin wurde überprüft, ob es einen Unterschied zwischen Gelen gibt, welche aus neuem (Kauf beim Chemikalienhändler vor wenigen Tagen) oder älterem NIPA (ca. 6 Monate Lagerung bei –15 °C) bestehen. Außerdem wurde überprüft, ob es nach einer Vorreinigung des Monomers möglich ist, das Starterverhältnis von 1 zu 100 auf 1 zu 1000 zu reduzieren. Ferner wurde noch überprüft, ob es durch das alternative APS/TEMED-Startersystem Unterschiede zu den mit APS/Na₂S₂O₅ dargestellten Gelen gibt. Hierzu wurden 7 Gele des Typs NI10V5T15 synthetisiert (siehe 4.4.1, Tab. 19), in welchen die eben beschriebenen Parameter variiert wurden. Da es hinsichtlich der Ausbeute keine Unterschiede zwischen den Gelen gab (immer ca. 100 %), wurde die Gelqualität anhand des Gleichgewichtsquellgrades (siehe 2.2.8) beurteilt, mit dessen Hilfe auch Rückschlüsse auf die Struktur der Gele geschlossen werden können (siehe 2.2.7). Die Ergebnisse sind in Abb. 38 wiedergegeben.
Abb. 38: Gleichgewichtsquellgrade bei variiierenden Temperaturen von Ni15V5T15 unter verschiedenen Bedingungen

Aus den Gleichgewichtsquellgradkurven ergeben sich zwei unterschiedliche Verläufe, bei denen der Quellgrad bei Gelen mit einem Starterverhältnis mit S = 1 zu 100 um ca. 10 höher liegt, als der mit einem Starterverhältnis von 1 zu 1000. Alle anderen Variationen haben kaum Einfluss auf den Gleichgewichtsquellgrad.

5.1.4 TOC-Messungen des Waschwassers

Die TOC-Bestimmungen des Waschwassers wurden durchgeführt, um zu überprüfen, in welchem Zeitraum noch Monomer, Oligomere und PEG 400 (bei den makroporösen Gelen) aus dem Gel ausgewaschen werden können. Die Berechnung des Anteils an ausgewaschenem Kohlenstoff erfolgt nach 4.5.2. Dieser bezogen auf die ausgewogene Masse an Gel wird gegen die Nummer des Auswaschungsschritts aufgetragen. Für den Fall der Gele Ni15V2T15S100PEG0 (Masse = 19,6676 g) und Ni15V2T15S100PEG20 (Masse = 19,7964 g) als Beispiele für ein konventionelles und ein makroporöses Gel ergibt sich der Kurvenverlauf nach Abb. 39 (genaue Werte siehe 10.2).
Bei dem konventionellen Gel (PEG0) ergibt sich, dass sich die Masse an ausgewaschenem Kohlenstoff (C) immer weiter einem Grenzwert annähert und bei der 5. Probe nur noch ein Wert von 0,7 mg/g ausgewaschen wird. Für jede Auswaschung mit Probennahme muss ein Tag gerechnet werden. Deswegen wurde definiert, dass bei einer Änderung von zwei aufeinander folgenden Werten von weniger als 2,0 % die Auswaschung als vollständig zu bezeichnen ist. Bei einem Wert von 0,7 mg/g ist dies der Fall und es kann auf weitere Auswaschungen verzichtet werden. Bezieht man die Masse an ausgewaschenem Kohlenstoff auf die Masse an Kohlenstoff, welcher sich im gesamten Monomer befindet, so errechnet sich ein Umsatz von 99,9 %.

Auch bei dem makroporösen Gel (PEG20) ist der Unterschied zwischen den letzten beiden Werten am geringsten. Allerdings ist der Wert von 3,4 mg/g bei der 5. Auswaschung doch noch größer, als bei den konventionellen Gelen. Da hierbei hauptsächlich das Polyethylenglycol ausgewaschen wird, war damit auch zu rechnen. Deswegen wurden noch 2 weitere Auswaschungen durchgeführt, bis auch hier praktisch keinerlei TOC im Waschwasser nachzuweisen war. Die Masse an ausgewaschenem Kohlenstoff, welche durch das Polyethylenglycol erzeugt wird, beträgt 2058,8 mg (bei 19,7964 g Gel und 52 % Kohlenstoff im PEG400). Hierbei wird angenommen, dass das PEG400 vollständig ausgewaschen wird. Da insgesamt 2070,42 mg Kohlenstoff ausgewaschen wurden, verbleiben 11,62 mg Kohlenstoff
für das Restmonomer. Dies entspricht einem Umsatz von 99,4 % (oder 0,6 % extrahiertes Monomer bezogen auf das eingesetzte Monomer).

Auch bei den Gelen mit Comonomer (CMC1) wurde eine TOC-Bestimmung des Waschwassers durchgeführt, um zu überprüfen, in welchem Zeitraum noch Monomer, Oligomere und eventuell PEG 400 aus dem Gel ausgewaschen werden. Die Messung und Auswertung erfolgte analog der beiden vorangegangenen Messungen. Hieraus ergeben sich folgende Diagramme für das konventionelle (CMC1PEG0) und das makroporöse (CMC1PEG30) Gel (siehe Abb. 40).

![Diagramm](image)

Abb. 40: Summe des ausgewaschenen Kohlenstoffs pro Auswaschungsschritt bei NI15CMC1V2T15S100PEG0 und NI15CMC1V2T15S100PEG30

Aus dem Kurvenverlauf ist zu ersehen, dass diese Auswaschungen denen der Gele ohne ionisches Comonomer ähneln. Aus dem konventionellen Gel CMC1PEG0 konnten 84,8 mg Kohlenstoff ausgewaschen werden. Dies entspricht einem Umsatz von 95,6 % oder einer Auswaschung an Extrakt bezogen auf das Monomer von 4,4 %. Beim makroporösen Gel CMC1PEG30 wurden 2825,7 mg Kohlenstoff gesamt ausgewaschen. Aus den Berechnungen ergibt sich aber eine Masse an Kohlenstoff für das Polyethylenglycol von 3075,7 mg. Dies bedeutet, dass noch nicht alles an PEG400 aus dem Gel ausgewaschen wurde und somit kann hier kein Monomerumsatz berechnet werden.
5.1.5 Ramanmessungen

Um abschätzen zu können, wie vollständig die Umsetzung des Monomers erfolgte, wurden Raman-Spektren des Monomers und zweier Hydrogеле mit unterschiedlichem Starterverhältnis angefertigt und miteinander verglichen. Hierbei wurde der Verlauf der C=C-Doppelbindungs-Bande beobachtet. Die erhaltenen Spektren sind in Abb. 41, Abb. 42 und Abb. 43 dargestellt.

Abb. 41: Ramanspektrum von Ni = 10 %, V = 5 %, T = 15 °C u. S = 1 zu 1000 (NI10V5T15S1000)
Abb. 42: Ramanspektrum von NI = 10 %, V = 5 %, T = 15 °C u. S = 1 zu 100 (NI10V5T15S100)

Abb. 43: Raman-Spektrum des N-Isopropylacrylamid (NIPA)-Monomers

Die Zuordnung der Banden im Ramanspektrum zu den einzelnen Gruppen erfolgt in Tab. 20.
Tab. 20: Zuordnung der Wellenzahlen zu den ramanaktiven Gruppen innerhalb des Polymernetzwerks [Hess95]

<table>
<thead>
<tr>
<th>Wellenzahl [cm(^{-1})]</th>
<th>Zuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3199</td>
<td>-OH, -NH</td>
</tr>
<tr>
<td>2941</td>
<td>-CH(_2), -CH(_3)</td>
</tr>
<tr>
<td>1637</td>
<td>-C=O</td>
</tr>
<tr>
<td>1018</td>
<td>-C-N</td>
</tr>
<tr>
<td>951</td>
<td>-C-C-</td>
</tr>
</tbody>
</table>

Die zusätzlich auftretenden Schwingungen des Monomers sind in Tab. 21 dargestellt.

Tab. 21: Zuordnung der Schwingungen zu den ramanaktiven Gruppen im Monomer [Hess95]

<table>
<thead>
<tr>
<th>Wellenzahl [cm(^{-1})]</th>
<th>Zuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1653</td>
<td>(\nu) (-C=C-)</td>
</tr>
<tr>
<td>1259</td>
<td>(\delta) (C-H)</td>
</tr>
<tr>
<td>848</td>
<td>(\gamma) (C-H)</td>
</tr>
</tbody>
</table>

Es war zu beobachten, dass beide Gele nach der Synthese klare erstarrte Lösungen waren. Das Monomer hingegen bestand aus farblosen, klaren Kristallen. In den Raman-Spektren ist zu erkennen, dass die Absorption in den Bereichen der C=C-Doppelbindung in den Gelen geringer ist, als es beim Monomer der Fall ist. Eine vollständige Abnahme der Absorption kann aber nicht beobachtet werden. Ein Unterschied in diesem Absorptionsbereich zwischen beiden Gelen kann ebenfalls nicht beobachtet werden.
5.2 Standard-Charakterisierungsmethoden

5.2.1 Polymerisation im Rheometer

Die Durchführung der Polymerisation wurde unter 4.1 bis 4.3 beschrieben. Sie erfolgt als eine Polymerisation in Lösung, bei der am Ende eine erstarrte Lösung (also ein Gel) entsteht. Deshalb ist es im Hinblick auf einen späteren technischen Prozess wichtig, u.a. Daten über die Zeit bis zur Erstarrung der Lösung (Gelzeit) und Daten über die Festigkeit des Gels im Synthesezustand zu gewinnen. Die Polymerisation wurde anhand des elastischen und des viskosen Moduls beobachtet. Dieser Test wurde für einige exemplarische Gele durchgeführt. Es folgt der Diagrammverlauf für das Gel NI15V2T15S100PEG0 (siehe Abb. 44).

Wie hierbei zu sehen, beträgt die Gelzeit (hier definiert als Zeit, an der elastischer und viskoser Modul zum letzten Mal den gleichen Wert annehmen) ca. 16 min. D.h. dass die flüssige Monomerlösung nach ca. 16 min beginnt fest zu werden und zu erstarren. Der Maximalwert der Festigkeit ist nach ca. 40 min erreicht. Eine Erklärung für das starke Rauschen des viskosen Moduls bei der Polymerisation ist, dass hier die Auflösungsgrenze der Fourier-Transformation für den Phasenwinkel erreicht wird. Zum Vergleich wird der Verlauf einer Polymerisation, bei der ein weicheres Gel entsteht, dargestellt (siehe Abb. 45).

Abb. 44: Daten (elastischer u. viskoser Modul) des Gelsystems bei der Polymerisation von NI15V2T15S100PEG0

Wie hierbei zu sehen, beträgt die Gelzeit (hier definiert als Zeit, an der elastischer und viskoser Modul zum letzten Mal den gleichen Wert annehmen) ca. 16 min. D.h. dass die flüssige Monomerlösung nach ca. 16 min beginnt fest zu werden und zu erstarren. Der Maximalwert der Festigkeit ist nach ca. 40 min erreicht. Eine Erklärung für das starke Rauschen des viskosen Moduls bei der Polymerisation ist, dass hier die Auflösungsgrenze der Fourier-Transformation für den Phasenwinkel erreicht wird. Zum Vergleich wird der Verlauf einer Polymerisation, bei der ein weicheres Gel entsteht, dargestellt (siehe Abb. 45).
Abb. 45: Polymerisation des Gels NI5V5T15S100PEG0 (NI =5 %, V = 5%, T = 15 °C, S = 1 zu 100 u. PEG = 0%) im Rheometer

Die Verläufe der Kurven beider Gelsynthesen sind ähnlich, allerdings nähert sich das weichere Gel (NI5V5T15S100PEG0) langsamer seinem Endzustand. Die beobachtete Gelzeit beträgt ca. 3,5 min. Auch der Endwert des elastischen Moduls ist geringer.

Um nähere Angaben über den Polymerisationsverlauf bei makroporösen Gelen zu erhalten, wurde auch bei diesen Gelen eine Polymerisation im Rheometer verfolgt. Die Durchführung erfolgte analog der zuvor durchgeführten Messungen. Die Ergebnisse eines solchen Gels sind in Abb. 46 dargestellt.
Aus dieser Messung ist zu beobachten, dass der Verlauf von elastischem und viskosem Modul analog zu der Polymerisation der konventionellen Gele ist. Die Gelzeit hier beträgt ca. 23 min, der Endwert des elastischen Moduls ist im Bereich von 10^4 Pa zu finden.

Es wurde auch ein Gel mit ionischem Comonomer im Rheometer polymerisiert, um festzustellen, ob die ionische Ladung einen Einfluss auf die Festigkeit während der Polymerisation hat (siehe Abb. 47).
Hierbei ist zu beobachten, dass die Gelzeit ca. 14 min beträgt, der Endwert des elastischen Moduls ist im Bereich von 10^4 Pa zu finden. Der Verlauf der beiden Module erfolgt analog den vorherigen Messungen.

Dann wurde noch ein makroporöses Gel mit ionischem Comonomer im Rheometer synthetisiert. Da das ionische Comonomer die Löslichkeit des PEGs verbessert, muss der PEG-Anteil im Gel auf 30 % erhöht werden, damit die Phasenseparation (Synäresen) stattfindet und ein makroporöses Gel entsteht (siehe Abb. 48).
Es konnte eine Gelzeit von 22 min gemessen werden und der Endwert für den elastischen Modul liegt im Bereich von 10^3 Pa. Der Verlauf der Kurven ist auch hier analog den vorherigen Messungen.

5.2.2 Kriechtest mit anschließender Kriecherholung

Die Kriechtests wurden durchgeführt, um nähere Informationen über die Festigkeit und das elastische Verhalten der Gele nach Erreichen des Festigkeitsendwerts zu erhalten. Bei dem Kriechtest des konventionellen Gels NI15V2T15S100PEG0 wird zunächst eine Schubspannung von 200 auf den Zylinder aufgegeben, worauf das System mit einem starken Schwanken der Kriechnachgiebigkeit, sowie einem Anstieg reagiert. Innerhalb von 10 s aber ist die Schwingung beendet und das System pendelt sich auf $6.6 \cdot 10^{-5}$ Pa ein, den es bis zur Kriecherholung bei 100 s beibehält. Danach erfolgt wiederum ein starkes Schwingen, welches sich aber auch innerhalb von 10 s wieder auf den konstanten Ausgangswert einpendelt.

Bei dem vermessenen Gel NI15V2T15S100PEG0 ergibt sich folgender Verlauf des Kriechtests und der Kriecherholung (siehe Abb. 49). Die Durchführung ist in 4.5.1 beschrieben.
Abb. 49: Daten des Kriechtests von NI15V2T15S100PEG0

Auch bei der Polymerisation von NI15V2T15S100PEG20 wurde nach dem Polymerisationsende ein Kriechtest durchgeführt. Der Kurvenverlauf ist in Abb. 50 wiedergegeben.

Abb. 50: Daten des Kriechtests von NI15V2T15S100PEG20
Die Zeit bis zum Einschwingen auf den Spannungswert beim makroporösen Gel beträgt nur etwa 2,5 s. Bei beiden Messungen ist ein fast augenblickliches Ansteigen der Kriechnachgiebigkeit nach Beginn der Auslenkung und ein genauso augenblickliches Absinken der Kriecherholung nach Beendigung der Auslenkung zu beobachten.

5.2.3 Messungen zur Entquellungskinetik

Die Messung der Entquellung der konventionellen Gele wird hier an dem Gel NI15V2T15S100PEG0 exemplarisch für alle anderen konventionellen Gele ohne ionisches Comonomer dargestellt. Da auch die Messergebnisse für alle makroporösen Gele ähnlich waren, ist auch hier nur der Entquellungsverlauf für das Gel NI15V2T15S100PEG20 exemplarisch aufgetragen. Der resultierende Kurvenverlauf für beide Gele ist in Abb. 51 wiedergegeben.

![Diagramm](image)

Abb. 51: Quellgrad in Abhängigkeit von der Zeit bei NI15V2T15S100PEG0 und NI15V2T15S100PEG20 (Temperaturveränderung von 4 °C auf 60 °C)

Wie aus dieser Messung ersichtlich, ist ein signifikantes Absinken des Quellgrades beim konventionellen Gel (PEG0) nach ca. 30 min nicht mehr zu beobachten.
Aus den Daten der Entquellung für das makroporöse Gel (PEG20) ist zu erkennen, dass die Entquellung bei den makroporösen Gelen schneller vollzogen ist, als bei den konventionellen. Dies ist bereits nach ca. 10 min der Fall.

Die Ergebnisse der kinetischen Entquellung bei den Gelen mit Comonomer wurden exemplarisch für die Gele NI15CMC1V2T15S100PEG0 und NI15CMC1V2T15S100PEG30 in Abb. 52 dargestellt.

Abb. 52: Entquellung der Gele NI15CMC1V2T15S100PEG0 und NI15CMC1V2T15S100PEG30

Wie auch hier zu sehen, ist der Entquellungsvorgang bei beiden Gelen bereits nach ca. 30 min abgeschlossen.

Die ermittelten Kurven für die Gele sollen auch mit einigen Literaturdaten verglichen werden (siehe Abb. 53, Abb. 54 und Abb. 55)
Abb. 53: Entquellungskinetik der Gele nach [Zhan00], O = 14 % PEG (nicht makroporös), △ = 27 % PEG (nicht makroporös), □ = 40 % PEG (makroporös) und ◊ = 53 % PEG (makroporös), (ΔT von 26 °C auf 48 °C)

Abb. 54: Entquellungskinetiken der Gele in [Zhan03a], SU000 und SU050 nicht makroporös, SU100 und SU150 makroporös (ΔT von 20 °C auf 37 °C)

In Abb. 53 und Abb. 54 ist zu beobachten, dass auch hier bei den makroporösen Gelen der Endzustand des Entquellens schneller erreicht ist, als es bei den nicht makroporösen Gelen der Fall ist.
Abb. 55: Entquellungskinetik von konventionellem Gel (⊙) und schnell quellendem Gel (●) nach [Kane98] (ΔT von 10 (15) °C auf 40 °C)

In Abb. 55 kann beobachtet werden, dass das PNIPA-Kamm-PNIPA-Gel (IGG) in seinem Enquellungsverhalten den makroporösen Gelen ähnlich ist, da der Endzustand des Entquellens schnell erreicht ist.
5.2.4 Messungen zur Quellungskinetik

Wie die Entquellung, so sollte auch umgekehrt das Quellverhalten der Gele untersucht werden, um festzustellen nach welcher Zeit die Gele das Gleichgewicht erreicht haben.

Auch diese Messungen wurden an den beiden Gelen NI15V2T15S100PEG0 und NI15V2T15S100PEG20 als Beispiele für die Gele ohne ionisches Comonomer durchgeführt (siehe Abb. 56).

Wie aus diesem Diagramm zu erkennen, ist der Gleichgewichtsquellgrad des konventionellen Gels (PEG0) nach ca. 1400 min (entspr. 24 h) erreicht.
Bei dem makroporösen Gel (PEG20) zeigt der Kurvenverlauf des Quellungsdiagramms, dass das Quellungsgleichgewicht für diese Gele nach ca. 3 Stunden (180 min) erreicht ist. Dieses kinetische Verhalten ist bei allen makroporösen Gelen ähnlich, auch bei denen mit ionischem Comonomer (siehe Abb. 57).

![Quellungskurven von NI15CMC1V2T15S100PEG0 und NI15CMC1V2T15S100PEG30](image)

Abb. 57: Quellung von NI15CMC1V2T15S100PEG0 und NI15CMC1V2T15S100PEG30

Wie auch hierbei zu sehen ist, ist der Gleichgewichtsquellgrad bei dem makroporösen Gel (CMC1PEG30) nach ca. 3 h erreicht. Das konventionelle Gel (CMC1PEG0) braucht aber eine Quellzeit von ca. 24 h, um das Gleichgewicht zu erreichen.

Die Quellung dieser Gele sollte ebenfalls mit der Quellung einiger Gele aus der Literatur verglichen werden (siehe Abb. 58).
Abb. 58: Beispiel des Quellverhaltens von konventionellen PNIPA-Gelen durch Absenken der Umgebungstemperatur von 50 °C auf 22 °C. Die Unterschiede dieser Gele beruhen auf unterschiedlichen Vernetzeranteilen [Zhan03b]

Hierbei ist zu beobachten, dass die Quellung bei allen Gelen bis 640 min noch nicht abgeschlossen zu sein scheint.

Literaturdaten für die Quellung von makroporösen Gelen konnten bislang nicht ermittelt werden.
5.2.5 Messungen des Gleichgewichtsquellgrades

Der Gleichgewichtsquellgrad eines Gels ist eine wichtige Größe bei der Untersuchung der Netzwerkstruktur. Er gibt Aufschluss über die Menge des eingelagerten Wassers und mit seiner Hilfe lassen sich auch die Abstände zwischen zwei Vernetzungspunkten in der Gelstruktur berechnen (siehe 2.2.9). Die Ergebnisse der Quellgraduntersuchungen der in 4.1, Tab. 10 dargestellten Gele sind in Abb. 59, Abb. 60 und Abb. 61 zusammengefasst. Hierbei wurde immer der Quellgrad in Abhängigkeit von der Umgebungstemperatur aufgetragen. Um eine bessere Übersicht zu gewährleisten, wurden die Gele nach ihrem Gesamtmonomergehalt Ni = 5 %, 7,5 % und 10 %) in verschiedenen Diagrammen getrennt dargestellt. Da alle Gele mit einem Starterverhältnis von 1 zu 100 synthetisiert wurden, entfällt dieser Parameter ab nun in der Benennung. Die Gleichgewichtsquellgrade der Gele mit Ni = 5 % sind in Abb. 59 wiedergegeben.

Abb. 59: Quellgrad-Temperaturverlauf der Gele mit einem Gesamtmonomergehalt von Ni = 5 %

Die Beladung des Gels mit dem Enzym soll später bei einer Temperatur von 4 °C stattfinden, da die Gele dort ihren größten Quellgrad erreichen (siehe Abb. 59), und somit ihre größte Maschenweite. Bei den Gelen mit Ni = 5 % erzielt das Gel mit der Bezeichnung Ni5V5T25 den höchsten Quellgrad (QG = 49) bei dieser Temperatur.

In Abb. 60 ist der Quellgradverlauf der Gele mit einem Gesamtmonomergehalt von Ni = 7,5 % aufgetragen.
Abb. 60: Quellgrad-Temperaturverlauf der Gele mit einem Gesamtmonomergehalt von NI = 7,5 %

Hierbei erreicht das Gel mit der Bezeichnung NI7,5V5T25 den höchsten Quellgrad (QG = 32) bei 4 °C. Die Gleichgewichtsquellgrade der Gele mit einem Gesamtmonomergehalt von NI = 10 % sind in Abb. 61 wiedergegeben.

Die LCST kann hier durch ein signifikantes Absinken des Quellgrades beobachtet werden und liegt bei allen Gelen zwischen 30 °C und 40 °C.

Dann wurden die Gleichgewichtsquellgrade der in Kapitel 4.4.2, Tab. 11 und Tab. 12 synthetisierten Gele bestimmt, bei denen der Monomerlösung Polyethylenglycol 400 hinzugefügt wurde. Diese sind in Abb. 62 dargestellt.
Abb. 62: Quellgrad-Temperaturverlauf der Gele NI15V2T15PEG0-40 (NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 bis 40 %)

Diese Gele wurden mit einem geringeren Vernetzeranteil V = 2 % synthetisiert, als bei den vorherigen Gelen (mindestens V = 5 %), da aufgrund des höheren Gesamtmonomeranteils von NI = 15 % auch bei V = 2 % Vernetzeranteil noch mechanisch stabile Gele erhalten werden konnten. Den größten Quellgrad bei 4 °C erreichen die Gele mit geringem oder keinem PEG-Anteil PEG10, 5 und 0 in dieser Reihenfolge. Danach folgen die makroporösen Gele mit PEG40, 30 und 20 %. Im entquollenen Zustand hingegen erreichen die Gele mit PEG30 und PEG40 den höchsten Quellgrad. Die LCST kann auch hier in einem Temperaturbereich zwischen 30 °C und 40 °C beobachtet werden.

Die Gleichgewichtsquellgrade der Gele mit V = 5 % Vernetzer sind in Abb. 63 wiedergegeben.
Abb. 63: Quellgrad-Temperaturverlauf der Gele NI15V5T15S100PEG0-40 (NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 bis 40 %)

Bei den Gelen mit V = 5 % erreicht das Gel mit PEG 20 den höchsten Quellgrad bei 4 °C, die Quellgrade der anderen makroporösen Gele mit PEG 30 und PEG 40 liegen darunter. Insgesamt ist der Quellgrad der Gele mit V = 5 % aber um ca. 10 geringer, als der Quellgrad der Gele mit V = 2 %. Auch hier kann bei den Gelen mit hohem PEG-Anteil (PEG30 und 40) im entquollenen Zustand der höchste Quellgrad beobachtet werden. Die LCST kann zwischen 30 °C und 40 °C beobachtet werden.

Bislang wurden Einflüsse wie Gesamtmonomergehalt, Vernetzerkonzentration, Synthesetemperatur bei konventionellen Gelen und die PEG-Konzentration auf den Quellgrad untersucht. In Abb. 64 werden die Gleichgewichtsquellgrade der Gele mit varierendem Vernetzer dargestellt.
Abb. 64: Gleichgewichtsquellgrade in Abhängigkeit von der Temperatur bei NI = 15 %, V = 10 bis 40 %, T = 15 °C und PEG = 40 % (NI15V10-40T15PEG40)

Die Kurven dieser makroporösen Gele mit varierendem Vernetzer zeigen denselben Quellgrad-Verlauf, wie die Gele mit V = 2 und 5 %. Hierbei zeigen die Gele mit einem geringeren Vernetzeranteil einen generell größeren Quellgrad bei 4 °C, als die Gele mit wenig Vernetzer. Die Quellgrade hierbei sind aber geringer, als bei den Gelen mit V = 5 %. Im entquollenen Zustand haben die Gele mit hohem Vernetzer-Anteil den höchsten Quellgrad (V30 und 40).

Das signifikante Absinken des Quellgrades findet in einem Temperaturbereich zwischen 30 °C bis 40 °C statt.
Die Gleichgewichtsquellgrade der konventionellen Gele (PEG0) mit variierendem ionischen Comonomeranteil aus 4.3, Tab. 13 sind in Abb. 65 dargestellt.

Wie aus diesen Kurven zu entnehmen ist, ist der Quellgrad von Gelen mit hohem Comonomeranteil bei 4 °C höher, als bei denen mit geringem. Auch im entquollenen Zustand ist der Quellgrad bei Gelen mit höherem Comonomer-Anteil höher, als bei Gelen mit niedrigem.

Tab. 22: Abgeschätzter Temperaturbereich der LCST bei den konventionellen Gelen mit ionischem Comonomer

<table>
<thead>
<tr>
<th>Comonomerkonzentration [mol-%]</th>
<th>Temperaturbereich des signifikanten Absinkens des Quellgrades [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30-50</td>
</tr>
<tr>
<td>2,5</td>
<td>30-50</td>
</tr>
<tr>
<td>5</td>
<td>40-50</td>
</tr>
<tr>
<td>10</td>
<td>40-60</td>
</tr>
</tbody>
</table>
Das signifikante Absinken des Quellgrades wird mit zunehmendem Comonomeranteil in einen höheren Temperaturbereich (LCST) hin verschoben (siehe Tab. 22). Diese Abschätzung kann aber nur für einen recht ungenauen Temperaturbereich und nicht für eine exakte Temperatur vorgenommen werden.

Die Gleichgewichtsquellgradmessungen der makroporösen Gele (PEG30) mit ionischem Comonomer (4.3, Tab. 14) sind in Abb. 66 dargestellt.

![Diagramm](image)

Abb. 66: Quellgrad-Temperatur-Verlauf der Gele mit NI = 15 %, CMC 1 bis 10 %, V = 2 %, T = 15 °C, S = 1 zu 100 und PEG = 30 % (NI15CMC1-10V2T15S100PEG30)

Auch hierbei ist zu beobachten, dass die makroporösen Gele mit geringem Comonomer-Anteil einen geringeren Quellgrad besitzen. Insgesamt sind die Quellgrade aber höher als bei den konventionellen Gelen. Im entquollenen Zustand sind die Quellgrade der Gele mit hohem Comonomer-Anteil ebenfalls höher als bei den Gelen mit niedrigem.
Tab. 23: Abgeschätzter Temperaturbereich der LCST bei den makroporösen Gelen mit ionischem Comonomer

<table>
<thead>
<tr>
<th>Comonomerkonzentration [mol-%]</th>
<th>Temperaturbereich des signifikanten Absinkens des Quellgrades [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40-50</td>
</tr>
<tr>
<td>2,5</td>
<td>40-60</td>
</tr>
<tr>
<td>5</td>
<td>40-60</td>
</tr>
<tr>
<td>10</td>
<td>50-70</td>
</tr>
</tbody>
</table>

Das signifikante Absinken des Quellgrades wird mit steigendem Comonomer-Anteil in einen höheren Temperaturbereich hin verschoben (siehe Tab. 23).

5.2.6 Berechnung der Maschenweiten

Der Gleichgewichtsquellgrad der Gele bei der entsprechenden Temperatur wurde in 5.2.5 bestimmt. Hieraus lässt sich nun mit Hilfe der Gleichungen in 2.2.9 der Abstand in den Netzwerkketten theoretisch errechnen. Die eingesetzten Konstanten sind in Tab. 24 wiedergegeben.

Bei dieser Berechnung wurden der Vernetzeranteil und der Quellgrad der Gele variiert.

Tab. 24: eingesetzte Konstanten für die Berechnung von M, M_c, r und ξ

<table>
<thead>
<tr>
<th>M (NIPA) [g/mol]</th>
<th>113,18</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (Bis) [g/mol]</td>
<td>154,17</td>
</tr>
<tr>
<td>l (C-C-Abstand) [nm]</td>
<td>0,15</td>
</tr>
<tr>
<td>C_n (Acrylate)*</td>
<td>6,9</td>
</tr>
</tbody>
</table>

* [Cana89], [Podu00a]
M (die Molmasse des Monomers) wird berechnet, indem eine mittlere Molmasse aus dem Anteil des NIPA und des jeweiligen Vernetzeranteils ermittelt wird. Die durchschnittliche Molmasse zwischen zwei Vernetzungspunkten \(M_c \) kann aus Gl. 5-2 bestimmt werden.

\[
M_c = \frac{n(NIPA)M(NIPA)+M(Bis)}{n(Bis)} \quad \text{(Gl. 5-2)}
\]

wobei
\[
M (NIPA) = \text{Molmasse NIPA} \\
M (Bis) = \text{Molmasse Bis} \\
n(NIPA) = \text{eingesetzte Stoffmenge NIPA} \\
n (Bis) = \text{Stoffmenge Bis}
\]

Hierbei wird die molare Masse des PNIPA zwischen zwei Vernetzungspunkten berechnet, und es werden zwei Vernetzungseinheiten für den Anfang und das Ende der Kette addiert. Da sich aber jede Vernetzereinheit mit einer zusätzlichen PNIPA-Polymerkette verbindet, wird deren Anteil halbiert.

Der für die Ermittlung von \(\xi \) notwendige Volumenbruch im gequollenen Gel im Quellungsgleichgewicht \((v_{2m}) \) ergibt sich aus dem reziproken Quellgrad (siehe Gl. 5-3).

\[
v_{2m} = \frac{1}{QG} \quad \text{(Gl. 5-3)}
\]

Die Größe des Dextranmoleküls \((M_w = 70 \text{ kDa}) \), an welchem die Be- und Entladung der Gele zunächst untersucht werden sollte, beträgt nach [Jais04] 5,8 nm. Dies bedeutet, dass das Dextran im Gel mit einer Maschenweite \((\xi) \) von mehr als 5,8 nm hineindiffundieren müsste. Allerdings ist hierbei zu beachten, dass es sich bei diesem Wert um eine gemittelte Größe handelt. Wie bei allen Polymeren unterliegen auch die Dextrane immer einer gewissen Kettenlängen- und somit auch Molekülanlängeverteilung, so dass in diesem Dextran auch Polymere größerer und kleinerer Molmassen vorhanden sind. Der Wert von 5,8 nm wird auch als Stokes-Radius bezeichnet. Zur Ermittlung dieser Größe wird ein Formfaktor in die Berechnung miteinbezogen, der aber nicht das gesamte Molekül erfasst. Wie die Dextrane, so unterliegen auch die Maschen des Gels einer Kettenlängenverteilung, d.h. auch hier werden Maschen vorhanden sein, welche größer und kleiner als der berechnete Mittelwert für die Maschenweite sind. Aufgrund dieser Ungenauigkeiten ist damit zu rechnen, dass es auch bei Maschenweiten, welche größer als der Stokes-Radius des Dextrans sind noch zu erheblichen Behinderungen der Diffusion kommt.

Zunächst erfolgt die Berechnung der Maschenweiten der konventionellen Gele, bei denen die Parameter Gesamtmonomerengehalt, VernetzERGEHALT und Synthesetemperatur variiert wurden. Die Ergebnisse sind in Tab. 25 dargestellt.
Tab. 25: Berechnung der Maschenweite zwischen zwei Vernetzungspunkten in den konventionellen Gelen (NI = 5; 7,5 u. 10 %; V = 5 u. 10 %; T = 15, 25 u. 40 °C und S = 1 zu 100) bei 4 °C

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Vernetzeranteil [%]</th>
<th>Quellgrad bei 4 °C</th>
<th>r [nm]</th>
<th>ξ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI5V5T15</td>
<td>5</td>
<td>38,5</td>
<td>3,0</td>
<td>10,2</td>
</tr>
<tr>
<td>NI5V10T15</td>
<td>10</td>
<td>32,5</td>
<td>2,2</td>
<td>6,9</td>
</tr>
<tr>
<td>NI5V5T25</td>
<td>5</td>
<td>49,0</td>
<td>3,0</td>
<td>11,1</td>
</tr>
<tr>
<td>NI5V10T25</td>
<td>10</td>
<td>42,5</td>
<td>2,2</td>
<td>7,5</td>
</tr>
<tr>
<td>NI5V5T40</td>
<td>5</td>
<td>18,2</td>
<td>3,0</td>
<td>8,0</td>
</tr>
<tr>
<td>NI5V10T40</td>
<td>10</td>
<td>18,0</td>
<td>2,2</td>
<td>5,7</td>
</tr>
<tr>
<td>NI7,5V5T15</td>
<td>5</td>
<td>22,1</td>
<td>3,0</td>
<td>8,5</td>
</tr>
<tr>
<td>NI7,5V10T15</td>
<td>10</td>
<td>17,9</td>
<td>2,2</td>
<td>5,7</td>
</tr>
<tr>
<td>NI7,5V5T25</td>
<td>5</td>
<td>32,3</td>
<td>3,0</td>
<td>9,6</td>
</tr>
<tr>
<td>NI7,5V10T25</td>
<td>10</td>
<td>25,6</td>
<td>2,2</td>
<td>6,4</td>
</tr>
<tr>
<td>NI7,5V5T40</td>
<td>5</td>
<td>15,0</td>
<td>3,0</td>
<td>7,4</td>
</tr>
<tr>
<td>NI7,5V10T40</td>
<td>10</td>
<td>21,0</td>
<td>2,2</td>
<td>5,9</td>
</tr>
<tr>
<td>NI10V5T15</td>
<td>5</td>
<td>20,2</td>
<td>3,0</td>
<td>8,2</td>
</tr>
<tr>
<td>NI10V10T15</td>
<td>10</td>
<td>17,8</td>
<td>2,2</td>
<td>5,6</td>
</tr>
<tr>
<td>NI10V5T25</td>
<td>5</td>
<td>25,4</td>
<td>3,0</td>
<td>8,9</td>
</tr>
<tr>
<td>NI10V10T25</td>
<td>10</td>
<td>21,7</td>
<td>2,2</td>
<td>6,0</td>
</tr>
<tr>
<td>NI10V5T40</td>
<td>5</td>
<td>12,9</td>
<td>3,0</td>
<td>7,1</td>
</tr>
</tbody>
</table>

In Tab. 26 werden die Maschenweiten der Gele mit variierendem PEG-Anteil ohne ionisches Comonomer dargestellt.

Tab. 26: Berechnung der Maschenweite zwischen zwei Vernetzungspunkten in den Gelen mit variierendem PEG-Anteil (NI = 15 %; V = 2 und 5 %; T = 15 °C und PEG = 0 bis 40 %) bei 4 °C

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Vernetzeranteil [%]</th>
<th>Quellgrad bei 4 °C</th>
<th>r [nm]</th>
<th>ξ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG0</td>
<td>2</td>
<td>31,9</td>
<td>4,7</td>
<td>15,0</td>
</tr>
<tr>
<td>NI15V2T15PEG5</td>
<td>2</td>
<td>36,6</td>
<td>4,7</td>
<td>15,7</td>
</tr>
<tr>
<td>NI15V2T15PEG10</td>
<td>2</td>
<td>42,9</td>
<td>4,7</td>
<td>16,6</td>
</tr>
<tr>
<td>NI15V2T15PEG20</td>
<td>2</td>
<td>27,6</td>
<td>4,7</td>
<td>14,3</td>
</tr>
<tr>
<td>NI15V2T15PEG30</td>
<td>2</td>
<td>29,7</td>
<td>4,7</td>
<td>14,7</td>
</tr>
<tr>
<td>NI15V2T15PEG40</td>
<td>2</td>
<td>31,6</td>
<td>4,7</td>
<td>15,0</td>
</tr>
<tr>
<td>NI15V5T15PEG0</td>
<td>5</td>
<td>18,2</td>
<td>3,0</td>
<td>7,9</td>
</tr>
<tr>
<td>NI15V5T15PEG5</td>
<td>5</td>
<td>22,0</td>
<td>3,0</td>
<td>8,5</td>
</tr>
<tr>
<td>NI15V5T15PEG10</td>
<td>5</td>
<td>24,9</td>
<td>3,0</td>
<td>8,8</td>
</tr>
<tr>
<td>NI15V5T15PEG20</td>
<td>5</td>
<td>29,7</td>
<td>3,0</td>
<td>9,4</td>
</tr>
</tbody>
</table>
Auch in diese Gele müsste das Dextran eindringen, da die Maschenweite größer ist, als die Größe des Dextranmoleküls. Trotz der höheren Monomerkonzentration und dem damit verbundenen geringeren Quellgrad werden hier weit höhere Maschenweiten berechnet.

In Tab. 27 werden die Daten der Maschenweiten der Gele mit variierendem Vernetzeranteil gegenübergestellt.

Tab. 27: Berechnung der Maschenweite zwischen zwei Vernetzungspunkten in den makroporösen Gelen mit variierendem Vernetzer (NI = 15 %; V = 10 bis 40 %; T = 15 °C und PEG = 40 %) bei 4 °C

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Vernetzeranteil [%]</th>
<th>Quellgrad bei 4 °C</th>
<th>r [nm]</th>
<th>ξ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V10T15PEG40</td>
<td>10</td>
<td>13,9</td>
<td>2,2</td>
<td>5,2</td>
</tr>
<tr>
<td>NI15V20T15PEG40</td>
<td>20</td>
<td>11,0</td>
<td>1,6</td>
<td>3,5</td>
</tr>
<tr>
<td>NI15V30T15PEG40</td>
<td>30</td>
<td>9,8</td>
<td>1,3</td>
<td>2,8</td>
</tr>
<tr>
<td>NI15V40T15PEG40</td>
<td>40</td>
<td>8,9</td>
<td>1,1</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Da diese Gele eine Maschenweite von weniger als 5,8 nm besitzen, sollte das Dextran hierin nicht eindringen.

Die Maschenweiten der Gele mit ionischem Comonomer sind in Tab. 28 dargestellt.
Nach Berechnung der Maschenweite müsste das Dextran auch hierbei überall eindiffundieren.

Die Gele sollen bei 60 °C entladen werden. Es erfolgt deshalb die Berechnung der Maschenweiten für die konventionellen Gele in Tab. 29 bei dieser Temperatur.

Tab. 29: Berechnung der Maschenweite zwischen zwei Vernetzungspunkten in den konventionellen Gelen (NI = 5; 7,5 u. 10 %; V = 5 u. 10 %; T = 15, 25 u. 40 °C und S = 1 zu 100) bei 60 °C

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Vernetzeranteil [%]</th>
<th>Quellgrad bei 60 °C</th>
<th>r [nm]</th>
<th>ξ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI5V5T15</td>
<td>5</td>
<td>5,3</td>
<td>3,0</td>
<td>5,3</td>
</tr>
<tr>
<td>NI5V10T15</td>
<td>10</td>
<td>3,3</td>
<td>2,2</td>
<td>3,2</td>
</tr>
<tr>
<td>NI5V5T25</td>
<td>5</td>
<td>3,3</td>
<td>3,0</td>
<td>4,5</td>
</tr>
<tr>
<td>NI5V10T25</td>
<td>10</td>
<td>3,6</td>
<td>2,2</td>
<td>3,3</td>
</tr>
<tr>
<td>NI5V5T40</td>
<td>5</td>
<td>6,0</td>
<td>3,0</td>
<td>5,5</td>
</tr>
<tr>
<td>NI5V10T40</td>
<td>10</td>
<td>5,6</td>
<td>2,2</td>
<td>3,8</td>
</tr>
<tr>
<td>NI7,5V5T15</td>
<td>5</td>
<td>3,1</td>
<td>3,0</td>
<td>4,4</td>
</tr>
<tr>
<td>NI7,5V10T15</td>
<td>10</td>
<td>3,3</td>
<td>2,2</td>
<td>3,2</td>
</tr>
<tr>
<td>NI7,5V5T25</td>
<td>5</td>
<td>2,4</td>
<td>3,0</td>
<td>4,0</td>
</tr>
<tr>
<td>NI7,5V10T25</td>
<td>10</td>
<td>2,1</td>
<td>2,2</td>
<td>2,7</td>
</tr>
<tr>
<td>NI7,5V5T40</td>
<td>5</td>
<td>6,2</td>
<td>3,0</td>
<td>5,5</td>
</tr>
<tr>
<td>NI7,5V10T40</td>
<td>10</td>
<td>9,0</td>
<td>2,2</td>
<td>4,5</td>
</tr>
<tr>
<td>NI10V5T15</td>
<td>5</td>
<td>2,5</td>
<td>3,0</td>
<td>4,5</td>
</tr>
<tr>
<td>NI10V10T15</td>
<td>10</td>
<td>2,6</td>
<td>2,2</td>
<td>3,0</td>
</tr>
<tr>
<td>NI10V5T25</td>
<td>5</td>
<td>3,2</td>
<td>3,0</td>
<td>4,5</td>
</tr>
<tr>
<td>NI10V10T25</td>
<td>10</td>
<td>2,1</td>
<td>2,2</td>
<td>2,8</td>
</tr>
<tr>
<td>NI10V5T40</td>
<td>5</td>
<td>5,9</td>
<td>3,0</td>
<td>5,4</td>
</tr>
<tr>
<td>NI10V10T40</td>
<td>10</td>
<td>9,9</td>
<td>2,2</td>
<td>4,6</td>
</tr>
</tbody>
</table>

Da keiner der hier berechneten Werte für die Maschenweite größer als das Dextran ist, könnten Teile des Dextrans in allen Gelen nach dem vollständigen Kollabieren eingeschlossen werden.

Die Maschenweite der Gele mit PEG-Anteil im kollabierten (bei 60 °C) Zustand wird in Tab. 30 betrachtet.
Tab. 30: Berechnung der Maschenweite zwischen zwei Vernetzungs punkten in den Gelen mit variierendem PEG-Anteil (NI = 15 %; V = 2 u. 5 %; T = 15 °C und PEG = 0 bis 40 %) bei 60 °C

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Vernetzeranteil [%]</th>
<th>Quellgrad bei 60 °C</th>
<th>r [nm]</th>
<th>ξ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG0</td>
<td>2</td>
<td>3,0</td>
<td>4,7</td>
<td>6,9</td>
</tr>
<tr>
<td>NI15V2T15PEG5</td>
<td>2</td>
<td>3,0</td>
<td>4,7</td>
<td>6,9</td>
</tr>
<tr>
<td>NI15V2T15PEG10</td>
<td>2</td>
<td>6,0</td>
<td>4,7</td>
<td>8,6</td>
</tr>
<tr>
<td>NI15V2T15PEG20</td>
<td>2</td>
<td>5,8</td>
<td>4,7</td>
<td>8,5</td>
</tr>
<tr>
<td>NI15V2T15PEG30</td>
<td>2</td>
<td>6,5</td>
<td>4,7</td>
<td>8,9</td>
</tr>
<tr>
<td>NI15V2T15PEG40</td>
<td>2</td>
<td>5,8</td>
<td>4,7</td>
<td>8,5</td>
</tr>
<tr>
<td>NI15V5T15PEG0</td>
<td>5</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
</tr>
<tr>
<td>NI15V5T15PEG5</td>
<td>5</td>
<td>3,8</td>
<td>3,0</td>
<td>4,7</td>
</tr>
<tr>
<td>NI15V5T15PEG10</td>
<td>5</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
</tr>
<tr>
<td>NI15V5T15PEG20</td>
<td>5</td>
<td>6,3</td>
<td>3,0</td>
<td>5,6</td>
</tr>
<tr>
<td>NI15V5T15PEG30</td>
<td>5</td>
<td>7,6</td>
<td>3,0</td>
<td>5,9</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>5</td>
<td>6,8</td>
<td>3,0</td>
<td>5,7</td>
</tr>
</tbody>
</table>

Die Gele mit V = 2 % liegen mit ihrer Maschenweite oberhalb der Größe des Dextrans mit 5,8 nm und es ist somit unwahrscheinlich das Teile des Dextrans beim Kollabieren in der Netzwerkstruktur eingeschlossen werden. Dies bedeutet, dass die Dextranmoleküle aus diesem Gel vollständig austreten könnten. Dies ist bei den Gelen mit V = 5 % nicht der Fall. Diese besitzen alle eine geringere Maschenweite als der kritische Wert von 5,8 nm, außer V5PEG30. Da dieser Wert aber nur geringfügig größer ist, werden dort dieselben Behinderungen auftreten wie bei den anderen Gelen mit V = 5 %.

Die Betrachtung der Maschenweiten der Gele mit variierendem Vernetzeranteil (V10 bis V40 bei PEG40) kann entfallen, da die Maschenweiten bereits im gequollenen Zustand (bei 4 °C) kleiner
als 5,8 nm waren. Es ist nicht zu erwarten, dass das Dextran dort eindringt und somit kann es auch nicht entfernt werden.

Die Maschenweiten der Gele mit ionischem Comonomer sind in Tab. 31 dargestellt.

Tab. 31: Berechnung der Maschenweite zwischen zwei Vernetzungspunkten in den konventionellen und makroporösen Gelen mit ionischem Comonomer (NI = 15 %; CMC = 10; 5; 2,5 u. 1 mol-%; V = 2 %; T = 15 °C und PEG = 0 und 30 %) bei 60 °C

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Vernetzeranteil [%]</th>
<th>Quellgrad bei 60 °C</th>
<th>r [nm]</th>
<th>ξ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC10V2T15PEG0</td>
<td>2</td>
<td>22,7</td>
<td>4,7</td>
<td>13,4</td>
</tr>
<tr>
<td>NI15CMC5V2T15PEG0</td>
<td>2</td>
<td>5,7</td>
<td>4,7</td>
<td>8,5</td>
</tr>
<tr>
<td>NI15CMC2,5V2T15PEG0</td>
<td>2</td>
<td>7,2</td>
<td>4,7</td>
<td>9,2</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG0</td>
<td>2</td>
<td>3,9</td>
<td>4,7</td>
<td>7,5</td>
</tr>
<tr>
<td>NI15CMC10V2T15PEG30</td>
<td>2</td>
<td>48,8</td>
<td>4,7</td>
<td>17,3</td>
</tr>
<tr>
<td>NI15CMC5V2T15PEG30</td>
<td>2</td>
<td>4,4</td>
<td>4,7</td>
<td>7,8</td>
</tr>
<tr>
<td>NI15CMC2,5V2T15PEG30</td>
<td>2</td>
<td>2,8</td>
<td>4,7</td>
<td>6,7</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG30</td>
<td>2</td>
<td>3,8</td>
<td>4,7</td>
<td>7,4</td>
</tr>
</tbody>
</table>

Aus diesen Daten geht hervor, dass das Dextran bei allen Gelen im entquollenen Zustand aus Gel herausreten müsste, da die Maschenweiten der kollabierten Gele größer als die Molekülgröße des Dextrans sind.

Die Gleichgewichtsquellgrade sollen mit den Gleichgewichtsquellgraden von Gelen aus der Literatur verglichen werden.
Abb. 67: Quellgrad-Temperatur-Diagramm der Gele nach [Zhan03a], SU000 und SU050 sind nicht makroporöse Gele, SU100 und SU150 sind makroporös

Die in dieser Arbeit ermittelten Kurvenverläufe decken sich weitestgehend mit denen nach [Zhan03a]. Auch bei den Gelen in der Literatur erfolgt ein signifikantes Absinken des Quellgrades in einem Temperaturbereich zwischen 30 und 40 °C. Allerdings ist in dieser Arbeit bearbeitete Messbereich (4 bis 70 °C) im Gegensatz zur Literatur (20 bis 45 °C) weiter. Ein Vergleich der Quellgrade dieser Gele kann nicht erfolgen, da die Literaturgele eine andere Zusammensetzung, als die in dieser Arbeit verwendeten haben.

5.2.7 Rasterelektronenmikroskopische Aufnahmen

Ziel der rasterelektronenmikroskopischen (REM) Aufnahmen war es, Informationen über die Struktur der konventionellen (siehe Abb. 68) und der makroporösen (siehe Abb. 69) Gele zu erhalten. Mit Hilfe von rasterelektronenmikroskopischen Aufnahmen lassen sich nur Oberflächenstrukturen untersuchen. Da aber die innere Struktur der Gele interessant war, wurden die gefriergetrockneten Gele kurz vor der Probenpräparation zerbrochen und deren Bruchkante dann präpariert. Auch wurde die Struktur von makroporösen Gelen untersucht, welche mit FITC-Dextran (M_w = 70 kDa) beladen waren, um festzustellen, ob sich eine eventuelle Beladung im Rasterelektronenmikroskop beobachten ließ (siehe Abb. 70 und Abb. 71).
Abb. 68: REM-Aufnahme des konventionellen Gels NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 % (NI15V2T15PEG0)

Auf diesem Bild ist eine geschlossene poröse Struktur zu erkennen, mit Wandstärken um die 3-4 µm. Der durchschnittliche Durchmesser einer Pore beträgt ca. 5 µm.

In Abb. 69 wird die Struktur des makroporösen Gels betrachtet.

Abb. 69: REM-Aufnahme des makroporösen Gels NI = 15 %, V = 2 %, T = 15 °C und PEG = 20 % (NI15V2T15PEG20)
Hier ist eine geöffnete Porenstruktur zu erkennen. Im Gegensatz zu Abb. 68 sind die Räume zwischen den Polymerwänden nicht voneinander durch Wände getrennt. Porendurchmesser und Wandstärke scheinen hier, unter der Verwendung einer anderen Mikroskopvergrößerung (makroporöses Gel 20 µm, konventionelles Gel 10 µm), vergleichbar zu sein.

Die folgende Aufnahme (siehe Abb. 70) zeigt ein makroporöses Gel, welches mit Dextran beladen und dann gefriergetrocknet wurde. Bei dieser Aufnahme wurde eine Vergrößerung von 10 µm verwendet.

![REM-Aufnahme des makroporösen Gels (NI15V2T15PEG20) mit Dextran (70 kDa) beladen](image)

Abb. 70: REM-Aufnahme des makroporösen Gels (NI15V2T15PEG20) mit Dextran (70 kDa) beladen

Die Dextranmoleküle sind zu klein (5,8 nm), um im Rasterelektronenmikroskop beobachtet werden zu können. Aber aus dieser Aufnahme geht hervor, dass die Porenwände glatter und offensichtlich mit einer Substanz belegt sind.

In der Aufnahme in Abb. 71 wird ein Ausschnitt der belegten Wände noch einmal vergrößert dargestellt, um die abgelegte Substanz zu untersuchen.
Abb. 71: REM-Aufnahme des makroporösen Gels (NI15V2T15PEG20) mit Dextran (70 kDa) beladen

Auch in dieser vergrößerten Darstellung (1 µm) des beladenen Gels sieht die Beladung homogen aus. Allerdings liegen auf einigen Stellen dieser Wände noch zusätzliche Agglomerate, welche in Form von Fäden oder Kristallen abgeschieden sind.

Die Aufnahmen beider unbelegter Gele sollten auch mit Aufnahmen von Gelen aus der Literatur (siehe Abb. 72) verglichen werden.
Beim konventionell synthetisierten Gel (NG) ist auch hier eine weitgehend geschlossene Struktur zu erkennen. Die makroporösen Gele (NE-300, NE-600, NE-1000 und NE-2000) zeigen eine offene Porenstruktur, in der die einzelnen Poren nicht durch geschlossene Wände voneinander getrennt sind.

5.2.8 Dynamic Scanning Calorimetry

Der Verlauf der Messkurven ist exemplarisch in Abb. 73 wiedergegeben.

Abb. 73: DSC-Messung von NI10V5T15S100

Wie zu erkennen ist, handelt es sich bei dem Phasenübergang um einen endothermen Übergang, d.h. eine Phasenänderung für die Energie aufgewendet werden muß. Bei dem hier vermessenen Gel handelt es sich um das NI10V5T15S10 0. Die ermittelte Onset-Temperatur des Signals beträgt hierbei 31,8 °C, d.h. der Phasenübergang beginnt bei dieser Temperatur. Die Auswertung der anderen gemessenen Temperaturkurven erfolgte analog.

Die Onset-Temperatur bei den 16 konventionellen Gelen, die in 4.4.2 dargestellt wurden, war in einem Bereich von 32 bis 34 °C zu finden.

Die Onset-Temperatur des Phasenübergangssignals der Gele mit varierendem PEG-Anteil aus 4.4.3 wurde in Tab. 32 wiedergegeben.
Tab. 32: Onset-Temperaturen des Phasenübergangssignals der Gele mit variierendem PEG-Anteil (NI = 15 %, V = 2 und 5 %, T = 15 °C und PEG = 0 bis 40 %)

<table>
<thead>
<tr>
<th>Gel-Bezeichnung</th>
<th>Onset LCST [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG0</td>
<td>33,6</td>
</tr>
<tr>
<td>NI15V2T15PEG5</td>
<td>32,7</td>
</tr>
<tr>
<td>NI15V2T15PEG10</td>
<td>33,0</td>
</tr>
<tr>
<td>NI15V2T15PEG20</td>
<td>30,3</td>
</tr>
<tr>
<td>NI15V2T15PEG30</td>
<td>29,4</td>
</tr>
<tr>
<td>NI15V2T15PEG40</td>
<td>29,7</td>
</tr>
<tr>
<td>NI15V5T15PEG0</td>
<td>33,2</td>
</tr>
<tr>
<td>NI15V5T15PEG5</td>
<td>32,5</td>
</tr>
<tr>
<td>NI15V5T15PEG10</td>
<td>28,0</td>
</tr>
<tr>
<td>NI15V5T15PEG20</td>
<td>25,9</td>
</tr>
<tr>
<td>NI15V5T15PEG30</td>
<td>25,7</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>26,6</td>
</tr>
</tbody>
</table>

Aus dieser Tabelle geht eine leichte Absenkung der Onset-Temperatur des Phasenübergangs ab einem PEG-Anteil von PEG = 20 % bei niedrigem Vernetzer-Anteil, ab PEG = 10 % bei höherem Vernetzer-Anteil, hervor.

Dann wurden die Gele mit variierendem Vernetzer-Anteil untersucht. Auch hier sind die Ergebnisse in der nachfolgenden Tabelle (siehe Tab. 33) dargestellt.
Tab. 33: Onset-Temperaturen des Phasenübergangssignals der Gele mit variierendem Vernetzer-Anteil (NI = 15 %, V = 0 bis 40 %, T = 15 °C und PEG = 40 %)

<table>
<thead>
<tr>
<th>Gel-Bezeichnung</th>
<th>Onset LCST [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V0T15PEG40</td>
<td>30,2</td>
</tr>
<tr>
<td>NI15V2T15PEG40</td>
<td>29,7</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>26,6</td>
</tr>
<tr>
<td>NI15V10T15PEG40</td>
<td>28,9</td>
</tr>
<tr>
<td>NI15V20T15PEG40</td>
<td>33,3</td>
</tr>
<tr>
<td>NI15V30T15PEG40</td>
<td>33,6</td>
</tr>
<tr>
<td>NI15V40T15PEG40</td>
<td>47,6</td>
</tr>
</tbody>
</table>

Bei den Gelen mit ionischem Comonomer wird der Phasenübergang mit zunehmender Comonomer-Konzentration immer undeutlicher, wie Abb. 74 zu entnehmen ist und kann ab einem Comonomer-Anteil von 5 % nicht mehr detektiert werden.
Abb. 74: DSC-Messungen der Gele mit Comonomer (NI = 15 %, CMC = 0 bis 10 mol-%, V = 2 %, T = 15 °C und PEG = 0 %)

Ab einer Comonomer-Konzentration von 5 mol-% ist kein Phasenübergangssignal mit der DSC zu detektieren. In den Tabellen Tab. 34 und Tab. 35 werden die gemessenen Onset-Temperaturen der Gele mit ionischem Comonomer dargestellt.
Tab. 34: Temperaturen der LCST bei variierendem Comonomeranteil in den Gelen mit (NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 %)

<table>
<thead>
<tr>
<th>Anteil CMC [mol-%]</th>
<th>Onset-Temperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>34,4</td>
</tr>
<tr>
<td>1</td>
<td>36,9</td>
</tr>
<tr>
<td>2,5</td>
<td>38,9</td>
</tr>
<tr>
<td>5</td>
<td>Nicht auswertbar</td>
</tr>
<tr>
<td>10</td>
<td>Nicht auswertbar</td>
</tr>
</tbody>
</table>

Tab. 35: Temperaturen der LCST bei variierendem Comonomeranteil in den Gelen mit (NI = 15 %, V = 2 %, T = 15 °C und PEG = 30 %)

<table>
<thead>
<tr>
<th>Anteil CMC [mol-%]</th>
<th>Onset-Temperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>33,5</td>
</tr>
<tr>
<td>1</td>
<td>35,7</td>
</tr>
<tr>
<td>2,5</td>
<td>37,6</td>
</tr>
<tr>
<td>5</td>
<td>Nicht auswertbar</td>
</tr>
<tr>
<td>10</td>
<td>Nicht auswertbar</td>
</tr>
</tbody>
</table>

Wie aus diesen Tabellen zu entnehmen ist, erhöht sich die Onset-Temperatur des Phasenübergangs mit steigendem Anteil an ionischen Comonomeren zu höheren Werten hin.

Auch die DSC-Daten sollten wiederum mit DSC-Daten aus der Literatur (siehe Abb. 75) verglichen werden.
Abb. 75: DSC-Diagramme von konventionellen (NG) und PEG-modifizierten, makroporösen (NE-300, NE-600, NE-1000 und NE-2000) PNIPA-Hydrogelen mit einer Aufheizrate von 3 °C im Temperaturbereich von 25 bis 45 °C [Zhan01]

Bei diesen Messungen von konventionellem Gel und PEG-modifizierten Gelen wird die Temperatur des Phasenübergangs bei allen Gelen bei annähernd 35 °C gemessen. Mit steigendem PEG-Molekulargewicht wird ein leichtes Ansteigen der LCST beobachtet, was durch die in dieser Arbeit gemessenen Werte bestätigt wird.

5.3 Spezielle Charakterisierungsmethoden

5.3.1 Qualitative Be- und Entladungversuche mit Bromphenol-Blau-Na-Lösung

Zur Entwicklung einer Methode die Beladung von hydrophilen Gele mit größeren Molekülen zu quantifizieren, wurden qualitative Versuche des Gels NI10V5T15S100 mit dem Natriumsalz von Bromphenol-Blau (M = 691,94 g/mol, Struktur siehe Abb. 76) durchgeführt.
Abb. 76: Struktur von Bromphenolblau-Na

Durch die Färbung ist es möglich das Eindringen des Farbstoffs in das Gel direkt zu beobachten. Zur Beladung des Gels waren die Möglichkeit der Diffusion des Farbstoffs in das Gel und die des Aufquellens in der Farbstofflösung zu untersuchen.

Bei der ersten Möglichkeit wurde beobachtet, dass der Farbstoff vollständig in das Gel eindiffundiert war.

Bei der zweiten Möglichkeit wurde ebenfalls eine vollständige Durchdringung des Gels mit dem Farbstoff beobachtet.

Beim Entquellen des Gels konnte in beiden Fällen ein kleiner Farbstoffkern in den Gelen beobachtet werden.
5.3.2 Qualitative Be- und Entladungsversuche mit FITC-Dextran-Konjugat $M_w = 70 \text{kDa}$

Um zu prüfen, ob die synthetisierten Gele auch für die Einlagerung von Enzymen geeignet waren, wurden einige dieser Gele in einer Lösung mit einer Referenzsubstanz aufgequollen, um ihre Beladungsfähigkeit zu untersuchen. Da Enzyme selber recht aufwendig zu detektieren sind, wurde ein mit einem Farbstoff (Fluoreszeinisothiocyanat = FITC) markiertes Dextran, dessen Molekulargewicht ($M_w = 70 \text{kDa}$) in etwa dem des späteren Enzyms (Carbonyl-Reduktase $M_w = 74 – 76 \text{kDa}$) entsprach, eingesetzt. Nach dem Aufquellen und der Gefriertrocknung wurde mikroskopiert (siehe Abb. 77).

Abb. 77: Betrachtung der Schnittfläche der Gele im Lichtmikroskop

Die Beobachtungen waren bei allen konventionellen Gelen ähnlich. Hierbei konnte keine Verfärbung der Schnittfläche beobachtet werden. Das Dextran konnte nicht bis in das Gelinnere vordringen.

Die Überprüfung des Eindringens des Dextrans in die makroporösen Gele erfolgte anhand eines exemplarischen Gels NI15V2T15PEG20. Nach der Gefriertrocknung wurde das Gel wiederum zerschnitten, die Schnittfläche angefeuchtet und wieder mikroskopiert. Hierbei war eine homogene Färbung der gesamten Schnittfläche zu beobachten. Das markierte Dextran war innerhalb der 24 h vollständig in das Gel eingedrungen.

5.3.3 Bestimmung des Diffusionskoeffizienten eines Hydrogels

Die Bestimmung des Diffusionskoeffizienten wurde durchgeführt, um abschätzen zu können, wie lange die Diffusion des FITC-Dextrans ($M_w = 70 \text{kDa}$) über eine bestimmte Strecke durch das Gel dauern würde. Hieran lässt sich überprüfen, ob der Einsatz von konventionellen Gelen bei der Immobilisierung Sinn machen würde. Allerdings weist die Art der Bestimmung des Koeffizienten einige Fehlerquellen auf. Zunächst wäre dort die eigentliche Polymerisation des Gels in die Kernspur-Membran. Diese geschieht unter der Annahme, dass die Poren der Membran alle gleichmäßig mit Gel gefüllt werden. Zusätzlich erfolgt die Annahme, dass durch
das Quellen des Gels beim anschließenden Waschen die Diffusionsstrecke nicht wesentlich verlängert wird. Es wird außerdem angenommen, dass es keinerlei Wechselwirkungen zwischen Gel und Dextran (oder FITC) gibt und dass sich die FITC-markierten Dextrane genau so wie die nicht markierten Dextrane verhalten. Anhand des in 4.6.4 beschriebenen Versuchsaufbaus werden die erhaltenen Daten nun ausgewertet.

Somit ergeben sich die in Tab. 36 dargestellten Werte für die VE-Wasser-Seite.

Tab. 36: Berechnung des Diffusionskoeffizienten von FITC-Dextran (Mw = 70 kDa) für die Hydrogel-Membran (VE-Wasser-Seite)

<table>
<thead>
<tr>
<th>(\Delta N) [(\mu \text{mol})]</th>
<th>(c) [(\mu \text{mol/L})]</th>
<th>(D) [m(^2)/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,58E-06</td>
<td>1,22E-01</td>
<td>5,2E-13</td>
</tr>
<tr>
<td>-3,86E-07</td>
<td>1,15E-01</td>
<td>-1,4E-13</td>
</tr>
<tr>
<td>1,26E-06</td>
<td>1,11E-01</td>
<td>4,6E-13</td>
</tr>
<tr>
<td>-1,05E-06</td>
<td>1,10E-01</td>
<td>-3,9E-13</td>
</tr>
<tr>
<td>3,47E-06</td>
<td>1,06E-01</td>
<td>1,3E-12</td>
</tr>
</tbody>
</table>

Für die Seite mit der Dextranlösung ergeben sich die in Tab. 37 dargestellten Werte.

Tab. 37: Berechnung des Diffusionskoeffizienten von FITC-Dextran (Mw = 70 kDa) für die Hydrogel-Membran (Dextran-Lsg.-Seite)

<table>
<thead>
<tr>
<th>(\Delta N) [(\mu \text{mol})]</th>
<th>(C) [(\mu \text{mol/L})]</th>
<th>(D) [m(^2)/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,925E-03</td>
<td>1,215E-01</td>
<td>6,4E-10</td>
</tr>
<tr>
<td>2,161E-03</td>
<td>1,150E-01</td>
<td>7,6E-10</td>
</tr>
<tr>
<td>1,200E-03</td>
<td>1,113E-01</td>
<td>4,4E-10</td>
</tr>
<tr>
<td>5,291E-04</td>
<td>1,097E-01</td>
<td>1,9E-10</td>
</tr>
<tr>
<td>1,099E-03</td>
<td>1,064E-01</td>
<td>4,2E-10</td>
</tr>
</tbody>
</table>
Aus den Werten der Diffusionskoeffizienten für die Seite der Dextranlösung wurde der Mittelwert gebildet. Er beträgt $4,9 \cdot 10^{-10}$ m2/s. Bei dem Diffusionskoeffizienten, welcher auf der VE-Wasser-Seite gemessen wurde, treten negative Werte auf. Da dies physikalisch nicht möglich ist, wurde diese Werte als statistische Ausreißer gewertet und fließen in die Bildung des Mittelwerts nicht mit ein. Der Mittelwert, welcher aus den übrigen drei Werten gebildet wurde beträgt $7,58 \cdot 10^{-13}$ m2/s.

Um die Qualität der gemessenen Werte beurteilen zu können, kann der Diffusionskoeffizient des Dextrans in reinem Wasser durch die Stokes-Einstein-Gleichung berechnet werden. Hiernach [Atki96] ist der Diffusionskoeffizient D gegeben durch Gl. 5-3.

$$D = \frac{k_BT}{6\pi\eta a} \quad \text{(Gl. 5-4)}$$

wobei

- $D =$ Diffusionskoeffizient [m2/s]
- $k_B =$ Boltzmannkonstante $= 1,38066 \cdot 10^{-23}$ J/K
- $T =$ absolute Temperatur $= 293$ K
- $\eta =$ Viskosität des Lösungsmittels (Wasser) $= 8,9 \cdot 10^{-4}$ kg/ms
- $a =$ effektiver hydrodynamischer Radius $= 5,8$ nm [Jais04]

Mit Hilfe des Diffusionskoeffizienten D lässt sich mit der umgestellten Einstein-Smoluchowski-Beziehung [Atki96] die Sprungzeit τ ermitteln. Diese gibt Auskunft darüber, wie lange bei gegebenem D die mittlere Diffusion über eine so genannte Sprunglänge d dauert. Diese Gleichung ist in Gl. 5-4 wiedergegeben.

$$\tau = \frac{d^2}{2D} \quad \text{(Gl. 5-5)}$$

Wobei

- $\tau =$ Sprungzeit [s]
- $d =$ Sprunglänge [m]
- $D =$ Diffusionskoeffizient [m2/s]

Für die Sprunglänge wurde die Strecke bis zum Mittelpunkt des Gelblocks aus 4.6.3 als Beispiel benutzt. Er besitzt eine Kantenlänge von 1 cm, somit beträgt die Sprunglänge 0,005 m.

Die ermittelten Sprungzeiten betragen 7,1 h für den Diffusionskoeffizienten welcher auf der Dextranlösungsseite ermittelt wurde, 190,9 d für den Koeffizienten, welcher auf der VE-Wasser-Seite ermittelt wurde.

Für den theoretisch ermittelten Koeffizienten für die Diffusion des Dextrans in reinem Wasser beträgt die Sprungzeit 3,5 d.
5.3.4 Überprüfung der Anreicherung von FITC-Dextran

Zur Überprüfung von attraktiven Kräften zwischen dem Gel und der gelösten Substanz wurde das in 4.6.6 beschriebene Experiment durchgeführt. Dabei wurden die Ausgangskonzentration (c_{Aus}), die theoretische Konzentration (Konzentration, welche sich bei reiner Verdünnung mit dem bereits vorhandenen Wasser einstellen würde, c_{theor}) und die gemessene Konzentration (c_{gem}) der äußeren Lösung miteinander verglichen.

Die Berechnung der theoretischen Konzentration erfolgt nach Gl. 5-6. Ausgegangen wurde von den Messdaten in 10.5 Tab. 60 bis Tab. 63.

\[
c_{\text{theor}} = \frac{m_{\text{Dex,Ges}}}{m_{\text{Ges,0}} - m_{\text{Gel, tr}}} \quad (\text{Gl. 5-6})
\]

Die Gesamtmasse an zugesetztem Dextran ($m_{\text{Dex,Ges}}$) errechnet sich nach Gl. 5-7.

\[
m_{\text{Dex,Ges}} = (m_{\text{Ges,0}} - m_{\text{Gel,0}}) \cdot c_{\text{Dex,0}} \quad (\text{Gl. 5-7})
\]

wobei:
- $m_{\text{Gel,0}}$ = Masse des Gels vor der Messung [g]
- $m_{\text{Lsg,0}}$ = Masse der Lösung vor der Messung [g]
- $m_{\text{Gel, tr}}$ = Masse Gel getrocknet [g]
- $m_{\text{Ges,0}}$ = Masse von Gel + Lösung vor der Messung [g]
- $m_{\text{Dex,Ges}}$ = Gesamtmasse an zugesetztem Dextran [mg]
- $c_{\text{Dex,0}}$ = Konzentration der Dextranlösung [mg/g]

Die Ergebnisse der vier Gele sind in Tab. 38 dargestellt.

<table>
<thead>
<tr>
<th>Gel-Bezeichnung</th>
<th>c_{Aus} [mg/g]</th>
<th>c_{theor} [mg/g]</th>
<th>c_{gem} [mg/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC0V2T15PEG0</td>
<td>1,25</td>
<td>1,04</td>
<td>1,35</td>
</tr>
<tr>
<td>NI15CMC0V2T15PEG20</td>
<td>1,25</td>
<td>1,04</td>
<td>1,17</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG0</td>
<td>1,25</td>
<td>1,07</td>
<td>0,50</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG30</td>
<td>1,25</td>
<td>0,79</td>
<td>0,47</td>
</tr>
</tbody>
</table>
Hierbei zeigt sich, dass die gemessene Konzentration bei den Gelen mit ionischem Comonomer (CMC1) deutlich geringer ist, als die Konzentration bei den Gelen ohne Comonomer (CMC0). Im Folgenden soll die Anzahl der FITC-Dextran-Moleküle im Gel pro Anzahl der Ladungen im Gel mit Comonomer (CMC1) betrachtet werden. Hierzu werden zunächst die Stoffmenge der geladenen Moleküle im Gel (Stoffmenge ionisches Comonomer) und die Stoffmenge der Dextranmoleküle im Gel, welche mit FITC markiert sind (attraktive Kräfte sind nur zwischen den Ionen im Gel und den Farbstoffmolekülen des Dextrans möglich), ermittelt.

Die Stoffmenge der geladenen Moleküle im Gel (n_{Ldg}) kann nach Gl. 5-8 berechnet werden.

\[
 n_{Ldg} = \frac{m_{Gel, tr}}{M_{Gel}} \cdot 0,01 \tag{Gl. 5-8}
\]

wobei $m_{Gel, tr}$ = Masse des getrockneten Gels [g]

M_{Gel} = Molmasse des Monomers (gemittelten Wert aus 99% NIPA und 1% Comonomer = 113,84 g/mol

n_{Ldg} = Stoffmenge an Comonomer [mol]

Die Berechnung der Stoffmenge des Dextrans im Gel erfolgt nach Gl. 5-9.

\[
 n_{Dex,Gel} = \frac{m_{Dex,Ges} - m_{Lsg,1} \cdot c_{gem}}{M_{Dex}} \tag{Gl. 5-9}
\]

wobei $n_{Dex,Gel}$ = Stoffmenge des Dextrans im Gel [mol]

$m_{Dex,Ges}$ = Gesamtmasse des zugesetzten Dextrans (siehe Gl. 5-7) [mg]

$m_{Lsg,1}$ = Masse der Lösung nach 24 h Lagerung [g]

c_{gem} = gemessene Konzentration der Dextranlösung nach 24 h Lagerung (siehe Tab. 49) [mg/g]

M_{Dex} = Molmasse des Dextrans [g/mol]

Da nur jedes 250te Dextranmolekül mit FITC markiert war, musste der für $n_{Dex,Gel}$ erhaltene Wert noch durch 250 dividiert werden, um so $n_{FITC-Dex,Gel}$ zu erhalten. Die Ergebnisse für die Berechnungen der beiden Gele mit Comonomer sind in Tab. 39 dargestellt.
Tab. 39: Vergleich der Stoffmenge an markiertem Dextran bezogen auf die Ladungen in den Gelen mit Comonomer

<table>
<thead>
<tr>
<th>Gel-Bezeichnung</th>
<th>(n_{ldg}) [mol]</th>
<th>(n_{RTC-Dex,Gel}) [mol]</th>
<th>(n_{RTC-Dex,Gel}/n_{ldg}) [mol/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC1V2T15PEG0</td>
<td>1,15 (\cdot 10^{-5})</td>
<td>4,65 (\cdot 10^{-7})</td>
<td>0,040</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG30</td>
<td>1,47 (\cdot 10^{-5})</td>
<td>5,02 (\cdot 10^{-7})</td>
<td>0,034</td>
</tr>
</tbody>
</table>

Hierbei ist zu beobachten, dass die Anzahl der FITC-Dextran-Moleküle pro Anzahl Ladung in beiden Gelen annähernd gleich ist.

5.3.5 Quantitative Be- und Entladungsexperimente

Nach der Aufnahme der Messdaten in den Versuchen gemäß Abb. 34 und Abb. 35 erfolgte die Bilanzierung der Beladung. Hierbei werden die ermittelten Daten der Masse der Lösung mit Petrischale und Wasser \(m_{LGP} \), Masse der Petrischale und des Gels \(m_{GP} \), die Absorption der Lösung \(A_l \) und die Absorption der Referenzlösung \(A_r \) zur Berechnung der Beladung herangezogen. Die Beschreibung der Berechnungen erfolgt im Weiteren.

Zunächst wird jedem Be- und Entladungsschritt der in Tab. 40 beschriebene Index \(n \) zugeordnet:

Tab. 40: Zuordnung des Index zum jeweiligen Be- und Entladungsschritt

<table>
<thead>
<tr>
<th>(n)</th>
<th>Be- oder Entladungsschritt *</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gel, entquollen</td>
</tr>
<tr>
<td>1</td>
<td>Beladen mit Dextran</td>
</tr>
<tr>
<td>2</td>
<td>Oberfläche waschen</td>
</tr>
<tr>
<td>3</td>
<td>Entquellen_1</td>
</tr>
<tr>
<td>4</td>
<td>Quellen_1</td>
</tr>
</tbody>
</table>
Aus den Absorptionen \(A \) der Referenzlösung und der Lösung werden mit Hilfe der bekannten Konzentration der Referenzlösung \(c_R \) die Konzentrationen der Lösungen in dem jeweiligen Be- und Entladungsschritt berechnet. Die dazu verwendete Formel beschreibt eine Kalibrationsgerade mit den Punkten \(A = 0; \) Konzentration = 0 und Absorption der Referenzlösung; Konzentration = \(c_R \).

\[
\frac{c_{Ln}}{A_Rn} = \frac{c_{Rn}}{A_{Ln}} \quad \text{(Gl. 5-10)}
\]

wobei \(c_{Ln} \) = Konzentration der Lösung bei Index n \([mg/g]\)
\(c_{Rn} \) = Konzentration der Referenzlösung bei Index n (bekannt durch Ansetzen der Lsg.) \([mg/g]\)
\(A_{Ln} \) = Absorption der Referenzlösung bei Index n
\(A_{Ln} \) = Absorption der Lösung

 Dann wird die Masse der Lösung beim jeweiligen Schritt aus der Differenz der Massen errechnet.

\[
m_{Ln} = m_{LGPn} - m_{GPn} \quad \text{für } n > 0 \quad \text{(Gl. 5-11)}
\]

wobei \(m_{Ln} \) = Masse der Lösung bei Index n \([g]\)
\(m_{LGPn} \) = Masse Lösung + Gel + Petrischale bei Index n (für Index n = 0 wird \(m_{LGP1} \) benutzt) \([g]\)
\(m_{GPn} \) = Masse Gel + Petrischale bei Index n \([g]\)
Hieraus lässt sich die Masse des Dextrans in der Lösung \(m_{LDn} \) berechnen:

\[
m_{LDn} = c_{Ln} \cdot m_{Ln}
\]
(Gl. 5-12)

wobei \(m_{LDn} = \) Masse des Dextrans in der Lösung bei Index n [mg]
\(c_{Ln} = \) Konzentration der Lösung bei Index n [mg/g]
\(m_{Ln} = \) Masse der Lösung bei Index n [g]

Aus diesen Werten wiederum kann man die Massen für das Dextran im Gel \(m_{GDn} \) erhalten:

\[
m_{GDn} = \begin{cases} 0 & \text{für } n = 0 \\ m_{LD(n-1)} - m_{LDn} & \text{für } n = 1 \\ m_{GD(n-1)} - m_{GDn} & \text{für } n > 1 \end{cases}
\]
(Gl. 5-13)

wobei \(m_{GDn} = \) Masse Dextran im Gel bei Index n [mg]
\(m_{LD(n-1)} = \) Masse Dextran in der Lösung bei Index n-1 = 0 [mg]

Um die Beladungseffizienz \(B \) zu ermitteln muss zunächst die Masse an Dextran errechnet werden, welche das Gel maximal aufnehmen kann.

\[
m_{GDmax} = c_{L0} \cdot (m_{GP1} - m_{GP0})
\]
(Gl. 5-14)

wobei \(m_{GDmax} = \) maximale Masse an Dextran, welche das Gel aufnehmen kann [mg]
\(c_{L0} = \) Konzentration der Lösung bei Index 0 [mg/g]
\(m_{GP1} = \) Masse Gel + Petrischale bei Index 1 [g]
\(m_{GP0} = \) Masse Gel + Petrischale bei Index 0 [g]

Da es nicht möglich war von allen Gelproben exakt die gleiche Masse einzuwiegen, wurde nun der Begriff der Beladung eingeführt, um die Messungen miteinander vergleichen zu können.

Aus den beiden Werten \(m_{GDn} \) und \(m_{GDmax} \) lässt sich die Beladungseffizienz ermitteln.

\[
B_n = \frac{m_{GDn}}{m_{GDmax}} \cdot 100
\]
(Gl. 5-15)

wobei \(B_n = \) Beladungseffizienz bei Index n [%]
\(m_{GDn} = \) Masse an Dextran im Gel bei Index n [mg]
\(m_{GDmax} = \) maximale Masse an Dextran, welche das Gel aufnehmen kann [mg]

Die Beladungseffizienz ist für den Verlauf des Experiments exemplarisch für das Gel NI15V2T15S100PEG20 mit dem FITC-Dextran 70 kDa in Abb. 78 dargestellt.
Abb. 78: Beladungseffizienz des Gels NI15V2T15S100PEG20 mit FITC-Dextran 70 kDa

Die Be- und Entladungsdiagramme sowie die genaueren Daten sind unter 10.7 zusammengefasst. Die Bilanzierung der Beladungen erfolgte analog der Bilanzierung bei NI15V2T15S100PEG20.

5.3.5.1 Fehlerabschätzung

Da jede Messung mit einer gewissen Ungenauigkeit behaftet ist, soll im Folgenden der Fehler, welcher bei den Beladungsmessungen auftritt, berechnet werden.

Nach [Zach94] setzt sich ein Gesamtfehler immer aus der Summe der Einzelfehler zusammen. D.h. für einen Messwert \(z \) aus einer Formel mit \(x_n \), Einzelfehlern

\[z = f(x_1, ..., x_n) \] (Gl. 5-16)

erfolgt die Berechnung zu

\[\Delta z = \left| \frac{\partial f}{\partial x_1} \right| \Delta x_1 + ... + \left| \frac{\partial f}{\partial x_n} \right| \Delta x_n \] (Gl. 5-17)

wobei \(\Delta z = \) Gesamtfehler

\(\Delta x_n = \) Fehler der einzelnen Meßgröße bei Index n
Diese Überlegungen sind nun auf jede einzelne Formel anzuwenden, aus denen sich die Beladung am Ende errechnet.

Zunächst erfolgt die Abschätzung des Fehlers der Konzentrationsberechnung der Lösung in Gl. 5-18.

\[
\Delta c_{Ln} = \frac{1}{A_{Rn}} A_{Ln} \Delta c_{Ln} + \frac{c_{Rn}}{A_{Rn}} A_{Ln} \Delta A_{Rn} + \frac{c_{Rn}}{A_{Rn}} A_{Ln} \Delta A_{Ln}
\]
(Gl. 5-18)

wobei \(\Delta c_{Ln} = \pm 0,0001\) mg/mL
\(\Delta A_{Rn}\) und \(\Delta A_{Ln} = \pm 0,0001\) (Ablesegenauigkeit am Spektrometer)

Der Fehler für die Masse der Lösung \(\Delta m_{Ln}\) errechnet sich nach Gl. 5-19.

\[
\Delta m_{Ln} = \| 1 - m_{GPh} \| \Delta m_{LPh} + m_{LPh} - 1 \Delta m_{GPh}
\]
(GL. 5-19)

wobei \(\Delta m_{LPh}\) und \(\Delta m_{GPh} = \pm 0,005\) g (Ablesegenauigkeit der Waage und der Fehler durch noch am Gel anhaftendes Wasser) ist.

Aus diesen beiden Fehlern lässt sich nun der Fehler für die Masse an Dextran in der Lösung \((\Delta m_{LDn})\) mit Hilfe von Gl. 5-20 berechnen.

\[
\Delta m_{LDn} = \| m_{Lr} \| \Delta c_{Ln} + m_{Lr} \\Delta m_{Ln}
\]
(GL. 5-20)

Daraus wiederum lässt sich der Fehler für die Bestimmung des Dextrans im Gel \((\Delta m_{GDn})\) nach Gl. 5-21 berechnen.

\[
\Delta m_{GDn} = \| 1 - m_{LDn} \| \Delta m_{LDO} + m_{LDO} - 1 \Delta m_{LDn} \quad \text{für } n = 1
\]
\[
\Delta m_{GDn} = \| 1 - m_{LDn} \| \Delta m_{GD(n-1)} + m_{GD(n-1)} - 1 \Delta m_{LDn} \quad \text{für } n > 1
\]
(GL. 5-21)

Der Fehler für die Masse an Dextran, welche das Gel maximal aufnehmen kann wird nach Gl. 5-22 errechnet.

\[
\Delta m_{GDmax} = \| m_{GP1} - m_{GP0} \| \Delta c_{L0} + m_{GP1} (1 - m_{GP1}) \| \Delta m_{GP1} + m_{L0} (m_{GP1} - 1) \| \Delta m_{GP0}
\]
(GL. 5-22)

Hieraus lässt sich nun der Fehler für die Beladungseffizienz \((\Delta B)\) errechnen (nach Gl 5-23).

\[
\Delta B = 100 \frac{\Delta m_{GDn}}{m_{GDmax}} + \frac{m_{GDn}}{m_{GDmax}^2} \cdot 100 \frac{\Delta m_{GDmax}}{m_{GDmax}}
\]
(GL. 5-23)

Aus diesen Formeln lässt sich nun der Fehler für die Beladung, welche in den Be- und Entladungsdiagrammen dargestellt ist, berechnen.
Die Ergebnisse sind exemplarisch einmal für den Beladungsschritt $n = 1$ errechnet.

Tab. 41: Errechnete Fehler für die Beladung des Gels NI15V2T15S100PEG20 bei Index $n = 1$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{L1} [mg/g]</td>
<td>0,1450 ± 0,0004</td>
</tr>
<tr>
<td>m_{L1} [g]</td>
<td>7,3 ± 0,3</td>
</tr>
<tr>
<td>m_{GD1} [mg]</td>
<td>1,06 ± 0,05</td>
</tr>
<tr>
<td>m_{G0} [mg]</td>
<td>1,42 ± 0,02</td>
</tr>
<tr>
<td>m_{GDmax} [mg]</td>
<td>0,360 ± 0,02</td>
</tr>
<tr>
<td>B_1 [%]</td>
<td>98 ± 16</td>
</tr>
</tbody>
</table>

Die Beladungseffizienz wird nun im folgenden Diagramm gegen den Beladungsschritt mit Fehlerbalken aufgetragen.
Um diese Ergebnisse darzustellen, wurde diese Beladungseffizienz in Abb. 79 dargestellt.

Abb. 79: Beladungseffizienz des Gels NI15V2T15S100PEG20 mit FITC-Dextran 70 kDa mit Fehlerbalken
5.3.5.2 Beladungseffizienzen der Gele mit FITC-Dextran 70 kDa

Zunächst wurden alle Gele mit 2 % Vernetzer dem Be- und Entladungsprogramm unterzogen. Um eine bessere Übersicht zu gewährleisten, wurden die Werte nach der Beladung (Index n = 1) und die Werte der ersten Entquellung (Restbeladung, Index n = 3) in Abhängigkeit von der PEG-Konzentration in Abb. 80 gegenübergestellt.

Hieraus ergibt sich, dass die makroporösen Gele (mit PEG 20, 30, 40) zu fast 100 % beladen sind. Nach dem ersten Entquellen steigt mit steigendem PEG-Anteil die Restbeladung an. Nach dem 3. Entquellen sind alle Gele aber wieder entladen (siehe 10.7.1). Das konventionelle und die nicht makroporösen Gele (PEG 0 und 5, 10) sind nicht beladen.

Abb. 80: Beladungseffizienz der Gele NI15V2T15PEG0-40 bei Beladungsschritt n = 1 (Aufnahme beim ersten Quellen) und n = 3 (Abgabe beim ersten Entquellen) mit FITC-Dextran 70 kDa (genaue Daten siehe 10.7.1)
Dieselben Untersuchungen wurden nun mit den Gelen mit 5 % Vernetzer durchgeführt und zeigen Abhängigkeiten, wie sie in Abb. 81 dargestellt sind.

Abb. 81: Beladungseffizienz der Gele NI15V5T15PEG0-40 bei Beladungsschritt n = 1 und n = 3 mit FITC-Dextran 70 kDa (genaue Daten siehe 10.7.1)

Auch hierbei ist festzustellen, dass das konventionelle und die nicht makroporösen Gele kaum zu beladen sind, die makroporösen zu ca. 100 %. Nach dem 3. Entquellen waren auch hier alle Gele wieder vollständig entladen.
Dann wurden die Gele mit variierendem Vernetzer in Abb. 82 untersucht.

Abb. 82: Beladungseffizienz der Gele NI15V2-40T15PEG40 bei Beladungsschritt n = 1 und n = 3 mit FITC-Dextran 70 kDa (genaue Daten siehe 10.7.1)

Diese Gele sind zwar alle makroporös, aber ab einem bestimmten Vernetzergehalt (20, 30 und 40 %) sinkt die Beladungseffizienz annähernd auf das Niveau der konventionellen und nicht makroporösen Gele. Nach dem ersten Entquellen sind diese Gele aber bereits vollständig entladen.
Dann wurde die Beladungseffizienz der Gele mit ionischem Comonomer vermessen. Die Ergebnisse sind in Abb. 83 dargestellt.

Abb. 83: Beladungseffizienzdiagramm der Gele mit NI = 15 %, CMC = 1 mol-%, V = 2 %, T = 15 °C und PEG = 0 u. 30 % (NI15CMC1V2T15PEG0u.30) beladen mit FITC-Dextran 70 kDa (genaue Daten siehe 10.7.1)

5.3.5.3 Beladungseffizienzen der Gele mit FITC-Dextran 150 kDa

Um festzustellen, ob auch noch größere Moleküle von den Gelen aufgenommen werden können, wurden die bereits in 5.3.5.2 untersuchten Gele nun mit einem FITC-Dextran mit 150 kDa beladen. Zunächst wurden wieder die Gele mit 2 % Vernetzer untersucht. Die Ergebnisse sind in Abb. 84 dargestellt.

Abb. 84: Beladungseffizienz der Gele NI15V2T15PEG0-40 bei Beladungsschritt n = 1 und n = 3 mit FITC-Dextran 150 kDa (genaue Daten siehe 10.7.2)

Auch hier erfolgt ein sprunghafter Anstieg der Beladungseffizienz ab einer PEG-konzentration von 20 %. Dies ist analog zu der Beladung mit FITC-Dextran mit 70 kDa (siehe Abb. 80).
Die Kurvenverläufe der Messung der Beladungseffizienz bei den Gelen mit V = 5 % Vernetzer sind in Abb. 85 dargestellt.

Abb. 85: Beladungseffizienz der Gele NI15V5T15PEG0-40 bei Beladungsschritt n = 1 und n = 3 mit FITC-Dextran 150 kDa (genaue Daten siehe 10.7.2)
Auch hier ist der Verlauf der Beladungseffizienz den Gelen mit V = 2 % ähnlich (siehe Abb. 81).
Die Diagrammverläufe der Gele mit varierendem Vernetzer sind in Abb. 86 dargestellt.

Abb. 86: Beladungseffizienz der Gele NI15V2-40T15PEG40 bei Beladungsschritt n = 1 und n = 3 mit FITC-Dextran 150 kDa (genaue Daten siehe 10.7.2)

Im Unterschied zu dem Beladungseffizienzdiagramm der Gele mit varierendem Vernetzer mit FITC-Dextran 70 kDa (siehe Abb. 82) sinkt die Beladung hierbei schon bei dem Gel mit 10 % Vernetzer ab. Die Restbeladung ist auch ab V = 10 % annähernd vollständig.
Das Diagramm in Abb. 87 stellt die Ergebnisse der Gele mit ionischem Comonomer hinsichtlich ihrer Beladungseffizienz dar.

Abb. 87: Beladungseffizienzdiagramm der Gele mit NI = 15 %, CMC = 1 mol-%, V = 2 %, T = 15 °C und PEG = 0 u. 30 % (NI15CMC1V2T15PEG0u.30), beladen mit FITC-Dextran 150 kDa (genaue Daten siehe 10.7.2)

Auch hier ergeben die Daten ein Bild, welches aus der Be- und Entladung mit FITC-Dextran 70 kDa bekannt ist (siehe Abb. 83). Beide Gele werden weit über 100 % beladen, die Entladung gelingt erst nach Zugabe von Natronlauge.
5.3.5.4 Beladungseffizienzen der Gele mit FITC-Dextran 4 kDa

Abb. 88: Beladungseffizienz der Gele NI15V2T15PEG0-40 bei Beladungsschritt n = 1 und n = 3 mit FITC-Dextran 4 kDa (genaue Daten siehe 10.7.3)

Der Verlauf der Beladungseffizienten ähnelt dem Verlauf der Gele, welche mit FITC-Dextran 70 kDa und 150 kDa beladen wurden. Auch hier erfolgt zwischen PEG = 10 % und PEG = 20 % ein sprunghafter Anstieg der Beladungseffizienz.

Die Ergebnisse der Gele mit V = 5 % Vernetzer durch die Abb. 89 wiedergegeben.
Abb. 89: Beladungseffizienz der Gele Ni15V5T15PEG0-40 bei Beladungsschritt n = 1 und n = 3 mit FITC-Dextran 4 kDa (genaue Daten siehe 10.7.3)

Auch diese Kurvenverläufe decken sich mit den Beladungseffizienten bei den Beladungen mit FITC-Dextran 70 kDa und 150 kDa. Es erfolgt ebenfalls ein sprunghaft Anstieg der Beladungseffizienz zwischen PEG = 10 % und PEG = 20 %.
Die Effizienzen der Gele mit varierendem Vernetzer wurden in Abb. 90 untersucht.

Abb. 90: Beladungseffizienz der Gele NI15V2-40T15PEG40 bei Beladungsschritt \(n = 1 \) und \(n = 3 \) mit FITC-Dextran 4 kDa (genaue Daten siehe 10.7.3)

Bemerkenswert hierbei ist, dass erst ab \(V = 30 \% \) die Beladungsfähigkeit abnimmt und der geringe Beladungswert für das Gel mit \(V = 20 \% \). Die Restbeladung ist hierbei höher, als bei den Messungen mit größeren Molekülen und es werden teilweise drei Waschschritte benötigt um die Gele vollständig zu entladen.
Der Diagrammverlauf der Gele mit ionischem Comonomer wird in Abb. 91 betrachtet.

Abb. 91: Beladungseffizienzdiagramm der Gele mit NI = 15 %, CMC = 1 mol-%, V = 2 %, T = 15 °C und PEG = 0 u. 30 % (NI15CMC1V2T15PEG0u.30), beladen mit FITC-Dextran 4 kDa

Auch diese Beladungseffizienzen unterscheiden sich vom Verlauf her nicht von den Gelen mit ionischem Comonomer, welche mit FITC-Dextran 70 kDa und 150 kDa gemessen wurden. Beide Gele werden bis weit über 100 % beladen und eine Entladung erfolgt erst nach Zugabe von Natronlauge.
5.3.5.5 Beladungseffizienzen der Gele mit FITC-Albumin

Hierbei ergibt sich wiederum ein Verlauf der Beladungseffizienz, welche auch bereits von den Versuchen mit den Dextranen bekannt ist. Auch hierbei erfolgt ein sprunghafter Anstieg der Beladungseffizienz zwischen PEG = 10 % und PEG = 20 %. Die Entladung bei allen Gelen ist erst nach dem dritten Entquellen erreicht.
Danach wurden wieder die Gele mit $V = 5\%$ Vernetzer untersucht. Es ergaben sich die Kurvenverläufe aus Abb. 93.

Abb. 93: Beladungseffizienz der Gele NI15V5T15PEG0-40 bei Beladungsschritt $n = 1$ und $n = 3$ mit FITC-Albumin (genaue Daten siehe 10.7.4)

Auch diese Kurvenverläufe entsprechen den Beladungseffizienzen bei den Beladungen mit FITC-Dextran, mit dem sprunghaften Anstieg der Beladungseffizienz ab PEG = 20 %, allerdings nur bis zu etwa 90 % Beladungseffizienz.
Im Folgenden wurden dann die Gele mit variierendem Vernetzeranteil untersucht, wobei sich die Kurvenverläufe in Abb. 94 ergaben.

Abb. 94: Beladungseffizienz der Gele NI15V2-40T15PEG40 bei Beladungsschritt \(n = 1 \) und \(n = 3 \) mit FITC-Albumin (genaue Daten siehe 10.7.4)

Bemerkenswert hierbei ist, dass erst ab einem Vernetzergehalt von weniger als \(V = 10 \% \) ein sprunghafter Anstieg der Beladungseffizienz stattfindet. Die Entladung hierbei ist bereits ab \(V = 10 \% \) vollständig.
Die Messung wurde mit den Gelen mit ionischem Comonomer durchgeführt. Die erhaltenen Daten sind in Abb. 95 dargestellt.

Abb. 95: Beladungseffizienzdiagramm der Gele mit NI = 15 %, CMC = 1 mol-%, V = 2 %, T = 15 °C und PEG = 0 u. 30 % (NI15CMC1V2T15PEG0u.30), beladen mit FITC-Albumin

Auch hier ähnelt der Kurvenverlauf dem der Gele mit FITC-Dextranen.
5.4 Umsatzmessung eines immobilisierten Enzyms

Die hier entwickelten Gele sollten als Immobilisierungsmatrix für Enzyme dienen, welche anschließend für die Reduktion von Acetophenon zu Phenylethanol in einem Bioreaktor eingesetzt werden sollte (Beispielreaktion). Deshalb wurden im Folgenden die Umsatz-Zeit-Kurven des im Gel immobilisierten Enzyms mit dem nativen Enzym verglichen. Die Ergebnisse sind in Abb. 96 dargestellt.

Wie hierbei zu beobachten ist, erreicht das native Enzym einen sehr hohen Endumsatz, während der Umsatz im Gel immobilisierten Enzyms recht gering ist.

Abb. 96: Vergleich der Umsatz-Zeit-Kurven der Umsetzung von Acetophenon zu Phenylethanol mit Hilfe des gelgeträgerten und des nativen Enzyms

Wie hierbei zu beobachten ist, erreicht das native Enzym einen sehr hohen Endumsatz, während der Umsatz im Gel immobilisierten Enzyms recht gering ist.
6 Diskussion

6.1 Syntheseuntersuchungen

6.1.1 Variation des Starterverhältnisses

Die Ermittlung der Ausbeute bei variierendem Starterverhältnis diente dazu, das optimale Starterverhältnis für die Gelpolymerisation herauszufinden. Einerseits sollte so wenig Starter wie möglich benutzt werden, um die Menge an Fremdstoffen im späteren Polymer gering zu halten, andererseits sollte aber auch eine große Ausbeute erzielt werden. Aus den ermittelten Ergebnissen ergibt sich, dass mindestens ein Starterverhältnis von 1:100 gewählt werden muss, um einen möglichst 100 %igen Ausbeute mit der unbehandelten Monomerlösung zu erreichen. Bei einem geringeren Starteranteil werden zu wenig Radikale für den Kettenstart gebildet und der Verlust durch die Abbruchreaktion ist zu hoch. Dieses Starterverhältnis wurde dann auch für alle weiteren Versuche verwendet. Deshalb wird der Parameter bei der weiteren Gelbezeichnung nicht mehr benannt.

6.1.2 Parameter der Monomerlösung

Die Begasung der Reaktionslösung mit Stickstoff zeigte, dass die Synthese ohne Begasung der Lösung dieselbe Ausbeute ergab, wie bei den Gelen mit Begasung der Lösung (ca. 100 %). Auf eine N₂-Begasung konnte bei den weiteren Versuchen also verzichtet werden. Ohne die N₂-Begasung ist immer noch ein gewisser Anteil von Sauerstoff in der Lösung. Da dieser Sauerstoff ein Diradikal ist, kann er die aus dem Startersystem entstehenden Radikale abfangen und deaktivieren. Offensichtlich ist der Anteil an Sauerstoff aber so gering, dass die Anzahl der deaktivierten Radikale nicht signifikant ist. Bei der Synthese, bei der die Pufferlösung durch Wasser ersetzt wurde, war nach 24 h aber nur eine Ausbeute von 2 % erreicht worden. Der Puffer ist also unbedingt notwendig, um den pH-Wert stabil bei 7 zu halten. Das Redox-System liefert nur im neutralen bis basischen pH-Bereich eine für die Polymerisation ausreichende Menge an Radikalen (SO₄⁺, HSO₃⁺ und OH⁺, [Sara99]). Dies liegt daran, dass das Natriummetabisulfid nur im neutralen bis basischen pH-Bereich stabil ist. Im sauren pH-Bereich wird das Na₂S₂O₅ protoniert, die entstehende Säure ist instabil und zerfällt. Da das TEMED
selber eine Base ist, kann hierbei in Wasser gearbeitet und auf den Puffer verzichtet werden (siehe 2.2.2, [Feng88]).

6.1.3 Vorbehandlung Basismonomer

6.1.4 Synthese von konventionellen Gelen

Nachdem die Synthesebedingungen nun festgelegt waren, wurden die Parameter Gesamtmonomergehalt (NI), der Vernetzergehalt (V) und die Synthesetemperatur (T) variiert (siehe 4.4.2 Tab. 10). Anschließend wurde der Einfluss der einzelnen Parameter auf die Struktur dieser Gele anhand ihres Quellgrades untersucht (siehe 5.2.5).

Die Variation des Gesamtmonomergehaltes erfolgte ausgehend vom Standardgel (NI = 10 %, V = 5 % und T = 15 °C also NI10V5T15) mit 10 % Gesamtmonomergehalt. Gele mit 10 % Gesamtmonomergehalt sind mechanisch recht stabil und somit gut zu handhaben, weisen aber deshalb eine kleine Maschenweite auf (ξ = 8,2 nm für das Standardgel, siehe 5.2.6). Das spätere Enzym ist ein Molekül mit recht großem Molekulargewicht (74 – 76 kDa). Da ein Referenzmolekül trotzdem nicht in eines dieser Gele eindiffundierte, sollte die Maschenweite weiter vergrößert werden (siehe 5.3.2), um das Enzym in das Gel einschleusen zu können. Deshalb wurde der Gesamtmonomergehalt von 10 % noch zu kleineren Werten mit 7,5 und 5 % hin variiert. Die erhaltenen Gele waren allesamt klare, farblose Polymere, welche teilweise durch das Waschen stark aufquollen. Die mechanische Festigkeit sank mit abnehmender Gesamtmonomerkonzentration, der Quellgrad stieg an. Dieses wird in Kap. 6.2.2.1 eingehender diskutiert.

Die Variation des Vernetzergehaltes geschah ebenfalls ausgehend vom Standardgel NI10V5T15. Bei abnehmendem Gesamtmonomergehalt die mechanische Festigkeit der Gele ebenfalls abnimmt, wurde die Standardvernetzerkonzentration von 5 % auf 10 % erhöht, um diesem Effekt entgegenzuwirken, was allerdings die Maschenweiten stark verringert (siehe 5.2.6). Auch diese Gele waren allesamt klare erstarrte Polymerlösungen, die Unterschiede in der Festigkeit während des Waschens fielen allerdings kaum auf (Weitergehende Diskussion siehe 6.2.2.3).

Auch die Variation der Synthesetemperatur erfolgte ausgehend von der Standardsynthesetemperatur von 15 °C. Die Erhöhung dieser Temperatur auf 25 °C sollte das Porensystem aufweiten (Diskussion siehe 6.2.2.2) und es sollte untersucht werden, was für einen Einfluss eine Synthesetemperatur oberhalb der LCST (40 °C) auf den Quellgrad hat.

Die unterhalb der LCST polymerisierten Gele waren auch wieder klare, erstarrte Lösungen, deren Festigkeit nach dem Waschen mit zunehmender Temperatur abnahm. Die Gele, welche bei einer Temperatur von 40 °C synthetisiert wurden, waren mechanisch sehr instabil und milchig trübe (Diskussion siehe 6.2.2.2).
6.1.5 Synthese von Gelen mit variierendem PEG-Anteil

Aufgrund der geringen mechanischen Stabilität und der hieraus resultierenden schlechten Handhabbarkeit wurde der Gesamtmonomergehalt auf 15 % erhöht (siehe 4.4.3 Tab. 11 u. Tab. 12). Dieser Wert von 15 % ist auch die maximale Menge an Monomer, die im Wasser noch gelöst werden konnte. Der Lösungsvorgang dauerte mindestens 1 h unter kontinuierlichem Rühren. Nachdem die Zusammensetzung angepasst worden war, wurden die Parameter NI = 15 %, V = 5 % u. T = 15 °C konstant gesetzt. Dann wurde die Konzentration an Polyethylenglycol 400 variiert, um abschätzen zu können, ab welcher Konzentration der Prozess der Synärese (siehe 2.2.12) eintritt. Dies war daran zu erkennen, dass die Gele ohne den Synäreseprozess klar waren, weil sich dort eine homogene Netzwerkstruktur ausbildet. Diese Gele werden auch als nicht phasenseparierte (oder nicht makroporöse) Gele bezeichnet. Die Gele, bei denen der Synäreseprozess einsetzte, waren trübe und mechanisch instabil. Dies ist damit zu erklären, dass sich durch die Synärese eine heterogene Netzwerkstruktur ausbildet (siehe 2.2.12). Nach den Beobachtungen waren die Gele mit PEG = 0 % konventionell, die mit 5 u. 10 % nicht phasensepariert (nicht makroporös, alle mechanisch stabil), während die mit PEG 20, 30 u. 40 % makroporös und mechanisch instabil waren.

Um die Maschenweite zu vergrößern wurde der Vernetzeranteil bei der weiteren Reihe von Gelen auf 2 % reduziert. Diese Gele hatten die Zusammensetzung NI = 15 %, V = 2 % und T = 15 °C. Auch hier wurde die PEG-Konzentration von 0 bis 40 % variiert und es wurde beobachtet, dass der Synäreseprozess ab einer PEG-Konzentration von 20 % einsetzt. Die Gele mit einem geringeren PEG-Anteil waren alles klare, erstarrte Lösungen, welche mechanisch stabil waren.

Um die geringe mechanische Stabilität der makroporösen Gele zu erhöhen wurden in 4.4.3, Tab. 12 der Vernetzeranteil von 10 bis 40 % variiert. Der PEG-Anteil in allen Gelen wurde auf 40 % konstant gehalten, um zu gewährleisten, dass die synthetisierten Gele alle makroporös waren. Diese waren nach der Synthese alle trübe, mechanisch instabil und makroporös.

6.1.6 Synthese von Gelen mit ionischem Comonomer

Die Gele wurden mit dem ionischen Comonomer aus 2.2.5 hergestellt, um eine Erhöhung der LCST zu erreichen (siehe 4.4.4 Tab. 13). Hierbei wurden die Parameter NI = 15 %, V = 2 %, T = 15 °C u. PEG = 0 % konstant gehalten. Der Anteil an ionischem Comonomer wurde zu 10; 5; 2,5 und 1 mol-% variiert, angelehnt an den Anteil an Natriumacrylat bei Shibayama et al. [Shib93] (siehe 2.2.11, Abb. 16). Die Gele waren alles klare erstarrte Lösungen. Bei der Synthese von makroporösen Gelen zeigte sich, dass das ionische Comonomer die Löslichkeit der
Komponenten während der Polymerisation positiv beeinflusst. Deshalb reichte eine PEG-Konzentration von 20 % nicht mehr aus, um den Synäreseprozess einzuleiten. Das erhaltene Gel war noch klar und mechanisch stabil, also nicht makroporös. Der PEG-Anteil für die Herstellung von makroporösen Gelen (siehe 4.4.4, Tab. 12) wurde auf 30 % erhöht. Hierbei wurde der Anteil an ionischem Comonomer zu 10; 5; 2,5 und 1 mol-% variiert. Diese Gele waren allesamt trübe, mechanisch sehr instabil und makroporös.

6.1.7 TOC-Messungen

Tab. 42: Zusammenfassung der TOC-Daten

<table>
<thead>
<tr>
<th></th>
<th>CMC0PEG0</th>
<th>CMC0PEG20</th>
<th>CMC1PEG0</th>
<th>CMC1PEG30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil C_{extrainier} / Anteil C_{Monomer} [%]</td>
<td>0,07</td>
<td>0,6*</td>
<td>4,43</td>
<td>----------</td>
</tr>
<tr>
<td>Umsatz [%]</td>
<td>99,93</td>
<td>99,39</td>
<td>95,56</td>
<td>----------</td>
</tr>
</tbody>
</table>

* ohne PEG-Anteil

Es lässt sich anhand der Kurven bei den TOC-Messungen zusammenfassen, dass bei den konventionellen Gelen nach 5 Auswaschungen fast alles (>95 %) an Restmonomer und Oligomeren ausgewaschen wurde. Im makroporösen Gel CMC0PEG20 sind, aufgrund der auch noch auszuwaschenden Anteile an Polyethylenglycol, zwei weitere Auswaschungen nötig, dann aber werden beim Gel ohne ionisches Comonomer auch keine größeren Mengen mehr extrahiert. Beim makroporösen Gel mit ionischem Comonomer verbleibt offensichtlich auch nach 7 Waschschritten noch ein Anteil an PEG im Gel. Dies ist zu erklären, da durch die ionischen Gruppen im Comonomer das PEG aufgrund von ionischen Wechselwirkungen stärker in der Gelmatrix fixiert wird, als bei den Gelen ohne Comonomer. Da es aber unwahrscheinlich ist, dass noch im Gel verbleibendes PEG bei der späteren Immobilisierung stört, kann dieser Anteil im Gel belassen werden.
Der Umsatz beim Gel mit PEG (CMC0PEG20) ist nur unwesentlich geringer, als bei dem Gel ohne (CMC0PEG0). Hierbei wird allerdings angenommen, dass alle Anteile von PEG aus dem Gel ausgewaschen wurden. Dieser Unterschied wird im Bereich einer Meßgenauigkeit liegen. Deshalb lässt sich daraus schließen, dass der PEG-Anteil keinen Unterschied beim Umsatz macht. Der Unterschied im Umsatz beim Gel mit Comonomer (CMC1PEG0) und ohne (CMC0PEG0) ist dahingegen größer. Durch die Extraktion der Oligomere und Restmonomer nach der Synthese werden aber auch diese Anteile in ausreichendem Maße entfernt. Für den Einsatz in einem technischen Prozess sind aber nach den gewonnenen Erkenntnissen 7 Auswaschungsschritte ausreichend. Deshalb werden im Weiteren nach allen Synthesen 7 Waschschritte durchgeführt.

6.1.8 Raman-Messungen

Da sich die Raman-Spektren der beiden Gele mit einem Starterverhältnis von 1:1000 und 1:100 nicht unterscheiden, ist anzunehmen, dass das Starterverhältnis keinerlei Einfluss auf die ramanaktiven Gruppen innerhalb des Gels hat.

Durch Vergleich des Monomer-Ramanspektrums (siehe 5.1.5, Abb. 43) mit den Gelspektren (siehe 5.1.5, Abb. 41 u. Abb. 42) ist anhand der charakteristischen C=C-Schwingung bei 1653 cm⁻¹ zu beobachten, dass in den Gelen geringere Anteile der C=C-Schwingung vorhanden sind, als im Monomer. Dies bedeutet, dass ein Großteil des Monomers abgereagiert haben muss. Dies kann aber nicht weiter quantifiziert werden, da die C=C-Schwingungen teilweise noch durch C=O-Schwingungen überlagert werden.

Eine Charakterisierung mittels Infrarot-Spektroskopie ist aufgrund des großen, stark infrarotaktiven Wasseranteils nicht möglich.

6.1.9 Polymerisation im Rheometer

Durch die Polymerisation im Rheometer sollten nähere Informationen über den Verlauf einer Gelpolymerisation gewonnen werden. In Tab. 43 sind die Ergebnisse der Polymerisationen der Gele NI15V2T15S100PEG20, NI15V2T15S100PEG0 und NI5V5T15S100PEG0 dargestellt. Diese werden in 6.1.9.1 und in 6.1.9.2 vergleichend diskutiert.
Tab. 43: Vergleich der Daten von makroporösem (NI15V2T15S100PEG20) und konventionellen (NI15V2T15S100PEG0 + NI5V5T15S100PEG0) Gelen

<table>
<thead>
<tr>
<th></th>
<th>NI15V2T15S100PEG0</th>
<th>NI15V2T15S100PEG20</th>
<th>NI5V5T15S100PEG0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastischer Modul [Pa]</td>
<td>1,56-10^4</td>
<td>1,11-10^4</td>
<td>4,95-10^2</td>
</tr>
<tr>
<td>Viskoser Modul [Pa]</td>
<td>1,08-10^2</td>
<td>5,88-10^1</td>
<td>2,48-10^0</td>
</tr>
<tr>
<td>Gelzeit [min]</td>
<td>15</td>
<td>23</td>
<td>3,5</td>
</tr>
<tr>
<td>Endzeit [min]*</td>
<td>35</td>
<td>45</td>
<td>82</td>
</tr>
</tbody>
</table>

* Endzeit = Zeit bis zum Erreichen des Zustands, in dem sich die Werte für den elastischen Modul um weniger als 3 % innerhalb von 5 min ändern.

In Tab. 44 sind die Ergebnisse der Polymerisationen der Gele NI15CMC0V2T15S100PEG0, NI15CMC0V2T15S100PEG20, NI15CMC1V2T15S100PEG0 und NI15CMC1V2T15S100PEG30 dargestellt. Diese werden in 6.1.9.3, in 6.1.9.4 und in 6.1.9.5 vergleichend diskutiert.

Tab. 44: Vergleich von Rheometerdaten aus der Polymerisation von konventionellen (PEG0) und makroporösen (PEG20; 30) Gelen ohne (CMC0) und mit (CMC1) ionischem Comonomer

<table>
<thead>
<tr>
<th></th>
<th>NI15V2T15S100</th>
<th>CMC0PEG0</th>
<th>CMC1PEG0</th>
<th>CMC1PEG30</th>
<th>CMC0PEG20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastischer Modul [Pa]</td>
<td>1,56-10^4</td>
<td>1,67-10^4</td>
<td>4,56-10^3</td>
<td>1,11-10^4</td>
<td></td>
</tr>
<tr>
<td>Viskoser Modul [Pa]</td>
<td>1,08-10^2</td>
<td>7,20-10^1</td>
<td>1,27-10^2</td>
<td>5,88-10^1</td>
<td></td>
</tr>
<tr>
<td>Gelzeit [min]</td>
<td>15</td>
<td>14</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Endzeit [min]</td>
<td>35</td>
<td>30</td>
<td>43</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>
6.1.9.1 Einfluss des Gesamtmonomergehalts bei Gelen ohne ionisches Comonomer

Beim Vergleich der Werte für den elastischen und den viskosen Modul sind bei dem weicheren Gel (NI5V5T15S100PEG0) die Werte geringer, als bei dem festeren (NI15V2T15S100PEG0). Aufgrund der geringeren Konzentration von Monomer in dem weicheren Gel sind natürlich auch weniger elastischere Anteile vorhanden, deshalb auch der kleinere elastische Modul. Da beim weicheren Gel hier noch das APS/Na$_2$S$_2$O$_5$-Startersystem verwendet wurde, werden dort am Anfang mehr Radikale gebildet und somit ist die Polymerisation am Anfang schneller. Dies erklärt den kürzeren Gelpunkt. Aufgrund der niedrigeren Gesamtmonomerkonzentration ist eine Diffusion der Monomere über einen längeren Zeitraum möglich, als es bei dem Gel mit der hohen Gesamtmonomerkonzentration. Dieses erstarrt eher. Aus diesem Grund ist die Zeit bis zum Erreichen des Endpunktes bei dem weicheren Gel aber auch verlängert und die Kurve des elastischen Moduls nähert sich dem Endpunkt (siehe Endzeit Tab. 43) langsamer an.

6.1.9.2 Einfluss der PEG-Konzentration bei Gelen ohne ionisches Comonomer

Der Vergleich der Synthesen des konventionellen Gels und des makroporösen Gels ergibt, dass der elastische Modul beim konventionellen Gel (NI15V2T15S100PEG0) größer ist, als bei dem makroporösen Gel (NI15V2T15S100PEG20). Dies bedeutet, dass größere elastische Anteile in den konventionellen Gelen vorhanden sind und somit sind diese Gele fester, als die makroporösen, was durch die Beobachtungen während des Schneidens dieser Gele auch qualitativ bestätigt wird. Die viskosen Anteile in beiden Gelen sind in etwa gleich, sie zeigen ähnliches Fließverhalten. Sowohl die Gel-, wie auch die Endzeit (siehe Tab. 43) sind bei den makroporösen Gelen länger, als bei den konventionellen. Aufgrund des PEG-Anteils ist die anfängliche Monomer-Lösung der makroporösen Gele bereits viskoser, als die Lösung der konventionellen. Deshalb können die Monomere nur langsamer zu den Radikalkettenenden diffundieren. Deshalb ist die Gelzeit auch länger und der Endzeitpunkt der Polymerisation wird später erreicht.
6.1.9.3 Einfluss des ionischen Comonomers bei konventionellen Gelen

Bis auf den viskosen Modul sind die Werte bei den konventionellen Gelen (CMC1PEG0 und CMC0PEG0) in etwa gleich. Betrachtet man aber das Verhältnis von G’ zu G’’, so ergibt sich beim Gel mit CMC0 ein Wert von 144 und bei Gel mit CMC1 ein Wert von 232. Der größere Wert beim Gel mit CMC1 bedeutet, dass die gleichgesinnten Ladungen des ionischen Comonomers sich im Gel abstoßen. Hierdurch wird das Netzwerk steifer, woraus auch das größere Verhältnis resultiert.

6.1.9.4 Einfluss der PEG-Konzentration bei Gelen mit ionischem Comonomer

6.1.9.5 Einfluss des ionischen Comonomers bei makroporösen Gelen

Aus dem Vergleich der beiden makroporösen Gele folgt, dass bei dem Gel ohne Comonomer der elastische Modul höher und der viskose Modul niedriger ist. Der Grund hierfür ist aber nicht der Anteil an Comonomer, sondern der erhöhte PEG-Anteil. Hierdurch wird das Gel noch weicher und fließfähiger. Ein Vergleich von zwei Gelen mit Comonomer und einem PEG-Anteil von 20 % in beiden Fällen ist nicht möglich, da durch das Comonomer die Löslichkeit der entstehenden Polymerketten verbessert und somit die Phasenseparation erst bei einem PEG-Anteil von 30 % einsetzt. Die Daten, die aus der Rheometerpolymerisation mit einem Gel mit Comonomer und 20 % PEG generiert wurden, entsprechen denen eines konventionellen Gels.
Sowohl Gelzeit, wie auch Endzeit sind in etwa gleich. Auf diese Daten haben weder der erhöhte PEG-Anteil, noch das Comonomer einen Einfluss.

6.2 Strukturuntersuchungen

6.2.1 Kriechtests mit anschließender Kriecherholung

Das Gel NI15V2T15S100PEG0 verhält sich während des Kriechversuchs wie ein Hook-Festkörper, d.h. die Deformation nach einem Spannungssprung erfolgt augenblicklich auf einen stationären Endwert.

Bei der Kriecherholung wird, nach Erreichen der stationären Auslenkung des Hook-Elements, plötzlich entlastet. Hierbei geht die Scherung mit der Zeit allmählich wieder auf den Wert Null zurück (elastische Nachwirkung) [Pahl91].

Die kürzere Zeit bis zum Einschwingen auf den Endwert beim makroporösen Gel erklärt sich durch die geringeren elastischen Anteile in diesem Gel. Der erreichte Endwert beträgt $8,7 \cdot 10^{-5} \text{ Pa}$ und ist in etwa mit dem der konventionellen Gele vergleichbar. Auch dies kann durch die Polymerisation erklärt werden, bei der die viskosen Anteile in etwa gleich waren, d.h. bei Anlegen einer Kraft zeigen beide Gele in etwa gleiches Fließverhalten. Dies wird auch durch die Kriecherholung bestätigt, in der bei beiden Gelen der Wert nach Beendigung der Kraftaufgabe wieder auf den Ausgangswert zurückgeht. Die Kurvenverläufe bei beiden Gelen sind ähnlich.

6.2.2 Messungen des Gleichgewichtsquellgrades

Die Gleichgewichtsquellungsmessungen dienten der näheren Untersuchung der Struktur der Gele. Aus dem Gleichgewichtsquellgrad ließ sich dann die Maschenweite in den Gelen berechnen (siehe 5.2.6). Diese ist eine wichtige Größe, um abschätzen zu können, ob sich Moleküle mit einer bestimmten Größe in die Gele einbringen lassen. Die Maschenweite muss größer sein als die Größe des einzulagernden Moleküls. Diese Molekülgröße wird in dieser Arbeit durch den Stokes-Radius beschrieben, mit dem sie korrespondiert (Referenzmolekül FITC-Dextran, $M_w = 70 \text{ kDa}, a = 5,8 \text{ nm}$ [Jais04]). Da eine Einlagerung von Referenzmolekülen in ein konventionelles Gel nicht gelang (siehe 5.3.2), wurde zunächst versucht, den Quellgrad und die Maschenweite mit Hilfe der Syntheseparameter Gesamtmonomergehalt (siehe 6.2.2.1), Vernetzergehalt (siehe 6.2.2.3) und Synthesetemperatur (siehe 6.2.2.2) zu vergrößern. Als bei
den dort erhaltenen Gelen keine ausreichende Veränderung eintrat, wurde versucht mit Hilfe von Polyethylenglycol (siehe 6.2.2.4) in verschiedenen Konzentrationen ein heterogenes Porensystem mit polymerreichen und polymerarmen Regionen im Gel aufzubauen, um auf diese Weise große Moleküle in die polymerarmen Regionen der Gele einlagern zu können. Als dies gelungen war, konnten Referenzmoleküle in diese Regionen eindiffundieren (siehe 5.3.2). Dieses Polymersystem hatte den weiteren Vorteil, dass die Zeiten bis zum Erreichen des Quellungsgleichgewichtes gegenüber den konventionellen Gelen stark verkürzt waren (siehe 5.2.4). Danach sollte noch mit Hilfe eines ionischen Comonomers (siehe 2.2.5) die Temperatur des Phasenübergangs zu höheren Temperaturen hin verschoben werden. Hierbei wurde die Konzentration des Comonomers variiert (siehe 6.2.2.5). Davon ausgehend, dass es zwischen den Enzymen und dem Gel zu rein physikalischen Wechselwirkungen kommt, sollten die eingelagerten Moleküle durch Kollabieren des Gels wieder ausgeschleust werden. Hierzu sollte die Maschenweite des Gels im kollabierten Zustand aber noch größer als die Größe des eingelagerten Moleküls sein. Andernfalls würden Teile des Moleküls im kollabierten Gel eingeschlossen. Die Maschenweite der Gele im kollabierten Zustand wird in 6.2.2.6 diskutiert.
6.2.2.1 Einfluss des Gesamtmonomergehalts

Der Einfluss des Gesamtmonomergehalts auf den Gleichgewichtsquelgrad wird in Abb. 97 verdeutlicht.

![Diagramm des Einflusses des Gesamtmonomergehalts auf den Quellgrad](image)

Abb. 97: Einfluss des Gesamtmonomergehalts auf den Quellgrad (bei 4 °C) bei den konventionellen Gelen (NI = 5; 7,5 u. 10 %; V = 5 u. 10 % und T = 15, 25 und 40 °C)

Ein hoher Gesamtmonomergehalt bedeutet eine hohe Dichte an Monomeren vor der Polymerisation. Während der Polymerisation ist eine Verschlaufen (siehe 2.2) der linearen Polymerstränge bei hohen Monomerkonzentrationen (NI = 10 %) wahrscheinlicher, als bei niedrigeren Gesamtmonomerkonzentrationen (NI = 5 %), da die Monomere und somit auch die entstehenden Ketten dichter beieinander sind. Hierbei können zwei Ketten bei der Polymerisation übereinander liegen und sich verschlaufen. Dies wird auch als physikalische Vernetzung bezeichnet. Diese physikalische Vernetzung führt zu einer Verringerung des Quellgrades im Gel (bei NI10V5T15S100 ist QG = 20,3, bei NI5V5T15S100 ist QG = 49,0) (siehe auch [Sass96]). Hieraus resultiert dann eine Verringerung der Maschenweite (bei NI10V5T15S100 ist $\xi = 8,2$ nm, bei NI5V5T15S100 ist $\xi = 11,1$ nm, Tab. 25). Eine Extrapolation der gemessenen Werte ergibt, dass bei den Gelen mit einer Synthesetemperatur von 15 °C bei einer Gesamtmonomerkonzentration von 218 % und bei den Gelen mit einer Synthesetemperatur von 25 °C bei einer Gesamtmonomerkonzentration von ca. 296 % ein Quellgrad von QG = 1 erreicht würde, bei den Gelen mit T = 40 °C würde dieser Quellgrad erst
bei einem Gesamtmonomergehalt von $GM = 1774 \%$ erreicht. Diese Werte sind praktisch nicht zu erreichen, da die Löslichkeit des NIPAs schon bereits bei ca. 20 % erreicht ist.

Die aufgrund des Quellgrades errechneten Werte für die Maschenweiten in dieser Arbeit sind durchaus realistisch, da die in [Uhli95a] verwendeten PVA-Gele bei ähnlichen Quellgraden ähnliche Maschenweiten aufwiesen.

6.2.2.2 Einfluss der Synthesetemperatur

Der Einfluss der Synthesetemperatur auf den Gleichgewichtsquellgrad wird in Abb. 98 diskutiert.

![Graph](image)

Abb. 98: Einfluss der Synthesetemperatur auf den Quellgrad (bei 4 °C) bei den konventionellen Gelen (NI = 5; 7,5 u. 10 %; V = 5 u. 10 % und T = 15, 25 u. 40 °C)

Die Phasenübergangstemperatur der PNIPA-Gele liegt bei 30-34 °C [Alva02], [Appe01], [Mao03], d.h. oberhalb von 30-34 °C kollabieren diese Gele. Bei hoher Synthesetemperatur (25 °C) ist die Initiatorzerfallsreaktion schneller, als bei niedrigerer Temperatur (15 °C). Somit sind mehr Radikale vorhanden, deshalb werden, bei gleicher Monomerkonzentration, mehr Ketten gestartet. Hierdurch wird das Polymer inhomogener, da die Verteilung der durchschnittlichen Kettenlänge breiter wird [Lech93]. Dieser Effekt ähnelt der Variation des Starterverhältnisses (siehe auch 6.1.1). Bei den vernetzten Hydrogelen bedeutet dies, dass der Quellgrad des
Polymernetzwerks vergrößert wird (bei NI5V5T15 ist QG = 38,5, bei NI5V5T25 ist QG = 49,0, siehe Tab. 25). Somit vergrößern sich auch die Maschen mit steigender Synthesetemperatur (bei NI5V5T15 ist $\xi = 10,2$ nm, bei NI5V5T25 ist $\xi = 11,1$ nm, siehe Tab. 25). Liegt die Synthesetemperatur allerdings oberhalb der Phasenübergangstemperatur, kollabieren die entstehenden Netzketten während der Polymerisation, so dass die hierum entstehenden Polymerketten das kollabierte Netzwerk einschließen. Eine Öffnung dieser eingeschlossenen kollabierten Netzwerke ist auch nach Absinken der Temperatur nicht mehr möglich. Deshalb sinken Quellungsgrad und Maschenweite stark ab, sobald die Synthesetemperatur die Phasenübergangstemperatur übersteigt (bei NI5VST40 ist der QG = 18,2 und $\xi = 8,0$ nm, siehe Tab. 25, [Sayi01]). Um eine möglichst große mechanische Stabilität der Gele zu gewährleisten, wurde eine Synthesetemperatur von $T = 15$ °C gewählt. Dort hatten die Gele ihre größte Stabilität. Diese wurde anhand des Verhaltens der Gele während des Schneidens nach der Synthese berurteilt.

6.2.2.3 Einfluss der Vernetzerkonzentration

Der Einfluss der Vernetzerkonzentration wird in Abb. 99 untersucht.

![Diagramm der Vernetzerkonzentration](image)

Abb. 99: Einfluss der Vernetzerkonzentration auf den Quellgrad (bei 4 °C) bei den konventionellen Gelen (NI = 5; 7,5 u. 10 %; V = 5 u. 10 % und T = 15, 25 und 40 °C)
Ebenso wie die Steigerung des Gesamtmonomergehalts den Anteil an physikalischer Vernetzung im Gel fördert und somit der Quellgrad absinkt, so sinkt er bei Steigerung des Vernetzeranteils im Gel (von V = 5 auf 10 %). Aufgrund des erhöhten Einbaus an Vernetzer werden mehr Verknüpfungspunkte innerhalb des Gels geschaffen und dies führt zu einer Verringerung der Maschenweite im Gel (bei Ni5V5T15 ist $\xi = 10,2$ nm, bei Ni5V10T15 ist $\xi = 6,9$ nm, Tab. 25). Dies hat wiederum eine Absenkung des Quellgrades zur Folge (bei Ni5V5T15 ist QG = 38,5, bei Ni5V10T15 ist QG = 32,5, siehe [Sass96]). Die Extrapolation der Geradengleichung für die Quellgrad-Vernetzergehalt-Kurven ergibt, dass für die Gele mit Ni = 5 % bei V = 42 %, für die Gele mit Ni = 7,5 % bei V = 28,7 % und für die Gele mit Ni = 10 % bei V = 37,9% einen Quellgrad von QG = 1 erreicht würde. Diese Konzentrationen könnten bei einer Synthese erreicht werden, da die entsprechenden Vernetzermengen noch gelöst werden könnten. Diese konventionellen Gele hiermit wurden aber nicht dargestellt.

Der Einfluss des Vernetzers auf den Gleichgewichtsquellgrad bei makroporösen Gelen ist in Abb. 100 verdeutlicht.

![Abb. 100: Quellgrad in Abhängigkeit von der Vernetzerkonzentration bei den makroporösen Gelen (Ni = 15 %, V = 10 bis 40 %, T = 15 °C und PEG = 40 %) bei 4 °C](image)

Durch den hohen PEG-Anteil von PEG = 40 % erfolgt die Synäres (siehe 2.2.12) und es wird eine heterogene Netzwerkstruktur ausgebildet. Der höhere Vernetzeranteil bewirkt eine Verengung der Maschen im Netzwerk. Die berechnete Maschenweite in diesen Gelen sinkt von 15,0 nm bei V = 2 % bis auf 2,4 nm bei V = 40 % (Tab. 26 und Tab. 27). Eigentlich würde hier ein linearer Kurvenverlauf erwartet [Sass96]. Das der Kurvenverlauf hier exponentiell abnimmt,

Eine Extrapolation der Vernetzerkonzentration bis auf einen Quellgrad von $Q_G = 1$ ergibt die Vernetzerkonzentration von 7447 %. Diese stellt einen sehr hohen Wert dar, der nicht erreicht werden kann.

6.2.2.4 Einfluss des PEG-Anteils

Im Folgenden wird der Einfluss der PEG-Konzentration auf den Gleichgewichtsquellgrad bei 4 °C diskutiert (siehe Abb. 101).

![Diagramm](image)

Abb. 101: Quellgrad im Abhängigkeit von der PEG-Konzentration während der Synthese der Gele Ni15V2T15PEG0-40 und Ni15V5T15PEG0-40

Der geringe Quellgrad der makroporösen Gele (PEG = 20, 30, 40 %) erklärt sich durch das Aufhängen und Abtropfen für eine Minute während der Messung (siehe 4.5.3). Hierbei wird ein Druck durch das Eigengewicht des Gels auf das Netzwerk ausgeübt und so mehr Wasser
ausgedrückt, als es bei den Gelen ohne den Synäseeprozess der Fall ist, da diese mechanisch stabiler sind. Der so gemessene Quellgrad ist also geringer, als der tatsächliche. Damit müssen diese Werte kritisch bewertet werden. Nach Einsetzen der Synärese hat es mit steigender PEG-Konzentration den Anschein, als ob der Quellgrad wieder ansteigt. Da der Anstieg aber nur gering ist und auch nicht zu erwarten war, ist dieser nur eine Folge von Messungsnauigkeiten. Bei den Gelen mit $V = 5\%$ ergibt sich ein ähnliches Bild, allerdings setzt die Abschwächung der Struktur, und dadurch das Absinken des Quellgrades erst zwischen PEG = 20 bis 30 % ein. Offensichtlich kann die Netzwerkstruktur durch den höheren Vernetzanteil ($V = 5\%$) noch bis zu 30 % PEG stabilisiert werden.

Der Quellgrad bei den Gelen mit V_2 steigt zunächst mit steigender PEG-Konzentration an ($QG = 31,9\text{ bis }42,9$), wie Abb. 101 zu entnehmen ist. Dies ist auch nicht weiter verwunderlich, da das PEG in den Gelen, als Formgebungsmittel (Templat) für Poren wirkt. Während der Polymerisation wird das Polymer um die PEG-Moleküle herum gebildet. Nach Auswaschung des PEGs bleiben polymerärmerere Bereiche (Poren) im Gel zurück, die für eine Vergrößerung des Quellgrades (und somit auch für eine Vergrößerung der Maschenweite) sorgen. Die Maschenweite bei dem Gel $V_2\text{PEG0}$ beträgt 15,0 nm, die Maschenweite beim Gel $V_2\text{PEG10}$ beträgt 16,6 nm (Tab. 26). Die PEG-Konzentration ist bei PEG = 10 % aber noch zu gering, um den Synäreseprozess auszulösen.

Bei 20 % sinkt der Quellgrad dann, da hier die Synärese einsetzt (siehe 2.2.12), und sich die Stabilität der Netzwerkstruktur verändert. Die errechnete Maschenweite von 14,3 nm (Tab. 26) ist zunächst aber geringer, als die des Gels mit PEG = 10 %. Es bildet sich die in 2.2.12 beschriebene heterogene Netzwerkstruktur, d.h. es entstehen zwei verschiedene Teilstrukturen im Gel. Die eine Teilstruktur besteht aus Kanälen und Poren und wird in den polymerarmen Bereichen während der Polymerisation gebildet. Diese Bereiche setzen die Stabilität der Struktur herab. Die andere Teilstruktur ist eine Gelstruktur mit Maschen, die in den polymerreichen Regionen während der Polymerisation entsteht. Diese besitzt eine große mechanische Stabilität. Die Berechnung der Maschenweite ergibt immer nur einen gemittelten Wert aus dem Anteil beider Maschenweiten. Deshalb ist die Berechnung der Maschenweite bei den Gelen mit PEG-Anteil recht ungenau (siehe 2.2.12). Auch bei den Gelen mit geringem PEG-Anteil (PEG5 und 10 %) ist die Berechnung nicht sehr genau, da das PEG in geringen Konzentrationen wie ein Formgebungsmittel (Templat) innerhalb der Gele wirkt und die Poren entsprechend aufweitet.
6.2.2.5 Einfluss des ionischen Comonomers

Die Abhängigkeit des Quellgrades von Comonomer-Anteil ist in Abb. 102 dargestellt.

[Graphik]

Abb. 102: Quellgrad in Abhängigkeit vom ionischen Comonomer-Anteil bei den makroporösen und konventionellen Gelen (NI = 15 %, CMC = 1 bis 10 %, T = 15 °C, S = 1 zu 100 und PEG = 0 u. 30 %) bei 4 °C

Der Grund für den steigenden Quellgrad mit steigendem Comonomer-Anteil (von 28,5 bei CMC = 1 mol-% auf 42,8 bei CMC = 10 mol-%) ist, dass durch die ionischen Comonomere die Gele hydrophiler werden und der ionische Term im chemischen Potential absinkt (siehe 2.2.7). Das Bestreben des Polymernetzwerks Wasser an sich zu binden wird größer und damit steigt auch der Quellgrad. Dies beeinflusst auch wieder die Maschenweite, welche von 14,5 nm bei einem Comonomer-Anteil von CMC = 1 mol-% bis auf 16,6 nm bei einem Comonomer-Anteil von CMC = 10 mol-% ansteigt. Wie aus den Gleichgewichtsquellgradkurven (siehe 5.2.5) ebenfalls zu erkennen ist, steigt die Temperatur des Phasenübergangs mit steigendem Comonomeranteil (ebenfalls weil der Wert des ionischen Terms im Potential absinkt). Der extrapolierte Wert für einen theoretischen Quellgrad von QG = 1 liegt bei den konventionellen Gelen (PEG0) bei CMC = -16,5 mol-%, bei den makroporösen Gelen bei CMC = -4,8 mol-%. Diese beiden Werte können nicht erreicht werden.
Der Quellgrad bei den makroporösen Gelen mit ionischem Comonomer ist höher (von 31,3 bei CMC = 1 mol-% bis zu 78,7 bei CMC = 10 mol-%) als bei den konventionellen Gelen, da in den durch das PEG erzeugten Kanälen und Poren mehr Wasser eingelagert werden kann. Durch diese Kanäle und Poren können die Gele stärker gedehnt werden, was auch durch die errechneten Maschenweiten wiedergegeben wird (von 14,9 nm bei CMC = 1 mol-% bis auf 20,3 nm bei CMC = 10 mol-%).

6.2.2.6 Maschenweiten in kollabierten Gelen

Durch die Betrachtung der Maschenweiten der Gele im kollabierten Zustand (bei 60 °C) sollte ermittelt werden, ob sich die Gele durch Temperaturerhöhung entladen lassen. Die Ergebnisse zeigten, dass sich die konventionellen Gele allesamt nicht vollständig entladen lassen sollten, da ihre Maschenweiten im kollabierten Zustand kleiner waren, als die Molekülgröße des FITC-Dextrans (Referenzmolekül). In der Praxis waren diese Gele nicht zu beladen (siehe 5.3.2), daher konnte die Entladung nicht untersucht werden. Die Gele mit variierendem PEG-Anteil würden sich mit einem Vernetzeranteil von V = 2 % allesamt gut entladen lassen, die Gele mit einem Vernetzeranteil von V = 5 % wären dafür eher schlecht geeignet, da die Maschenweiten hier kleiner oder nur geringfügig größer als 5,8 nm (Molekülgröße FITC-Dextran) wären. In der Praxis zeigte sich, dass die Gele, welche sich beladen ließen, auch durch Kollabieren entladen werden konnten. Allerdings war die Entladung bei allen Gelen nach dem ersten Entquellen nicht vollständig (siehe 5.3.5, Restbeladung). Bei den Gelen mit ionischem Comonomer hingegen würde die vollständige Entladung wieder möglich sein, da die dort errechneten Maschenweiten größer als 5,8 nm sind. Hier wurde aber beobachtet, dass es zu attraktiven Wechselwirkungen zwischen dem Farbstoff am Dextran und den ionischen Ladungen innerhalb des Gels kam (siehe 5.3.4).

6.2.3 Rasterelektronenmikroskopische Aufnahmen

In der Aufnahme des konventionellen Gels ist eine geschlossene Porenstruktur zu erkennen, d.h. es sind polymerarme Bereiche (Poren) komplett von polymerreichen Bereichen (Wände) umschlossen. Dieses Bild deutet auf eine heterogene Verteilung des Polymers im Gel hin, aber eigentlich wäre eine homogene Polymerverteilung im Gel zu erwarten. Eine Erklärung hierfür wäre, dass die Gele zur Probenpräparation einer Gefriertrocknung unterzogen wurden. Durch die Gefriertrocknung verdampft das im Gel vorhandene Wasser, aber aufgrund des Einfrierens der Probe vorher, sollte die Struktur der Probe erhalten bleiben. Bei dieser Aufnahme ist das
Polymer in bestimmten Bereichen des Gels aber zusammengefallen (kollabiert). Diese Bereiche könnte man in den Polymerwänden wieder erkennen. Die Bereiche, aus denen sich das Polymer dann zurückgezogen hat, würden den Poren in der Aufnahme entsprechen. Das aufgenommene Bild entspricht also nicht der Gelstruktur im gequollenen Zustand, aber diese Aufnahme deckt sich mit der Aufnahme des konventionellen Gels aus der Literatur.

6.3 Funktionsuntersuchungen

6.3.1 Messungen zur Entquellungs kinetik

In Tab. 45 werden die Entquellungsdaten von nicht makroporösen Gelen mit Entquellungsdaten von Gelen aus der Literatur verglichen.
Tab. 45: Vergleich der Wärmeaustauschflächen und Temperaturgradienten von verschiedenen Gelen

<table>
<thead>
<tr>
<th>Konv. Gel</th>
<th>Gel-Geometrie</th>
<th>Austauschfläche [mm²]</th>
<th>dT/dx [K/mm]*</th>
<th>Zeit bis zum Endzustand [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Zhan00]</td>
<td>Zyl. H: 3 mm, D: 12 mm</td>
<td>339,3</td>
<td>14,7</td>
<td>> 40</td>
</tr>
<tr>
<td>[Zhan03a]</td>
<td>Zyl. H: 3 mm, D: 25 mm</td>
<td>1217,4</td>
<td>11,3</td>
<td>30</td>
</tr>
<tr>
<td>[Kane98]</td>
<td>Zyl. H: 4,3 mm, D: 0,54 mm</td>
<td>1,2</td>
<td>100</td>
<td>> 30</td>
</tr>
<tr>
<td>CMC0PEG0</td>
<td>Zyl.-Viertel H: 10 mm D: 25 mm</td>
<td>691,8</td>
<td>11,2</td>
<td>30</td>
</tr>
<tr>
<td>CMC1PEG0</td>
<td>Zyl.-Viertel H: 10 mm D: 25 mm</td>
<td>691,8</td>
<td>11,2</td>
<td>30</td>
</tr>
</tbody>
</table>

*Temperaturgradient senkrecht zur Fläche bezogen auf Strecke (Strecke = kürzeste Entfernung bis zum Mittelpunkt des Gels), siehe 4.5.3, Gl. 4-11

Die Entquellung der in dieser Arbeit untersuchten konventionellen Gele geschieht schneller als in [Zhan00], wo die Gele ca. 40 min brauchten. Dies liegt daran, dass dort die Austauschfläche kleiner ist, als bei den in dieser Arbeit untersuchten Gelen (siehe Tab. 45). Bei [Zhan03a] ist dieser Unterschied kaum zu bemerken, dort ist die Austauschfläche aber fast doppelt so groß. Aufgrund der ermittelten Größe für die Temperaturgradienten dT/dx lässt sich abschätzen, dass der Temperaturunterschied für den Wärmestrom nur eine untergeordnete Rolle zu spielen scheint.

Tab. 46: Entquellungsdaten der makroporösen Gele

<table>
<thead>
<tr>
<th>makroporöses Gel</th>
<th>Zeit bis zum Endzustand [min]</th>
<th>Temperaturunterschied</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Zhan00]</td>
<td>8</td>
<td>von 26 auf 48</td>
</tr>
<tr>
<td>[Zhan03a]</td>
<td>10</td>
<td>von 20 auf 37</td>
</tr>
<tr>
<td>[Kane98]</td>
<td>8</td>
<td>von 10 (15) auf 40</td>
</tr>
<tr>
<td>CMC0PEG20</td>
<td>10</td>
<td>von 4 auf 60</td>
</tr>
<tr>
<td>CMC1PEG30</td>
<td>10</td>
<td>von 4 auf 60</td>
</tr>
</tbody>
</table>

6.3.2 Messungen zur Quellungskinetik

Die Kinetik der Quellung wurde analog der kinetischen Entquellung durchgeführt, um abschätzen zu können, nach welcher Zeit ein entquollenes Gel bei Absenken der Temperatur unterhalb der LCST sein Quellungsgleichgewicht erreicht hat. Die ermittelten Daten und die Daten aus Messungen von ähnlichen Gelen in der Literatur sind in Tab. 47 wiedergegeben.
Tab. 47: Vergleich der Gleichgewichtsquellungszeiten von verschiedenen Gelen

<table>
<thead>
<tr>
<th>Gel</th>
<th>Zeit bis zum Erreichen des Quellungsgleichgewichts [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Zhan03b]</td>
<td>> 10,6</td>
</tr>
<tr>
<td>CMC0PEG0</td>
<td>ca. 24</td>
</tr>
<tr>
<td>CMC0PEG20</td>
<td>3</td>
</tr>
<tr>
<td>CMC1PEG0</td>
<td>ca. 24</td>
</tr>
<tr>
<td>CMC1PEG30</td>
<td>3</td>
</tr>
</tbody>
</table>

Die Messergebnisse der in dieser Arbeit dargestellten Gele zeigen, dass die konventionellen Gele (PEG0) ca. 24 h brauchen, um ein Quellungsgleichgewicht einzustellen, die makroporösen (PEG20, 30) hingegen brauchen eine Zeit von 3 h. Einen signifikanten Unterschied zwischen Gelen mit und ohne ionischem Comonomer scheint es nicht zu geben. Die Literaturdaten aus [Zhan03b] decken sich mit diesen Erkenntnissen für die konventionellen Gele, makroporöse Gele wurden dort nicht untersucht. Die Quellungsdaten bei [Zhan03b] wurden nur bis zu einem Zeitraum von 10,6 h aufgenommen. Es lässt sich aber aus den Kurven schließen, dass dieser Zeitraum bis zum Erreichen des Quellungsgleichgewichtes nicht ausreicht und entsprechend länger ist. Die in 5.2.3 verwendeten Literaturstellen konnten für die Quellungsmessungen nicht verwendet werden, da diese dort nicht durchgeführt wurden.

Die Begründung für die unterschiedliche Quellungsgeschwindigkeit zwischen den konventionellen und den makroporösen Gelen ist wieder in den Kanälen und Poren des makroporösen Gels zu finden, wie sie bereits in 6.3.1 diskutiert wurden. Durch die Mikrokanäle kann das Wasser leicht bis in das Gelinnere diffundieren, während bei den konventionellen Gelen erst die Polymerschicht überwunden werden muss. Die Quellung von Gelen dauert in der Regel immer länger als die Entquellung. Der Grund hierfür ist, dass bei der Quellung zunächst die attraktiven Kräfte zwischen den einzelnen Polymerketten überwunden werden müssen. Sobald sich dann die ersten Wassermoleküle zwischen den Netzwerkketten befinden, sind diese aufgrund der van der Waals Wechselwirkungen recht fest an die Polymerketten gebunden, und dieses Gel bildet aufgrund seiner noch sehr dichten Netzwerkstruktur eine große Diffusionsbarriere für weitere Wassermoleküle. Die Diffusion von weiteren Wassermolekülen in das Netzwerk dauert deswegen wesentlich länger, als es bei der Entquellung der Fall ist, bei der
der Transport der Wassermoleküle aus einem relativ stark geöffnetem Netzwerk heraus geschieht.

Die Gele sollten sich nach der Beladung und nach dem Aufquellen bei den Waschschritten in ihrem Quellungsgleichgewicht befinden (siehe 4.6.7). Die konventionellen Gele brauchen ca. 24 h, um nach Absenken der Temperatur das Quellungsgleichgewicht zu erreichen. Deshalb wurde bei allen Quellungsmessungen 24 h bis zur Einstellung des Gleichgewichts gewartet.

6.3.3 Dynamic Scanning Caloriemetry (DSC)

Da die Temperatur des Phasenübergangs (LCST) mit Hilfe der Gleichgewichtsquellungsmessungen nicht genau zu ermitteln war, wurde diese mit Hilfe der DSC ermittelt (siehe 5.2.5, Tab. 22 und Tab. 23).

Die Onset-Temperatur des Phasenübergangs (entspricht der LCST) ist bei den konventionellen Gele aus 4.4.2 innerhalb eines Bereichs von 32 – 34 °C annähernd gleich und zeigt, dass die Syntheseparameter Gesamtmonomergehalt, Vernetzergehalt (bis ca. 10 %) und Synthesetemperatur keinen Einfluss auf die Temperatur des Phasenübergangs haben. Die gemessenen Daten entsprechen außerdem annähernd den Daten bei ähnlichen Gele aus der Literatur, wie sie in 5.2.8, Abb. 75 dargestellt wurden.

Wegen der Hysterese der Gele sind die gemessenen Phasenübergangstemperaturen der makroporösen Gele (V2 und V5 % mit PEG20, 30 und 40 %) auch geringer, als die der konventionellen Gele. Die äußere Polymerschicht ist aufgrund der Kanäle und Poren zu Beginn des Kollabierens nicht so dicht, wie in den nicht makroporösen Gelen (V2 und V5 mit PEG0, 5

Bei den Gelen mit variierendem Vernetzer-Anteil (siehe 5.2.8, Tab. 33) wird ab V = 5 bis 10 % der Einfluss des Vernetzers deutlicher. Durch den höheren Vernetzer-Anteil sinkt der Basismonomer-Anteil, und auch der Einfluss des Basismonomers (NIPA), welches für den Phasenübergang verantwortlich ist und somit muss auch die LCST sinken.

Auch die makroporösen Gele mit einem Comonomeranteil von 5 und 10 % waren wegen eines nicht mehr zu detektierenden Messsignals nicht auszuwerten (siehe 5.2.8, Tab. 35). Die Phasenübergangstemperaturen der makroporösen Gele waren aber allesamt etwas (ca. 1 °C) niedriger, als die der konventionellen Gele (siehe Tab. 34). Die Erklärung hierfür ist wieder in den Mikrokanälen der makroporösen bzw. in der zunächst auftretenden dichten Polymerschicht in den konventionellen Gelen zu finden, die bereits bei den Gelen mit variierendem PEG-Anteil diskutiert wurden.

Da der spätere Einsatz der Gele im späteren technischen Prozess in einem Temperaturbereich von 20 – 33 °C stattfindet, reicht eine leichte Anhebung der LCST durch einen geringen Anteil an ionischem Comonomer aus, auch damit die Diskontinuierlichkeit des Phasenübergangs nur gering beeinflusst wird. Deshalb wurde ein Zusatz von Comonomer C von 1 mol-% für die später zu beladenden Gele gewählt.

6.3.4 Be- und Entladung eines Gels mit Bromphenol-Blau

Bei diesen Untersuchungen ging es darum abschätzen zu können, welche Methode der Beladung für die Gele effizienter ist (durch Diffusion in ein gequollenes Gel, oder durch Aufquellen eines kollabierten Gels, siehe 3). Hierfür wurde zunächst für das Bromphenolblau
eine mittlere Molekülgröße von 1,5 nm abgeschätzt (ca. 10 C-C-Bindungen entlang einer Molekülachse). Nach den Berechnungen in 5.2.5 besitzt das Gel NI10V5T15S100 bei 4 °C eine Maschenweite von $\xi = 8,2$ nm. Aufgrund dieser Daten war anzunehmen, dass der Farbstoff das Gel ungehindert passieren kann. Deshalb wurden an diesem System die Be- und Entladungen praktisch untersucht.

Bei der Beladung wird angenommen, dass es zu einer vollständigen Vermischung von Farbstofflösung und dem im Gel vorhandenen Wasser kommt. Hierdurch wird die Farbstofflösung immer etwas verdünnt. Die Beladung durch Aufquellen in der Farbstofflösung hat den Vorteil, dass die Lösung durch den geringeren Anteil von Wasser im entquollenen Gel kaum noch verdünnt wird. Bei der Beladung des gequollenen Gels wird die Farbstofflösung durch den größeren Wasseranteil im Gel stärker verdünnt. Der Vorteil dieser Methode ist, dass eine größere Maschenweite des Gels bereits vor der Beladung erreicht ist, beim entquollenen Gel werden die Maschen erst beim Aufquellen geweitet. Da die Enzyme später aber möglichst konzentriert in das Gel immobilisiert werden sollten, ist die Beladung durch Aufquellen die geeignetere. Desweiteren wird durch das kollabierte Gel der Diffusionsweg des Farbstoffs verringert (siehe 6.3.5).

Da die Gelen durch Kollabieren wieder entladen werden sollen, wurde untersucht, wie sich Gel und Farbstoff beim Kollabieren verhalten (Temperaturerhöhung auf 60 °C, 1 h). Die Maschenweite des Gels bei 60 °C wurde mit $\xi = 4,52$ nm errechnet. Daraus folgt, dass das Bromphenol-Blau-Molekül, aufgrund seiner Größe, beim Entquellen ungehindert aus dem Gel austreten kann und keine Farbstoffmoleküle eingeschlossen werde. Nach dem ersten Kollabieren in VE-Wasser blieb aber noch ein kleiner Farbstoffkern im Gel zurück, die äußeren Randbereiche waren bereits klar. Ein gewisser Anteil der Lösung verbleibt immer noch im Gel, was den Farbstoffkern in der Mitte des entquollenen Gels erklärt. Nach der anschließenden Quellung (4 °C, 24 h), war das gesamte Gel wieder farblos, da die verbliebene Farbstofflösung durch die Wasseraufnahme bis unter Grenze des Sichtbaren verdünnt wurde. Bei der quantitativen Be- und Entladung von Gelen ist daher mehrmaliges Quellen und Entquellen vonnöten, um Gele vollständig zu entladen.

6.3.5 Diffusion von FITC-Dextran durch ein Gel

Bei dem konventionellen Gel war nach den Berechnungen der Maschenweite (siehe 5.2.5) und dem Vergleich mit der Größe des Dextranmoleküls ($M_w = 70$ kDa) davon auszugehen, dass das FITC-Dextran in das Gel eindiffundiert und das Gel somit von der Farbe durchsetzt sein müsste. Dies war aber nicht zu beobachten.
Eine Erklärung für das Nichteindringen des Dextrans in das Gel könnte eine zu geringe Diffusionsgeschwindigkeit des Dextrans in das Gel sein. Der Diffusionsweg durch das gequollene Gel ist recht lang (ca. 0,5 cm bis zur Gelmitte, siehe 6.3.1, Tab. 45), die Diffusion des Dextrans könnte aber länger als die vorgegebenen 24 h dauern. Um genauere Daten über die Diffusion zu erhalten, wurden der Diffusionskoeffizient und die Sprungzeit für die Diffusion durch das Gel bestimmt. Diese sind in Tab. 48 gegenübergestellt.

Die Diffusion des Dextrans im makroporösen Gel war offensichtlich wesentlich schneller möglich, als in dem konventionellen Gel. Dies könnte durch die Kanäle und Poren in diesem Gel begründet sein. Das Dextran dürfte hier allerdings nur in die polymerarmen Bereiche eindiffundiert sein, da sie für große Moleküle wesentlich offener sind, als die polymerreichen Regionen. In diesen Bereichen wird die Diffusion eine ähnliche Sprungzeit besitzen, wie bei den konventionellen Gelen.

Tab. 48: Vergleich der ermittelten Diffusionskoeffizienten und Sprungzeiten

<table>
<thead>
<tr>
<th>Art der Ermittlung von D</th>
<th>D [m²/s]</th>
<th>τ [d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stokes-Einstein-Beziehung</td>
<td>4,16·10⁻¹¹</td>
<td>3,5</td>
</tr>
<tr>
<td>Dextran-Seite der Diff.-Zelle</td>
<td>4,90·10⁻¹⁰</td>
<td></td>
</tr>
<tr>
<td>VE-Wasser-Seite der Diff.-Zelle</td>
<td>7,58·10⁻¹³</td>
<td>190,9</td>
</tr>
</tbody>
</table>

Bei der Bestimmung des Diffusionskoeffizienten traten recht große Schwankungen auf, so dass teilweise sogar negative Werte für D auf der VE-Wasser-Seite berechnet wurden. Dies könnte an den zu Anfang niedrigen Konzentrationen im Wasser liegen, so dass das Fluoreszenz-Spektrometer hier unterhalb seines Auflösungsvermögens ist.

Ein nach Stokes-Einstein bestimmter Diffusionskoeffizient für das Dextran (in Wasser) erscheint durchaus möglich, da beispielsweise der Diffusionskoeffizient von Hämoglobin, einem ähnlich großen Molekül, bei 6,9·10⁻¹¹ m²/s in reinem Wasser liegt (Mₐ = 68 kDa, [Atki96]). Der ermittelte Wert für das Dextran liegt in derselben Größenordnung. Mit Hilfe des ermittelten Diffusionskoeffizienten und der Diffusionsstrecke (Sprunglänge = 0,5 cm) wurde mit der Einstein-Smoluchowski-Beziehung die Zeit abgeschätzt, die notwendig wäre, damit das Dextran vollständig in den Gelblock eindringt. Für die Diffusion in reinem Wasser beträgt diese Zeit 3,5 Tage.

Die Messwerte, welche auf der VE-Wasser-Seite erhalten wurden, müssen vorsichtig betrachtet werden. Wertet man die negativen Werte auf dieser Seite aber als statistische Ausreißer, so errechnet sich aus den verbleibenden Ergebnissen ein durchaus plausibler Mittelwert. Dieser Messwert ist um zwei Zehnerpotenzen kleiner als der theoretisch errechnete für die Diffusion in reinem Wasser. Aufgrund der Tatsache, dass das in der Membran enthaltene Hydrogel eine Diffusionsbarriere für das Dextran darstellt, ist ein geringerer Wert für D, als nach Stokes-Einstein berechnet, durchaus realistisch. Die danach errechnete Sprungzeit von 190,9 Tagen würde erklären, warum nach 24 h in 5.3.2 immer noch keinerlei Dextran zu beobachten war. Die Tatsache, dass auf der Wasserseite zunächst kein Ansteigen der Konzentration zu beobachten ist, liegt darin begründet, dass eine Anreicherung des Dextrans in dem Hydrogel der Membran stattfindet. Die Membran hat, im Gegensatz zu den hier verwendeten Annahmen eine gewisse Ausdehnung, und somit auch eine gewisse Kapazität, also die Fähigkeit, eine bestimmte Menge Dextran zu speichern.

Es lässt sich zusammenfassen, dass die Annahme eines Eindringens des Dextrans in die konventionellen Hydrogele, wie in 5.2.5 berechnet, richtig ist. Allerdings ist eine Diffusionszeit von vielen Tagen für einen technischen Prozess, in dem die Aufarbeitung innerhalb von wenigen Stunden vonstatten gehen soll, zu lang. Für diesen Prozess sind also eher die makroporösen Gele geeignet, die in 5.3.2 bereits nach 24 h vollständig gefärbt waren. Aber auch hier würde die Diffusion in das gequollene Gel mindestens 3,5 Tage dauern, wenn man die Behinderung durch das Gel ausschließt. Durch den Einsatz des entquollenen Gels wird aber die Diffusionsstrecke verkürzt und somit verringert sich auch die Sprungzeit. Setzt man hierzu den Diffusionskoeffizienten der VE-Wasser-Seite und die vorgegebenen 24 h in die Einstein-Smoluchowski-Gleichung ein, so errechnet sich eine Sprungröße von 362 µm. Dies bedeutet, dass sich die Sprungröße vom gequollenen Gel von 0,5 cm, auf einige hundert µm im entquollenen Gel verkürzt. Diese verkürzten Diffusionswege sind für die Beladung von Vorteil. Die Gele könnten so schneller beladen werden.

6.3.6 Überprüfung der Anreicherung von FITC-Dextran

Bislang wurde angenommen, dass es sich bei der Einlagerung des FITC-Dextrans in die Gele um ein rein physikalisches Verteilen der Moleküle im Gel handelt. Dies ist notwendig, da das
Dextran anschließend durch Kollabieren der Gele wieder austreten soll. Dies ist aber nur möglich, wenn es zwischen Gel und Dextran keine Wechselwirkungen gibt. Hierzu wurden die in 4.6.6 durchgeführten Versuche unternommen. Die Ergebnisse der Dextrananreicherung sind in Tab. 49 beschrieben.

Tab. 49: Vergleich der berechneten und gemessenen Konzentrationen der äußeren Lösung

<table>
<thead>
<tr>
<th>Gel-Bezeichnung</th>
<th>(c_{\text{Aus}}) [mg/g]</th>
<th>(c_{\text{theor}}) [mg/g]</th>
<th>(c_{\text{gem}}) [mg/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC0V2T15PEG0</td>
<td>1,25</td>
<td>1,04</td>
<td>1,35</td>
</tr>
<tr>
<td>NI15CMC0V2T15PEG20</td>
<td>1,25</td>
<td>1,04</td>
<td>1,17</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG0</td>
<td>1,25</td>
<td>1,07</td>
<td>0,50</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG30</td>
<td>1,25</td>
<td>0,79</td>
<td>0,47</td>
</tr>
</tbody>
</table>

Erwartet wurde beim konventionellen Gel CMC0PEG0, dass sich die Ausgangskonzentration von 1,25 mg/g nicht ändert, da, wie in 5.3.3 beschrieben, eine Diffusion des Dextrans in konventionellen Gele dieser Größe erst nach einem Zeitraum von weit mehr als 24 h stattfindet. Da die Konzentration der äußeren Lösung aber ansteigt, kann es keine affinen Kräfte zwischen Gel und FITC-Dextran geben, ansonsten würde die Konzentration der äußeren Lösung absinken, da Dextran im Gel angereichert und aus der Lösung entfernt würde. Das Ansteigen der Konzentration kann mit der Abnahme der Flüssigkeitsmenge in der äußeren Lösung erklärt werden. Diese Abnahme wird darauf zurückgeführt, dass das Gel zur Separation von der umgebenden Flüssigkeit kurzzeitig aus der temperierenden Umgebung entfernt werden musste. Hierdurch stieg die Temperatur im Gel kurzzeitig um wenige Grad an und somit sank der Quellgrad ein wenig. Als das Gel danach wieder bei 4 °C in der Dextranlösung temperiert wurde, stieg der Quellgrad wieder. Das hierzu notwendige Wasser wurde der Dextranlösung entnommen, was deren Konzentrationsanstieg erklärt. Die Flüssigkeitsmenge, welche hierfür aus dem Gel austreten müsste, wäre recht gering. Sie liegt im Bereich von weniger als 1 mL.

Bei dem makroporösen Gel mit CMC0PEG20 ist die gemessene Konzentration größer, als die theoretisch berechnete, aber geringer als die des konventionellen Gels CMC0PEG0. Dies bedeutet, dass es auch hierbei kaum zu Affinitätseffekten kommt. Aber es diffundiert mehr Dextran in das makroporöse Gel, als es beim konventionellen Gel der Fall ist. Dies deckt sich auch mit den Ergebnissen aus 5.3.2, das Dextran diffundiert in die Kanäle und Poren des
makroporösen Gels. Aber eine vollständige Verteilung des Dextrans im Gel findet nicht statt, da die Konzentration immer noch höher ist, als die theoretisch berechnete.

Bei dem konventionellen Gel mit Comonomer (CMC1PEG0) ist die gemessene Konzentration wesentlich niedriger, als die theoretische. Das Comonomer übt hier attraktive Kräfte auf das FITC-Dextran aus. Diese Kräfte werden allerdings nur auf die ionischen Gruppen des FITCs im Dextran wirken, da das Dextran selber ein ungeladenes Molekül ist. Es kommt zu einer Anreicherung des FITC-Dextrans im Gel.

Bei dem makroporösen Gel mit Comonomer (CMC1PEG30) ist dieser Effekt, ebenfalls genau wie beim konventionellen Gel (CMC1PEG0) zu erkennen, da die gemessene Konzentration der äußeren Lösung hier auch geringer ist, als bei den Gelen ohne Comonomer. Allerdings gibt es kaum einen Unterschied zwischen dem makroporösen (CMC1PEG30) und dem konventionellen (CMC1PEG0) Gel, bezogen auf die gemessene Konzentration. Auch die Stoffmenge an Dextran pro Stoffmenge an Ladung ($n_{\text{FITC-Dex,Gel}} / n_{\text{Ldg}}$, siehe auch Tab. 50) ist annähernd dieselbe.

Tab. 50: Vergleich der Stoffmenge an markiertem Dextran bezogen auf die Ladungen in den Gelen mit Comonomer

<table>
<thead>
<tr>
<th>Gel-Bezeichnung</th>
<th>n_{Ldg} [mol]</th>
<th>$n_{\text{FITC-Dex,Gel}}$ [mol]</th>
<th>$n_{\text{FITC-Dex,Gel}} / n_{\text{Ldg}}$ [mol/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC1V2T15PEG0</td>
<td>$1,15 \cdot 10^{-5}$</td>
<td>$4,65 \cdot 10^{-7}$</td>
<td>0,040</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG30</td>
<td>$1,47 \cdot 10^{-5}$</td>
<td>$5,02 \cdot 10^{-7}$</td>
<td>0,034</td>
</tr>
</tbody>
</table>

Eigentlich müsste die gemessene Konzentration der äußeren Lösung beim makroporösen Gel geringer sein, da zusätzlich zu den ionischen Ladungen noch Kanäle und Poren im Gel vorhanden sind, in die das Dextran eindringen könnte. Das Verhältnis $n_{\text{FITC-Dex,Gel}} / n_{\text{Ldg}}$ müsste auch größer sein. Das Dextran würde hier nicht nur an der Geloberfläche adsorbiert, wie bei dem konventionellen Gel, sondern könnte tief in die Kanäle und Poren des Gels eindringen. Somit müsste das Dextran auch in das Gel eindiffundieren. Das annähernd gleiche $n_{\text{FITC-Dex,Gel}} / n_{\text{Ldg}}$-Verhältnis bei beiden Gelen lässt sich dadurch erklären, dass auch beim konventionellen Gel ein Eindringen des FITC-Dextrans in das Gel geschieht. Dies konnte auch optisch beim Gel beobachtet werden. Aufgrund der ionischen Ladungen und der damit verbundenen attraktiven Wechselwirkungen mit dem Dextran-Farbstoff ist jetzt auch ein Eindringen des Dextrans in konventionelle Gele möglich. Ein Eindringen des Dextrans in konventionelle Gele ohne ionisches Comonomer konnte bislang nicht beobachtet werden, da die Diffusion zu lange dauern würde.
Durch die attraktiven Wechselwirkungen zwischen dem Farbstoff und dem Dextran wird das Eindringen in das Gel soweit beschleunigt, da dies schon nach 24 h signifikant nachzuweisen ist. Für die den späteren technischen Prozess sind aber die makroporösen Gele zu bevorzugen, dieses beschleunigte Eindringen in konventionelle Gele nur bei Substanzen möglich ist, die entgegengesetzte Ladungen tragen. Außerdem ist die Zeit bis zum Erreichen des Gleichgewichts beim Quellen und beim Entquellen bei den makroporösen Gelen gegenüber den konventionellen Gelen stark verkürzt.

6.3.7 Quantitative Be- und Entladungen

Um die große Menge der erhaltenen Daten übersichtlicher zu gestalten, wurde zunächst der „Cut-off“-Punkt definiert. Dieser beschreibt eine Beladungseffizienz von über 92 % als Funktion einer Variation der PEG-Konzentration (bei Erhöhung) oder des Vernetzer-Anteils (bei Verringerung). Die Ergebnisse sind in Tab. 51 dargestellt.

Tab. 51: Cut-off-Punkte der Gele bei verschiedenen Beladungssubstanzen

<table>
<thead>
<tr>
<th>Beladungssubstanz</th>
<th>Gele mit V = 2 % [PEG-Anteil in %]</th>
<th>Gele mit V = 5 % [PEG-Anteil in %]</th>
<th>Gele mit PEG = 40 % [V-Anteil in %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FITC-Dextran $M_w = 4$ kDa</td>
<td>20</td>
<td>>20</td>
<td>30</td>
</tr>
<tr>
<td>FITC-Dextran $M_w = 70$ kDa</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>FITC-Dextran $M_w = 150$ kDa</td>
<td>20</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>FITC-Albumin</td>
<td>20</td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

Wie bei allen Gelen mit V = 2 % und V = 5 % gemessen wurde, ist mit einer PEG-Konzentration von ca. 20 % der Cut-off-Punkt erreicht und die Beladungseffizienz steigt sprunghaft an. Dies kann aus den Beobachtungen nach der Synthese erklärt werden, da die Gele ab einer PEG-Konzentration von PEG = 20 % alle makroporös waren. In Abb. 103 sind die Beladungseffizienzen der Gele bezogen auf ihre Maschenweite für die jeweilige Beladungssubstanz aufgetragen.
Abb. 103: Beladungseffizienz der Gele mit $V = 2\%$ und $V = 5\%$ in Abhängigkeit von deren Maschenweite

Aus den berechneten Maschenweiten kann der sprunghafte Anstieg der Beladungseffizienz nicht erklärt werden, da die errechnete Maschenweite dort von PEG = 10 % nach PEG = 20 % erst einmal abnimmt (bei V = 2 % von 16,6 nm nach 14,3 nm), ein signifikanter Anstieg hätte dies erklären können. Die berechneten Maschenweiten für die makroporösen Gele müssen aber vorsichtig betrachtet werden, da diese durch einen Messfehler bei der Gleichgewichtsquellungsmessung niedriger als tatsächlich sind. Um Abschätzen zu können, ob es einen Zusammenhang zwischen dem Ansteigen der Beladungseffizienz und dem Stokes-Radius der Beladungssubstanz bezogen auf die Maschenweite der Gele gibt, muss zunächst der Stokes-Radius der Beladungssubstanz ermittelt werden. Der Stokes-Radius für das FITC-Dextran mit $M_w = 70$ kDa beträgt $a = 5,8$ nm [Jais04]. Die anderen Größen können mit Hilfe von Gl. 6-1 berechnet werden [Aima90].

$$a = 0,33 \cdot M_w^{0,46} \quad \text{(Gl. 6-1)}$$

wobei $a = $ Stokes-Radius [Å]
$M_w = $ Molekulargewicht [g/mol]

Die Stokes-Radien der Beladungs moleküle sind in Tab. 52 dargestellt.
Tab. 52: Größe der einzelnen Beladungsmoleküle

<table>
<thead>
<tr>
<th>Beladungsstoff</th>
<th>Molekülgröße [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FITC-Dextran $M_w = 4$ kDa</td>
<td>1,5*</td>
</tr>
<tr>
<td>FITC-Dextran $M_w = 70$ kDa</td>
<td>5,8* [Jais04]</td>
</tr>
<tr>
<td>FITC-Dextran $M_w = 150$ kDa</td>
<td>7,9*</td>
</tr>
<tr>
<td>FITC-Albumin</td>
<td>14 x 4 x 4** [Siga98]</td>
</tr>
</tbody>
</table>

* Stokes-Radius
** angenäherte molekulare Abmessung Höhe x Breite x Länge

Die in Abb. 103 beschriebene Anstieg der Beladungsffizienz lässt aber keinen direkten Zusammenhang zwischen der Maschenweite der Gele und dem Stokes-Radius der Beladungssubstanz erkennen. Der signifikante Anstieg der Beladungseffizienz findet erst bei größeren Maschenweiten als dem Radius der Beladungssubstanz statt.

Abb. 104: Beladungseffizienz der Gele mit variierender Vernetzer-Konzentration in Abhängigkeit von deren Maschenweite

Die Gele mit ionischem Comonomer wurden bei jeder Messung weit über 100 % beladen. Dies ist, wie in 5.3.4 beschrieben, darin begründet, dass es zwischen dem FITC und den positiven Ladungen im Gel attraktive Wechselwirkungen gibt. Dies wäre für eine spätere Beladung mit Enzymen von Vorteil, sofern die Enzyme ebenfalls negative Ladungen tragen. Auf diese Art könnten die Enzyme im Gel angereichert werden. Dies würde die Reaktion begünstigen, da die Konzentration der Enzyme größer wäre.

Nachdem die Beladungseffizienzen betrachtet wurden, sollen nun die Restbeladungen diskutiert werden. Dazu sind die Restbeladungen der Cut-off-Gele in Tab. 53 dargestellt.
Die Restbeladungen des Gels mit V = 2 % sinken mit zunehmender Molekülgröße der Beladungssubstanz immer weiter ab. Die ist auch nachvollziehbar, da mit zunehmender Molekülgröße des Dextrans auch die Wahrscheinlichkeit größer ist, dass Teile des Dextrans beim Kollabieren eingeschlossen werden. Das Kollabieren des Gels geschieht sehr schnell (innerhalb von 10 min, siehe 5.2.3) und bei großen Molekülen erfolgt die Diffusion langsamer, als bei kleinen (von M\textsubscript{w} = 150 kDa auf M\textsubscript{w} = 4 kDa ca. um Faktor 5). Aufgrund der errechneten Maschenweite von 8,5 nm im kollabierten Gel ist der Abstand zwischen zwei Vernetzungspunkten zwar immer noch größer, als der Stokes-Radius des FITC-Dextrans. Aber da der Unterschied nur sehr gering ist, wird es zu erheblichen Behinderungen bei der Ausschleusung des Dextrans kommen. Das FITC-Albumin ist mit seiner Molekülgröße (M\textsubscript{w} = 68 kDa) dem FITC-Dextran mit M\textsubscript{w} = 70 kDa am ähnlichsten. Trotzdem entspricht die Restbeladung eher dem Dextran mit M\textsubscript{w} = 4 kDa. Dies kann durch die andere Form des Albumins erklärt werden. Das Dextran ist ein lineares Saccharosemolekül, während das Albumin aufgrund von intramolekularen Wasserstoffbrückenbindungen eher eine geschlossenere Struktur aufweist. Diese kann leichter aus dem Gel austreten.

Bei dem Gel mit V = 5 % hingegen treten schon eher Einschlusseffekte bei der Restbeladung auf, aufgrund des höheren Vernetzer-Anteils und der damit verbundenen geringeren Maschenweite des Gels. Die geringe Restbeladung beim FITC-Dextran mit M\textsubscript{w} = 4 kDa erklärt sich durch die geringe Molekülgröße des Dextrans. Die errechnete Maschenweite von 5,8 nm im kollabierten Gel ist noch größer als der Stokes-Radius. Deshalb wird das Austreten des Dextrans beim Kollabieren des Gels kaum behindert. Dies ist bei den Dextranmolekülen mit M\textsubscript{w} = 70 kDa und M\textsubscript{w} = 150 kDa ganz anders. Hier übersteigt die Molekülgröße die Maschenweite und somit werden auch Anteile der Dextrane beim Kollabieren eingeschlossen.
Bei den Gelen mit PEG = 40 % ist die Maschenweite immer kleiner, als die Größe der Beladungssubstanzen. Aus diesem Grunde werden Anteile der Beladungssubstanz im Gel verbleiben, da ein Teil der Moleküle während des Kollabierens der Gele eingeschlossen wird.

Für die spätere Anwendung könnte dies von Vorteil sein, da bei Enzymen mit entgegengesetzter Ladung auch bei Temperaturen oberhalb der LCST gearbeitet werden könnte. Das Kollabieren des Gels würde außerdem die Diffusionswege des Substrats durch das Gel verkürzen.

6.3.8 Umsatzmessung des im Gel immobilisierten Enzyms

Es wurden ca. 10 % des Acetophenons zu Phenylethanol reduziert. Dieser recht geringe Umsatz muss aber vor dem Hintergrund folgender Fehlerquelle betrachtet werden. Die Produktmenge, welche sich noch im Gel befindet, konnte nicht gemessen werden. Da dieser Verlust beim nativen Enzym nicht auftritt, ist der Umsatz dort höher.

Es ist aber nachvollziehbar, dass das geträgerte Enzym eine geringere Aktivität aufweist, als das native Enzym, da das Gel eine Diffusionsbarriere für das Substrat (Acetophenon) und für das Produkt (Phenylethanol) darstellt. Das System ist also noch nicht optimiert, der Umsatz beim nativen, wässrigen Systems erfolgt zu über 90 %, bei einer maximalen Acetophenon-Konzentration von 45 mM, während das gelgeträgerte Enzym einen Endumsatz von lediglich 10 % aufweist.

Aber es konnte demonstriert werden, dass die Immobilisierung des Enzyms in dem Gel möglich ist und dass die Enzyme dort auch Aktivität zeigen. Eine Verbesserung des Enzymsystems ist noch vonnöten, aber nicht mehr Teil dieser Arbeit.
Zusammenfassung und Ausblick

In der vorliegenden Arbeit sollten Hydrogele untersucht werden, die als Immobilisierungsmatrix für Enzyme dienen können. Mit diesen Hydrogelen sollte es möglich sein, die Enzyme reversibel zu immobilisieren. Dazu wurden Hydrogelen auf PNIPA-Basis verwendet, da sie einen thermoreversiblen Phasenübergang aufweisen.

Zunächst wurden Messungen zur Synthese selber durchgeführt, auch im Hinblick auf eine weitestgehende Vereinfachung der Synthesevorschrift für eine eventuelle Umsetzung im technischen Maßstab. Bei den Vorsynthesen ergab sich, dass mindestens ein Starterverhältnis von 1:100 nötig ist, um eine größtmögliche Ausbeute an Gel zu erhalten. Eine Begasung der Reaktionslösung mit Stickstoff erzielte keinen wesentlichen Effekt, allerdings muss bei dem APS/Na$_2$S$_2$O$_5$ – Startersystem ein neutraler Phosphat-Puffer als Lösungsmittel verwendet werden, um eine ausreichende Anzahl an Radikalen für die Polymerisation zu erzeugen. In Wasser funktioniert dieses Startersystem nicht. Deswegen wurde dort das APS/TEMED-Startersystem verwendet, da die Reaktion hierbei in einem rein wässrigen Medium ablaufen konnte. Für eine großtechnische Herstellung des Gels würde aber wohl das APS/Na$_2$S$_2$O$_5$ – Startersystem mit Puffer verwendet werden, da dies kostengünstiger ist. Eine Vorreinigung des NIPA vor der Polymerisation ist nicht nötig, da dies auch keinen wesentlichen Einfluss auf den späteren Quellgrad besitzt.

Die TOC-Messungen des Waschwassers der Gele ergaben bei den konventionellen Gelen 5, bei den makroporösen Gelen 7 notwendige Waschschritte für die vollständige Auswaschung von Restmonomer und Oligomeren. Die Ramanspektren ergaben, dass die Bande der C=C-Doppelbindung im Gel gegenüber dem Monomer stark verringert war und somit ein Umsatz des Monomers stattfand.

Bei den Syntheseuntersuchungen waren die Gele ohne einen PEG-Anteil alle mechanisch stabil und klar. Ab einem PEG-Anteil von PEG = 20 % konnte, ohne ionisches Comonomer, eine Trübung der Gele und eine geringe mechanische Belastbarkeit beobachtet werden. Diese Gele wiesen eine heterogene Porenstruktur auf und waren makroporös. Bei den Gelen mit ionischem Comonomer trat die Synärese erst ab PEG = 30 % auf.

es nicht möglich ist, das Gel nach der Quellung in eine ganz exakt definierte Form zu bringen, können zu den rheologischen Größen des Gels nach der Quellung keine Aussagen gemacht werden.

Bei der Untersuchung der Funktion der Gele waren zunächst einmal die Kinetik der Entquellung und der Quellung wichtig. Da die Gele in einem technischen Prozess im Gleichgewicht vorliegen sollen, konnte die Zeit nach Änderung der Temperatur ermittelt werden, bis das Quellungsgleichgewicht erreicht war. Hierbei benötigten die makroprösen Gele zur Quellung ca.
3 h, zur Entquellung wenige Minuten, die konventionellen Gele benötigten zur Quellung ca. 24 h, zur Entquellung ca. 30 min. Dies ist darin begründet, dass in den makroporösen Gelen Kanäle und Poren den Ein- und Austritt des Wassers begünstigen, während in den konventionellen Gelen zunächst einmal die bei der Entquellung entstehende dichte Polymerschicht an den Rändern des Gels durchdrungen werden muss.

Die quantitativen Be- und Entladungen spiegeln das spätere, für den technischen Prozess, wichtige Programm der Be- und Entladung der Gele wieder. Es zeigte sich, dass sich die makroporösen Gele vollständig, die konventionellen Gele fast gar nicht beladen lassen. Die makroporösen Gele können vollständig durch wiederholtes Kollabieren und Quellen der Gele,

Die Umsatzmessung der Carbonylreduktase, welche im Gel immobilisiert ist, ergibt eine geringe Aktivität für die Reaktion der Phenylethanolbildung. Dies bedeutet, dass die Gele als Immobilisierungsmatrix zu verwenden sind, auch wenn die Aktivität hierbei geringer ist, als bei dem nativen Enzym.

Vergleicht man diese Immobilisierungsmethode mit denen unter 2.1.3 beschriebenen, so vereinigt diese Art der Immobilisierung die drei Arten der adsorptiven, der ionischen und die der Matrixeinhüllung. Dies bedeutet alle drei Methoden werden hierbei in einem Träger vereinigt, was es auch anderen Enzymen ermöglichen könnte, hier immobilisiert zu werden. Das grundsätzlich Neue hierbei ist allerdings, dass „intelligente“ Gele als Immobilisierungsmatrizes verwendet werden, die nach Deaktivierung der immobilisierten Enzyme ent-, und anschließend wieder beladen werden können. Das Gel als Immobilisierungsmatrix kann somit wieder verwendet werden.

Da die makroporösen Gele nicht genügend belastbar für den Einsatz in einem Rührreaktor sind, müssen sie vorher mechanisch stabilisiert werden. Dies könnte durch eine schwammartige Polymerstruktur, wie z.B. einen Polyester, geschehen. Das Gel müsste darin einpolymerisiert werden. Da es bei dieser Stabilisierung aber zu einem Austritt des Gels aus dem schwammartigen Netzwerk kommen könnte, müsste das Gel zusätzlich noch mit einem engmaschigen Gewebe, z.B. aus Nylon, umgeben werden. Einen Entwurf hierfür zeigt Abb. 105.
Abb. 105: Schematische Darstellung der Stabilisierung der makroporösen Gele

Es ist mit makroporösen PNIPA-Gelen möglich, Enzyme zu immobilisieren und durch die Einführung von ionischen Gruppen sogar aufzukonzentrieren, wenn das Enzym die entgegengesetzte Ladung trägt. Der Effekt des Phasenübergangs kann dazu benutzt werden, die Gele wieder zu entladen. Zur Entladung von Gelen mit ionischen Gruppen müssen die Bindungen durch Inaktivierung der Ladungen im Gel vorher aufgehoben werden, danach kann die Entladung durch Temperaturerhöhung stattfinden. Diese Ladungen im Gel können dann reaktiviert werden. Somit kann das Gel als Immobilisierungsmatrix immer wieder verwendet werden, was in der Wissenschaft bisher neu ist. Auch die Messungen der Quellungskinetik von makroporösen Gelen sind neu. Vor allem neu ist jedoch die Einstellung (durch Synthese) und die Charakterisierung (durch quantitative Be- und Entladungen) der Größenausschlussgrenzen der makroporösen Gele, welche in der wissenschaftlichen Literatur bislang nicht beschrieben ist.
8 Literatur

[Hiro84] Y. Hirokawa, T. Tanka, S. Katayama, „Effects of Network Structure on the Phase Transition of Acrylamide-Sodium Acrylate Copolymer Gels“, *Micrbial Adhesion and Aggregation*, (1984);177-188

S. Ito, „Shape memory moldings made of acrylamide polymers showing syneresis and their manufacture“, *Jpn. Kokai Tokkyo Koho*, (1999), 5 pp

[Ranf01] M. Ranft, „Präparation funktionalisierter, mikrostrukturierter Hydrogеле zum
Nachweis von pH-Änderungen und enzymatischen Reaktionen mittels
beugungsoptischer Methoden“, Dissertation Ruprecht-Karls-Universität
Heidelberg, (2001)

[Rich04] A. Richter, C. Klenker, K.F. Arndt, „Adjustable Low Dynamic Pumps Based on

[Rutt04] A. Ruttscheid, „Synthese und Charakterisierung von superabsorbierenden
Polymeren mit Kern/schale-Struktur“, Dissertation Universität Duisburg-Essen,
(2004)

[Saka03] C. Sakamoto, Y. Okada, H. Kanazawa, A. Kikuchi, T. Okano, „Separation of
catechins by temperature-responsive chromatography“, Bunseki Kagaku, 52(10),
(2003), 903-906

chemical structure of nanoparticles as carriers for oral delivery of salmon

[Sass96] A.P. Sassi, A.J. Shaw, S.M. Han, H.W. Blanch, J.M. Prausnitz, „Partitioning of
proteins and small biomolecules in temperature- and pH-sensitive hydrogels“,
Polymer, 37, (1996), 2151-2164

[Sayi00] C. Sayil, O. Okay, „The effect of preparation temperature on the swelling
behavior of poly (N-isopropylacrylamide) gels“, Polymer Bulletin, 45, (2000), 175-
182

[Sayi01] C. Sayil, O. Okay, „Macroporous poly(N-isopropyl)acrylamide networks:
formation conditions“, Polymer, 42 (2001), 7639-7652

[Sayi02] C. Sayil, O. Okay, „Macroporous poly(N-isopropylacrylamide) networks“, Polymer
Bulletin (Berlin, Germany), 48(6), (2002), 499-506

[Sun03] P. Sun, B. Li, Y. Wang, J. Ma, D. Ding, B. He, „H-NMR studies of poly(N-isopropylacrylamide) gels near the phase transition“, European Polymer Journal, 39, (2003), 1045–1050

[Vand96] D.G. Vanderlaan, S.B. Orr, „In copolymers for contact lens production, to provide antibacterial properties“, US Pat. 5,514,732

[Yosh98] H. Yoshioka, Y. Mori, „Continuous production system of plantlets from germless culture to field using thermoresponse hydrogels”, *Kobunshi*, 47(12), (1998), 889

[Zhan04a] X.-Z. Zhang, C.-C. Chu, „Preparation of thermosensitive PNIPAAm hydrogels with superfast response“, Chemical Communications (Cambridge, United Kingdom), (3), (2004), 350-351

9 Abkürzungsverzeichnis

A Austauschfläche
\(A_{n} \) Absorption der Lösung bei Index n
APS Ammoniumperoxodisulfat
\(A_{RN} \) Absorption der Referenzlösung bei Index n
a effektiver hydrodynamischer Radius / Stokes-Radius
Bis N,N - Methylenebisacrylamid
BM Basismonomer
\(B_{n} \) Beladungseffizienz bei Index n
CM Comonomer
c Gradient der molaren Stoffmengenkonzentration
\(C_{N} \) charakteristisches Verhältnis
\(C_{Aus} \) Ausgangskonzentration
\(C_{Dex} \) Konzentration der FITC-Dextranlösung
\(C_{gem} \) gemessene Konzentration
\(c_{ext} \) Stoffmengenkonzentration der mobilen Ionen in der umgebenden Lösung
\(c_{Gel} \) Stoffmengenkonzentration der mobilen Ionen im Gel
\(C_{Ln} \) Konzentration der Lösung bei Index n
\(C_{RN} \) Konzentration der Referenzlösung bei Index n
\(c_{theor} \) theoretische Konzentration
D Diffusionskoeffizient
DSC Dynamic Scanning Calorimetry
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>Sprunflengde</td>
</tr>
<tr>
<td>(\frac{dT}{dx})</td>
<td>Temperaturgradient senkrecht zur Fläche</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoreszeinisothiocyanat</td>
</tr>
<tr>
<td>(G^*)</td>
<td>Komplexer Schubmodul</td>
</tr>
<tr>
<td>(G')</td>
<td>elastischer Modul</td>
</tr>
<tr>
<td>(G'')</td>
<td>viskoser Modul</td>
</tr>
<tr>
<td>(I)</td>
<td>Initiator</td>
</tr>
<tr>
<td>IPN</td>
<td>interpenetrierende Polymernetzwerke</td>
</tr>
<tr>
<td>ionisches Comonomer / CMC</td>
<td>N-(3-Aminopropyl)methacrylamidhydrochlorid</td>
</tr>
<tr>
<td>(K)</td>
<td>Katalysator</td>
</tr>
<tr>
<td>(k_B)</td>
<td>Boltzmann-Konstante</td>
</tr>
<tr>
<td>(l)</td>
<td>Bindungslänge einer C-C-Einfachbindung</td>
</tr>
<tr>
<td>LCST</td>
<td>Phasenübergangstemperatur</td>
</tr>
<tr>
<td>(M)</td>
<td>Molmasse des Monomers</td>
</tr>
<tr>
<td>(M (\text{Bis}))</td>
<td>Molmasse Bis</td>
</tr>
<tr>
<td>(M (\text{NIPA}))</td>
<td>Molmasse NIPA</td>
</tr>
<tr>
<td>(M_c)</td>
<td>Molmasse zwischen zwei Vernetzungsstellen</td>
</tr>
<tr>
<td>(M_{\text{Dex}})</td>
<td>Molmasse des Dextrans</td>
</tr>
<tr>
<td>(m_{C,\text{ges}})</td>
<td>Masse Kohlenstoff gesamt</td>
</tr>
<tr>
<td>(m_{\text{Dex,Ges}})</td>
<td>Gesamtmasse an zugesetztem Dextran</td>
</tr>
<tr>
<td>(m_{\text{Ggel,max}})</td>
<td>maximale Masse an Dextran, welche das Gel aufnehmen kann</td>
</tr>
<tr>
<td>(m_{\text{Ggel,n}})</td>
<td>Masse des Dextrans im Gel bei Index (n)</td>
</tr>
<tr>
<td>(m_{\text{Ggel}})</td>
<td>Masse des Gels</td>
</tr>
</tbody>
</table>
$m_{\text{Gel,Getr}}$ Masse des getrockneten Gels

m_{Ges} Gesamtmasse

m_{GP} Masse der Petrischale und des Gels

m_{GPn} Masse Gel + Petrischale bei Index n

m_{LDn} Masse des Dextrans in der Lösung bei Index n

m_{LGPn} Masse Lösung + Gel + Petrischale bei Index n

m_{Ln} Masse der Lösung bei Index n

m_{Lsg} Masse der Lösung

m_{Pol} Masse des trockenen Polymers

$\text{Na}_2\text{S}_2\text{O}_5$ Natriummetabisulfid

N Gesamtmonomergehalt

NIPA N-Isopropylacrylamid

n Stoffmenge

$n_{\text{Dex,Gel}}$ Stoffmenge des Dextrans im Gel

n_{e} Anzahl der elastisch effektiven Ketten im Netzwerk

$n_{\text{FITC-Dex,Gel}}$ Stoffmenge des markierten Dextrans

n_{Ldg} Stoffmenge der Ladungen = Stoffmenge an Comonomer

PEG/ PEG400 Polyethylen glycol 400

QG_{m} massenbezogener Quellgrad

QG_{v} volumenbezogener Quellgrad

\dot{Q} Wärmestrom

R allgem. Gaskonstante

REM Rasterelektronenmikroskop

r Abstand zweier Vernetzungspunkte im ungequollenen Zustand
S Starterverhältnis
T Synthesetemperatur
TEMED N,N,N’,N’ – Tetramethylethylenediamin
TOC total organic carbon
t Zeit
V Vernetzergehalt
V₀ Volumen des trockenen Polymers
V₁ molares Volumen von reinem Wasser
VE Voll Entsalzt
V₆₆ Volumen des gequollenen Gels
V₉₉ Volumen der Lösung
V₆₆ Volumen des trockenen Polymers
v₂ₘ Volumenbruch des Polymers im gequollenen Gel im Gleichgewichtszustand
x Dicke der Kernspur-Membran
Y Ausbeute

μ chemisches Potential
ϕ Volumenanteil des Polymers im Gel
χ Flory-Huggins-Wechselwirkungsparameter
ω Massenanteil vom Polymer im Gel
ζ Maschenweite des gequollenen Netzwerks
δ Phasenwinkel
γ Deformation
\(\omega \)
Kreisfrequenz

\(\lambda \)
Wärmeleitfähigkeit

\(\eta \)
Viskosität des Lösungsmittels

\(\tau \)
Sprungzeit

\(\Delta \)
Fehler

\((\Delta \mu)_{\text{ion}} \)
ionischer Term

\((\Delta \mu)_{\text{mix}} \)
Mischungsterm

\((\Delta \mu)_{\text{net}} \)
Netzwerkterm

\(\Delta H_{\text{mix}} \)
Mischungsenthalpie

\(\Delta S_{\text{mix}} \)
Mischungsentropie

\(\Delta x_n \)
Fehler der einzelnen Meßgröße bei Index n

\(\Delta z \)
Gesamtfehler

\(\sigma_0 \)
strain

\(\rho_{\text{Gel}} \)
Dichte des Gels

\(\rho_{\text{Pol}} \)
Dichte des Polymers
10 Anhang

10.1 Chemikalienliste

<table>
<thead>
<tr>
<th>Chemikalie (Abk.)</th>
<th>Bezogen von Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Isopropylacrylamid (NIPA), p.a.</td>
<td>Aldrich</td>
</tr>
<tr>
<td>N,N-Methylenbisacrylamid (Bis), p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Ammoniumperoxodisulfat (APS), p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Natriummetabisulfid (Na$_2$S$_2$O$_5$), p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>N,N,N,N - Tetramethylethyldiamin (TEMED), p.a.</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Polyethylenglycol 400 (PEG400), p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>N-(3-Aminopropyl)methacrylamidhydrochlorid (Comonomer C, CMC, ionisches Comonomer)</td>
<td>Polysciences</td>
</tr>
<tr>
<td>FITC-Dextran 4 kDa, 70 kDa, 150 kDa</td>
<td>Fluka</td>
</tr>
<tr>
<td>FITC-Albumin</td>
<td>Fluka</td>
</tr>
<tr>
<td>Hexan, p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Aceton, p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Isopropanol, p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Dekan, p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Acetophenon, p.a.</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Phenylethanol, p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Natriumhydroxid, p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Salzsäure 37 %, p.a.</td>
<td>Merck</td>
</tr>
<tr>
<td>Cyclohexan, p.a.</td>
<td>Merck</td>
</tr>
</tbody>
</table>
10.2 TOC-Berechnungen des Waschwassers

Tab. 54: Gemessene und berechnete Werte für den jeweiligen Auswaschungsschritt (TOC-Nr.) bei Gel NI15V2T15S100 (siehe 4.5.2)

<table>
<thead>
<tr>
<th>TOC-Nr.</th>
<th>TOC [mg/L]</th>
<th>Masse Lösung entspr. V_{Lsg} [g entspr. mL]</th>
<th>m_{Cges} [mg]</th>
<th>m_{Cges} / m_{Gel} [mg/g]</th>
<th>(\sum m_{Cges} / m_{Gel}) [mg/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1200</td>
<td>41,0483</td>
<td>49,26</td>
<td>2,50</td>
<td>2,50</td>
</tr>
<tr>
<td>2</td>
<td>410</td>
<td>43,5228</td>
<td>17,84</td>
<td>0,91</td>
<td>3,41</td>
</tr>
<tr>
<td>3</td>
<td>172</td>
<td>47,8367</td>
<td>8,23</td>
<td>0,42</td>
<td>3,83</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>48,1632</td>
<td>3,42</td>
<td>0,17</td>
<td>4,00</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>48,1041</td>
<td>1,35</td>
<td>0,07</td>
<td>4,07</td>
</tr>
</tbody>
</table>

Tab. 55: Gemessene und berechnete Daten für den jeweiligen Auswaschungsschritt bei NI15V2T15S100PEG20 (siehe 4.5.2)

<table>
<thead>
<tr>
<th>TOC-Nr.</th>
<th>TOC [mg/L]</th>
<th>Masse Lösung entspr. V_{Lsg} [g entspr. mL]</th>
<th>m_{Cges} [mg]</th>
<th>m_{Cges} / m_{Gel} [mg/g]</th>
<th>(\sum m_{Cges} / m_{Gel}) [mg/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30700</td>
<td>29,6786</td>
<td>911,13</td>
<td>46,03</td>
<td>46,03</td>
</tr>
<tr>
<td>2</td>
<td>12900</td>
<td>43,9823</td>
<td>567,37</td>
<td>28,66</td>
<td>74,69</td>
</tr>
<tr>
<td>3</td>
<td>6450</td>
<td>47,627</td>
<td>307,19</td>
<td>15,52</td>
<td>90,20</td>
</tr>
<tr>
<td>4</td>
<td>3350</td>
<td>48,0922</td>
<td>161,11</td>
<td>8,14</td>
<td>98,34</td>
</tr>
<tr>
<td>5</td>
<td>1420</td>
<td>47,5299</td>
<td>67,49</td>
<td>3,41</td>
<td>101,75</td>
</tr>
<tr>
<td>6</td>
<td>786</td>
<td>46,9873</td>
<td>36,93</td>
<td>1,87</td>
<td>103,62</td>
</tr>
</tbody>
</table>
Tab. 56: Gemessene und berechnete Daten für den jeweiligen Auswaschungsschritt bei NI15CMC1V2T15S100PEG30

<table>
<thead>
<tr>
<th>TOC-Nr.</th>
<th>TOC [mg/L]</th>
<th>Masse Lösung [g]</th>
<th>Masse\textsubscript{ges} C [mg]</th>
<th>Masse\textsubscript{ges} C/Masse\textsubscript{Gel} [mg/g]</th>
<th>Summe [mg/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45800</td>
<td>19,7311</td>
<td>903,68</td>
<td>45,84</td>
<td>45,84</td>
</tr>
<tr>
<td>2</td>
<td>21400</td>
<td>37,3472</td>
<td>799,23</td>
<td>40,54</td>
<td>86,37</td>
</tr>
<tr>
<td>3</td>
<td>11670</td>
<td>43,8328</td>
<td>511,53</td>
<td>25,95</td>
<td>112,32</td>
</tr>
<tr>
<td>4</td>
<td>7285</td>
<td>42,5692</td>
<td>310,12</td>
<td>15,73</td>
<td>128,05</td>
</tr>
<tr>
<td>5</td>
<td>4200</td>
<td>41,8906</td>
<td>175,94</td>
<td>8,92</td>
<td>136,97</td>
</tr>
<tr>
<td>6</td>
<td>2054</td>
<td>40,9876</td>
<td>84,19</td>
<td>4,27</td>
<td>141,24</td>
</tr>
<tr>
<td>7</td>
<td>1012</td>
<td>40,5487</td>
<td>41,04</td>
<td>2,08</td>
<td>143,32</td>
</tr>
</tbody>
</table>

Tab. 57: Gemessene und berechnete Daten für den jeweiligen Auswaschungsschritt bei NI15CMC1V2T15PEG0

<table>
<thead>
<tr>
<th>TOC-Nr.</th>
<th>TOC [mg/L]</th>
<th>Masse Lösung [g]</th>
<th>Masse\textsubscript{ges} C [mg]</th>
<th>Masse\textsubscript{ges} C/Masse\textsubscript{Gel} [mg/g]</th>
<th>Summe [mg/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1340</td>
<td>38,4864</td>
<td>51,57</td>
<td>2,61</td>
<td>2,61</td>
</tr>
<tr>
<td>2</td>
<td>475</td>
<td>41,6226</td>
<td>19,77</td>
<td>1,00</td>
<td>3,60</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
<td>46,4237</td>
<td>8,36</td>
<td>0,42</td>
<td>4,03</td>
</tr>
</tbody>
</table>
10.3 Temperaturprogramm der DSC

Tab. 58: Temperaturprogramm der DSC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>-5</td>
<td>20</td>
<td>---</td>
</tr>
<tr>
<td>-5</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>---</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

10.4 Optimierung des Starterverhältnisses

Tab. 59: Zuordnung der Ausbeute zu den Gelen mit NI = 10 %, V = 5 %, T = 15 °C und variierendem Starterverhältnis

<table>
<thead>
<tr>
<th>S = 1 zu</th>
<th>1000</th>
<th>500</th>
<th>250</th>
<th>100</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausbeute [%]</td>
<td>0,84</td>
<td>22,10</td>
<td>45,30</td>
<td>99,97</td>
<td>99,95</td>
</tr>
</tbody>
</table>
10.5 Gemessene Daten der Überprüfung der Anreicherung

Die folgenden Tabellen enthalten die Daten der Berechnungsgrundlage in 5.3.4.

Tab. 60: Ermittelte Messdaten vor der Zugabe der Dextran-Lsg. für NI15CMC0V2T15PEG0

<table>
<thead>
<tr>
<th>$m_{Gel,0}$ [g]</th>
<th>2,0925</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{Ges,0}$ [g]</td>
<td>11,9970</td>
</tr>
<tr>
<td>$m_{Gel,tr}$ [g]</td>
<td>0,1084</td>
</tr>
<tr>
<td>$c_{Dex,0}$ [mg/g]</td>
<td>1,25</td>
</tr>
</tbody>
</table>

Tab. 61: Ermittelte Messdaten vor der Zugabe der Dextran-Lsg. für NI15CMC0V2T15PEG20

<table>
<thead>
<tr>
<th>$m_{Gel,0}$ [g]</th>
<th>2,0385</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{Ges,0}$ [g]</td>
<td>11,9709</td>
</tr>
<tr>
<td>$m_{Gel,tr}$ [g]</td>
<td>0,0184</td>
</tr>
<tr>
<td>$c_{Dex,0}$ [mg/g]</td>
<td>1,25</td>
</tr>
</tbody>
</table>

Tab. 62: Ermittelte Messdaten vor der Zugabe der Dextran-Lsg. für NI15CMC1V2T15PEG0

<table>
<thead>
<tr>
<th>$m_{Gel,0}$ [g]</th>
<th>1,7164</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{Ges,0}$ [g]</td>
<td>11,6347</td>
</tr>
<tr>
<td>$m_{Gel,tr}$ [g]</td>
<td>0,1313</td>
</tr>
<tr>
<td>$m_{Lsg,1}$ [g]</td>
<td>8,5081</td>
</tr>
<tr>
<td>$c_{Dex,0}$ [mg/g]</td>
<td>1,25</td>
</tr>
</tbody>
</table>
Tab. 63: Ermittelte Messdaten vor der Zugabe der Dextran-Lsg. für NI15CMC1V2T15PEG30

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{\text{Gel,0}}) [g]</td>
<td>5,9675</td>
</tr>
<tr>
<td>(m_{\text{Gel,0}}) [g]</td>
<td>15,8972</td>
</tr>
<tr>
<td>(m_{\text{Gel,tr}}) [g]</td>
<td>0,1675</td>
</tr>
<tr>
<td>(m_{\text{Lsg,1}}) [g]</td>
<td>7,7271</td>
</tr>
<tr>
<td>(c_{\text{Dex,0}}) [mg/g]</td>
<td>1,25</td>
</tr>
</tbody>
</table>

10.6 Tabellen zur Berechnung der Beispielbeladung

Die folgenden Tabellen enthalten die gemessenen und errechneten Daten der Beispielbeladung aus 5.3.5.

Tab. 64: Ermittelte Messdaten der Be- und Entladung von NI15V2T15PEG0 mit FITC-Dextran 70 kDa

<table>
<thead>
<tr>
<th>n</th>
<th>Be- oder Entladungsschritt</th>
<th>(m_{\text{LGPn}}) [g]</th>
<th>(m_{\text{GPn}}) [g]</th>
<th>A_L</th>
<th>A_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gel, entquollen</td>
<td>---------------------------</td>
<td>24,7588</td>
<td>0,1015</td>
<td>0,1015</td>
</tr>
<tr>
<td>1</td>
<td>Beladen mit Dextran</td>
<td>34,6118</td>
<td>27,2978</td>
<td>0,1021</td>
<td>0,1015</td>
</tr>
<tr>
<td>2</td>
<td>Oberfläche waschen</td>
<td>36,9914</td>
<td>26,6441</td>
<td>0,0005</td>
<td>0,1015</td>
</tr>
<tr>
<td>3</td>
<td>Entquellen_1</td>
<td>36,9559</td>
<td>27,3247</td>
<td>0,0201</td>
<td>0,1015</td>
</tr>
<tr>
<td>4</td>
<td>Quellen_1</td>
<td>37,6222</td>
<td>24,6631</td>
<td>0,0005</td>
<td>0,1015</td>
</tr>
<tr>
<td>5</td>
<td>Entquellen_2</td>
<td>34,3260</td>
<td>27,2053</td>
<td>0,0060</td>
<td>0,1015</td>
</tr>
<tr>
<td>6</td>
<td>Quellen_2</td>
<td>36,0230</td>
<td>24,6671</td>
<td>0,0007</td>
<td>0,1015</td>
</tr>
</tbody>
</table>
Tab. 65: Errechnete Konzentration der Dextranlösung (c_{Ln}) und Volumen der Lösung (V_{Ln})

<table>
<thead>
<tr>
<th>Be- oder Entladungsschritt</th>
<th>c_{Ln} [mg/mL]</th>
<th>m_{Ln} [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel entquollen</td>
<td>0,1441</td>
<td>9,8530</td>
</tr>
<tr>
<td>Beladen mit Dextran</td>
<td>0,1450</td>
<td>7,3140</td>
</tr>
<tr>
<td>Oberfläche waschen</td>
<td>0,0007</td>
<td>10,3473</td>
</tr>
<tr>
<td>Entquellen_1</td>
<td>0,0285</td>
<td>9,6312</td>
</tr>
<tr>
<td>Quellen_1</td>
<td>0,0007</td>
<td>12,9591</td>
</tr>
<tr>
<td>Entquellen_2</td>
<td>0,0085</td>
<td>7,1207</td>
</tr>
<tr>
<td>Quellen_2</td>
<td>0,0010</td>
<td>11,3559</td>
</tr>
<tr>
<td>Entquellen_3</td>
<td>0,0000</td>
<td>7,5943</td>
</tr>
</tbody>
</table>

Tab. 66: Errechnete Werte für die Masse Dextran in der Lösung (m_{LDn}) und die Masse Dextran im Gel (m_{GDn})

<table>
<thead>
<tr>
<th>Be- oder Entladungsschritt</th>
<th>m_{LDn} [mg]</th>
<th>m_{GDn} [mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel entquollen</td>
<td>1,4198</td>
<td>0,0000</td>
</tr>
<tr>
<td>Beladen mit Dextran</td>
<td>1,0602</td>
<td>0,3596</td>
</tr>
<tr>
<td>Oberfläche waschen</td>
<td>0,0073</td>
<td>0,3523</td>
</tr>
<tr>
<td>Entquellen_1</td>
<td>0,2748</td>
<td>0,0775</td>
</tr>
<tr>
<td>Quellen_1</td>
<td>0,0092</td>
<td>0,0683</td>
</tr>
<tr>
<td>Entquellen_2</td>
<td>0,0607</td>
<td>0,0076</td>
</tr>
<tr>
<td>Be- oder Entladungsschritt</td>
<td>B [%]</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Gel entquollen</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>Beladen mit Dextran</td>
<td>98,30</td>
<td></td>
</tr>
<tr>
<td>Oberfläche waschen</td>
<td>96,29</td>
<td></td>
</tr>
<tr>
<td>Entquellen_1</td>
<td>21,17</td>
<td></td>
</tr>
<tr>
<td>Quellen_1</td>
<td>18,66</td>
<td></td>
</tr>
<tr>
<td>Entquellen_2</td>
<td>2,08</td>
<td></td>
</tr>
<tr>
<td>Quellen_2</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>Entquellen_3</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 67: Berechnete Werte für die Beladungseffizienz (B)
10.7 Be- und Entladungseffizienzdiagramme

10.7.1 Be- und Entladung der Gele mit FITC-Dextran 70 kDa

Abb. 106: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 - 40 % (NI15V2T15PEG0-40) beladen mit FITC-Dextran 70 kDa

Tab. 68: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 bis 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG0</td>
<td>2,42</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG5</td>
<td>1,05</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG10</td>
<td>1,53</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG20</td>
<td>98,30</td>
<td>21,17</td>
</tr>
<tr>
<td>NI15V2T15PEG30</td>
<td>98,49</td>
<td>29,81</td>
</tr>
<tr>
<td>NI15V2T15PEG40</td>
<td>97,74</td>
<td>45,12</td>
</tr>
</tbody>
</table>
Abb. 107: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 - 40 % (NI15V5T15PEG0-40) beladen mit FITC-Dextran 70 kDa

Tab. 69: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 bis 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V5T15PEG0</td>
<td>10,85</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG5</td>
<td>5,40</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG10</td>
<td>2,93</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG20</td>
<td>101,19</td>
<td>69,44</td>
</tr>
<tr>
<td>NI15V5T15PEG30</td>
<td>101,09</td>
<td>18,04</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>96,32</td>
<td>44,48</td>
</tr>
</tbody>
</table>
Abb. 108: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 2 bis 40 %, T = 15 °C und PEG = 40 % (NI15V2-40T15PEG40) beladen mit FITC-Dextran 70 kDa

Tab. 70: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 2 bis 40 %, T = 15 °C und PEG = 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG40</td>
<td>100,59</td>
<td>39,65</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>96,32</td>
<td>44,48</td>
</tr>
<tr>
<td>NI15V10T15PEG40</td>
<td>101,59</td>
<td>69,23</td>
</tr>
<tr>
<td>NI15V20T15PEG40</td>
<td>16,84</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V30T15PEG40</td>
<td>11,08</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V40T15PEG40</td>
<td>8,39</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Tab. 71: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, CMC = 1 mol-%, V = 2 %, T = 15 °C, S = 1 zu 100, und PEG = 0 u. 30 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC1V2T15PEG0</td>
<td>203,04</td>
<td>191,70</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG30</td>
<td>244,83</td>
<td>209,17</td>
</tr>
</tbody>
</table>

10.7.2 Be- und Entladung der Gele mit FITC-Dextran 150 kDa

Abb. 109: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 - 40 % (NI15V2T15PEG0-40), beladen mit FITC-Dextran 150 kDa
Tab. 72: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 bis 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG0</td>
<td>0,44</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG5</td>
<td>1,15</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG10</td>
<td>5,50</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG20</td>
<td>99,29</td>
<td>13,46</td>
</tr>
<tr>
<td>NI15V2T15PEG30</td>
<td>100,03</td>
<td>12,30</td>
</tr>
<tr>
<td>NI15V2T15PEG40</td>
<td>97,11</td>
<td>8,00</td>
</tr>
</tbody>
</table>

Abb. 110: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 - 40 % (NI15V5T15PEG0-40), beladen mit FITC-Dextran 150 kDa
Tab. 73: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 bis 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V5T15PEG0</td>
<td>2,17</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG5</td>
<td>1,36</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG10</td>
<td>1,47</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG20</td>
<td>97,15</td>
<td>10,07</td>
</tr>
<tr>
<td>NI15V5T15PEG30</td>
<td>95,16</td>
<td>5,41</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>97,65</td>
<td>7,75</td>
</tr>
</tbody>
</table>

![Tab. 73: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 bis 40 %)](image)

Abb. 111: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 2 bis 40 %, T = 15 °C und PEG = 40 % (NI15V2-40T15PEG40), beladen mit FITC-Dextran 150 kDa
Tab. 74: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 2 bis 40 %, T = 15 °C und PEG = 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG40</td>
<td>97,11</td>
<td>8,00</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>97,65</td>
<td>7,75</td>
</tr>
<tr>
<td>NI15V10T15PEG40</td>
<td>18,44</td>
<td>1,96</td>
</tr>
<tr>
<td>NI15V20T15PEG40</td>
<td>16,97</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V30T15PEG40</td>
<td>14,53</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V40T15PEG40</td>
<td>6,96</td>
<td>1,69</td>
</tr>
</tbody>
</table>

Tab. 75: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, CMC = 1 mol-%, V = 2 %, T = 15 °C, S = 1 zu 100, und PEG = 0 u. 30 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC1V2T15PEG0</td>
<td>209,34</td>
<td>205,12</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG30</td>
<td>244,69</td>
<td>194,45</td>
</tr>
</tbody>
</table>
10.7.3 Be- und Entladung der Gele mit FITC-Dextran 4 kDa

Abb. 112: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 - 40 % (NI15V2T15PEG0-40), beladen mit FITC-Dextran 4 kDa

Tab. 76: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 bis 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG0</td>
<td>0,55</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG5</td>
<td>1,77</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG10</td>
<td>1,02</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG20</td>
<td>99,27</td>
<td>36,42</td>
</tr>
<tr>
<td>NI15V2T15PEG30</td>
<td>95,86</td>
<td>30,31</td>
</tr>
<tr>
<td>NI15V2T15PEG40</td>
<td>98,18</td>
<td>13,25</td>
</tr>
</tbody>
</table>
Abb. 113: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 - 40 % (NI15V5T15PEG0-40), beladen mit FITC-Dextran 4 kDa

Tab. 77: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 bis 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V5T15PEG0</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG5</td>
<td>2,04</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG10</td>
<td>1,74</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG20</td>
<td>92,00</td>
<td>2,78</td>
</tr>
<tr>
<td>NI15V5T15PEG30</td>
<td>98,83</td>
<td>16,44</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>99,49</td>
<td>21,90</td>
</tr>
</tbody>
</table>
Abb. 114: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 2 bis 40 %, T = 15 °C und PEG = 40 % (NI15V2-40T15PEG40), beladen mit FITC-Dextran 4 kDa

Tab. 78: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 2 bis 40 %, T = 15 °C und PEG = 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG40</td>
<td>98,18</td>
<td>13,25</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>99,49</td>
<td>21,90</td>
</tr>
<tr>
<td>NI15V10T15PEG40</td>
<td>98,65</td>
<td>32,79</td>
</tr>
<tr>
<td>NI15V20T15PEG40</td>
<td>22,61</td>
<td>3,39</td>
</tr>
<tr>
<td>NI15V30T15PEG40</td>
<td>94,00</td>
<td>43,16</td>
</tr>
<tr>
<td>NI15V40T15PEG40</td>
<td>12,01</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Tab. 79: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, CMC = 1 mol-%, V = 2 %, T = 15 °C und PEG = 0 und 30 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Dextran (Index n = 1)</th>
<th>Entquellen_1 (Index = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC1V2T15PEG0</td>
<td>196,54</td>
<td>195,23</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG30</td>
<td>227,48</td>
<td>150,35</td>
</tr>
</tbody>
</table>

10.7.4 Be- und Entladung der Gele mit FITC-Albumin

Abb. 115: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 - 40 % (NI15V2T15PEG0-40), beladen mit FITC-Albumin
Tab. 80: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 2 %, T = 15 °C und PEG = 0 bis 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Albumin (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG0</td>
<td>3,91</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG5</td>
<td>2,56</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG10</td>
<td>0,90</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V2T15PEG20</td>
<td>95,49</td>
<td>31,32</td>
</tr>
<tr>
<td>NI15V2T15PEG30</td>
<td>98,67</td>
<td>14,46</td>
</tr>
<tr>
<td>NI15V2T15PEG40</td>
<td>99,43</td>
<td>32,74</td>
</tr>
</tbody>
</table>

Abb. 116: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 - 40 % (NI15V5T15PEG0-40), beladen mit FITC-Albumin
Tab. 81: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 5 %, T = 15 °C und PEG = 0 bis 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Albumin (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V5T15PEG0</td>
<td>0,88</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG5</td>
<td>1,20</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG10</td>
<td>0,06</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG20</td>
<td>91,50</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V5T15PEG30</td>
<td>92,43</td>
<td>9,77</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>94,34</td>
<td>28,84</td>
</tr>
</tbody>
</table>

Abb. 117: Beladungseffizienzdiagramm der Gele mit NI = 15 %, V = 2 bis 40 %, T = 15 °C und PEG = 40 % (NI15V2-40T15PEG40), beladen mit FITC-Albumin
Tab. 82: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, V = 2 bis 40 %, T = 15 °C und PEG = 40 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Albumin (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15V2T15PEG40</td>
<td>99,55</td>
<td>58,00</td>
</tr>
<tr>
<td>NI15V5T15PEG40</td>
<td>94,34</td>
<td>28,84</td>
</tr>
<tr>
<td>NI15V10T15PEG40</td>
<td>11,78</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V20T15PEG40</td>
<td>7,84</td>
<td>0,00</td>
</tr>
<tr>
<td>NI15V30T15PEG40</td>
<td>7,59</td>
<td>0,31</td>
</tr>
<tr>
<td>NI15V40T15PEG40</td>
<td>6,20</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Tab. 83: Beladungseffizienzdaten der verschiedenen Gele (NI = 15 %, CMC = 1 mol-%, V = 2 %, T = 15 °C und PEG = 0 und 30 %)

<table>
<thead>
<tr>
<th>Gelbezeichnung</th>
<th>Beladen mit Albumin (Index n = 1)</th>
<th>Entquellen_1 (Index n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI15CMC1V2T15PEG0</td>
<td>195,50</td>
<td>195,23</td>
</tr>
<tr>
<td>NI15CMC1V2T15PEG30</td>
<td>245,89</td>
<td>216,94</td>
</tr>
</tbody>
</table>
Lebenslauf:

Name: Fänger, Christian Johannes
Anschrift: Bahnhofstr. 14, 46145 Oberhausen
Geburtsdatum: 22. September 1971
Geburtsort: Oberhausen
Familienstand: ledig
Promotion: 20.12.2005
 Mündliche Prüfung
 seit 01.04.2002
 Doktorand und wissenschaftlicher Mitarbeiter im Fraunhofer
 Institut für Umwelt-, Sicherheits- und Energietechnik
 UMSICHT in Oberhausen
Hochschulstudium: 01.09.2001 - 24.03.2002
 Diplomarbeit im Fraunhofer Institut für Umwelt-, Sicherheits-
 und Energietechnik UMSICHT in Oberhausen
 Abschluss: Diplom-Chemiker
 01.10.1993 – 31.08.2001
 Universität Gesamthochschule Essen
Wehrdienst: 1992-1993
Schulausbildung: 1989-1992
 Sophie-Scholl-Gymnasium
 1984-1989
 Friederich-Ebert-Realschule
 1982-1984
 Sophie-Scholl-Gymnasium
 1978-1982
 Grundschule Schwarze Heide