Organische Chemie III: Pericyclische Reaktionen, Photochemie, Synthesemethoden

WS 2001/2002
Vorlesung für das 5. Fachsemester, Hauptstudium DII
V2, Mi 8-10, S03 V00 E71

Inhalt
I. Pericyclische Reaktionen
II. Grundlagen der Photochemie
III. Synthesemethoden

Literatur
F. A. Carey, R. J. Sundberg
Organische Chemie. Ein weiterführendes Lehrbuch
VCH, Weinheim, 1995

J.-H. Fuhrhop, G. Penzlin
Organic Synthesis. Concepts, Methods, Starting Materials

E. J. Corey, X.-M. Cheng
The Logic of Chemical Synthesis

I. Fleming
Grenzorbitale und Reaktionen organischer Verbindungen

M. Klessinger, J. Michl
Lichtabsorption und Photochemie organischer Moleküle

N. S. Isaacs
Physical Organic Chemistry
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Organische Chemie III</th>
<th>...</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt</td>
<td>..</td>
<td>1</td>
</tr>
<tr>
<td>Literatur</td>
<td>..</td>
<td>1</td>
</tr>
</tbody>
</table>

Pericyclische Reaktionen

<table>
<thead>
<tr>
<th>Inhaltübersicht:</th>
<th>...</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Literatur</td>
<td>..</td>
<td>4</td>
</tr>
<tr>
<td>2. Übersicht über pericyclische Reaktionen</td>
<td>...</td>
<td>5</td>
</tr>
<tr>
<td>3. MO-Theorie</td>
<td>..</td>
<td>8</td>
</tr>
<tr>
<td>Gruppenorbitale</td>
<td>..</td>
<td>11</td>
</tr>
</tbody>
</table>

4. Elektrocyclische Reaktionen

<table>
<thead>
<tr>
<th>Inhaltübersicht:</th>
<th>...</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Cycloadditionen</td>
<td>..</td>
<td>19</td>
</tr>
<tr>
<td>5.1 Übersicht</td>
<td>..</td>
<td>19</td>
</tr>
<tr>
<td>5.2 Cheletrope [2+2]-Cycloaddition</td>
<td>...</td>
<td>23</td>
</tr>
<tr>
<td>5.3 Diels-Alder-Reaktion, [4+2]-Cycloaddition</td>
<td>..</td>
<td>24</td>
</tr>
<tr>
<td>5.4 1,3-Dipolare Cycloaddition</td>
<td>..</td>
<td>33</td>
</tr>
</tbody>
</table>

6. Sigmatrope Umlagerungen

<table>
<thead>
<tr>
<th>Inhaltübersicht:</th>
<th>...</th>
<th>34</th>
</tr>
</thead>
</table>

7. Aromatizität

<table>
<thead>
<tr>
<th>Inhaltübersicht:</th>
<th>...</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Aromatischer Charakter</td>
<td>...</td>
<td>39</td>
</tr>
<tr>
<td>7.2 Eigenschaften cyclisch konjugierter Verbindungen</td>
<td>..</td>
<td>40</td>
</tr>
<tr>
<td>7.3 Das Möbius-Hückel-Konzept</td>
<td>..</td>
<td>44</td>
</tr>
</tbody>
</table>

Photochemie

<table>
<thead>
<tr>
<th>Inhaltübersicht:</th>
<th>...</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Literatur</td>
<td>..</td>
<td>47</td>
</tr>
<tr>
<td>2. Jablonski-Diagramme und Molekülzustände</td>
<td>..</td>
<td>48</td>
</tr>
<tr>
<td>3. Photochemie</td>
<td>..</td>
<td>52</td>
</tr>
<tr>
<td>3.1 Übersicht</td>
<td>..</td>
<td>52</td>
</tr>
<tr>
<td>3.2 Primärprozesse</td>
<td>..</td>
<td>53</td>
</tr>
<tr>
<td>3.3 Sekundärprozesse</td>
<td>..</td>
<td>54</td>
</tr>
<tr>
<td>3.4 Experimentelles</td>
<td>..</td>
<td>55</td>
</tr>
<tr>
<td>3.5 Photosensibilisierung</td>
<td>..</td>
<td>55</td>
</tr>
<tr>
<td>3.6 Moleküle in elektronisch angeregten Zuständen</td>
<td>..</td>
<td>57</td>
</tr>
</tbody>
</table>

4. Photochemie organischer Verbindungen

<table>
<thead>
<tr>
<th>Inhaltübersicht:</th>
<th>...</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Übersicht</td>
<td>..</td>
<td>58</td>
</tr>
<tr>
<td>4.2 Photochemie von Alkenen</td>
<td>..</td>
<td>63</td>
</tr>
<tr>
<td>4.3 Photochemie von Azo-Verbindungen</td>
<td>..</td>
<td>64</td>
</tr>
<tr>
<td>4.4 Photochemie von Carbonyl-Verbindungen</td>
<td>..</td>
<td>65</td>
</tr>
<tr>
<td>4.5 Umlagerungen</td>
<td>..</td>
<td>68</td>
</tr>
<tr>
<td>4.6 Photooksidationen mit Singulett-Sauerstoff</td>
<td>..</td>
<td>71</td>
</tr>
<tr>
<td>4.7 Chemilumineszenz</td>
<td>..</td>
<td>72</td>
</tr>
</tbody>
</table>

Synthesemethoden

<table>
<thead>
<tr>
<th>Inhaltübersicht:</th>
<th>...</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Literatur</td>
<td>..</td>
<td>74</td>
</tr>
<tr>
<td>2. Einleitung</td>
<td>..</td>
<td>75</td>
</tr>
<tr>
<td>3. Syntheseplanung</td>
<td>..</td>
<td>75</td>
</tr>
<tr>
<td>4. Methodik der Retrosynthese</td>
<td>..</td>
<td>80</td>
</tr>
<tr>
<td>5. Aufbau des Kohlenstoffgerüstes durch Kombination von Synthons (Übersicht)</td>
<td>..</td>
<td>89</td>
</tr>
<tr>
<td>6. Umpolung</td>
<td>..</td>
<td>90</td>
</tr>
<tr>
<td>7. Aufbau eines C-Gerüstes</td>
<td>..</td>
<td>92</td>
</tr>
<tr>
<td>7.1 Darstellung von Alkanen</td>
<td>..</td>
<td>92</td>
</tr>
<tr>
<td>7.2 Darstellung von Alkenen</td>
<td>..</td>
<td>92</td>
</tr>
<tr>
<td>7.3 Darstellung von Alkinen</td>
<td>..</td>
<td>97</td>
</tr>
</tbody>
</table>
8.4 Darstellung von 1,2-difunktionellen Verbindungen ... 97
8.5 Darstellung von 1,3-difunktionellen Verbindungen ... 99
8.6 Darstellung von 1,4-difunktionellen Verbindungen ... 100
8.7 Darstellung von 1,5-difunktionellen Verbindungen ... 101
8.8 Darstellung von 1,6- und 1,m-difunktionellen Verbindungen.. 101
8.9 Darstellung von Carbocyclen..102

9. Funktionelle Gruppen ... 106
9.1 Einführung funktioneller Gruppen FGA .. 106
9.2 Entfernung funktioneller Gruppen FGR... 107
9.3 Umwandlung funktioneller Gruppen FGI... 110
9.4 Schutz funktioneller Gruppen FGP .. 116

10. Stereochemische Kontrolle: diastereo- und enantioselektive Synthesen.............................. 123
10.1 Prochiralität, Prostereoisomerie, Topizität ... 123
10.2. Enantioselektive Synthesen in chiralen Solventien ... 124
10.3. Diastereoselektive Synthesen mit chiralen Reagenzien... 125
10.4. Asymmetrische Synthese durch chirale Modifizierung des Substrats 127
10.5. Asymmetrische Synthese mit Hilfe chiraler Katalysatoren ... 127
10.6. Diastereosektive Synthesen ...129
10.7 Beispiel für die mehrstufige Synthese eines Naturstoffs .. 132

11. Übungsbeispiele für Recherchen in der Beilstein-Crossfire-Datenbank 133
Pericyclische Reaktionen

Inhaltsübersicht:

1. Literatur
2. Übersicht über pericyclische Reaktionen
3. MO-Theorie
4. Elektrocyclische Reaktionen
5. Cycloadditionen
 5.1 Übersicht
 5.2 Cheletrope Cycloadditionen
 5.3 Diels-Alder-Reaktionen
 5.4 1,3-Dipolare Cycloadditionen
5. Sigmatrope Umlagerungen
7. Aromatizität
 7.1 Aromatische, antiaromatische, nichtaromatische Moleküle
 7.2 Eigenschaften cyclisch-konjugierter Verbindungen
 7.3 Das Möbius-Hückel-Konzept

1. Literatur

2. Übersicht über pericyclische Reaktionen
Simultan Bildung und/oder Spaltung von Bindungen. (Nicht unbedingt) synchron (die Änderungen
müssen nicht an jedem Punkt der Reaktionskoordinate gleich weit fortgeschritten sein.)
Man unterscheidet fünf Typen pericyclischer Reaktionen (nach Woodward u. Hoffmann)

1.) Cycloaddition
Bildung cyclischer Produkte. Produkt entspricht der Summe der Komponenten (≠ Ringschluss durch
Kondensation)
Beispiele:

\[
\begin{align*}
\text{endo-Addukt} & \quad \text{[4+2]-Cycloaddition, Diels-Alder-Reaktion} \\
\end{align*}
\]

Klassifizierung nach der Anzahl der π-Elektronen in den Reaktanden. Die Reaktion wird thermisch
oder photochemisch initiiert. Der thermische [4+2]-Prozess ist energetisch besonders günstig.
Alternative Klassifizierung nach Größe der beteiligten Komponenten (Anzahl der beteiligten Atome).

1,3-Dipolare Cycloaddition, z.B. Ozonolyse

\[
\begin{align*}
\text{1,2,3-Trioxolan} & \quad \\
\end{align*}
\]

En-Reaktion

\[
\begin{align*}
\end{align*}
\]
Retro-En-Reaktion

\[
\begin{align*}
\text{Keton} & \quad \rightarrow \quad \text{Alken} + \quad \text{Zweielektronen}\nonumber \\
& \quad \text{Me} \quad \text{Me} \quad \text{Me}
onumber \\
& \quad \text{Me} \quad \text{Me} \quad \text{Me}
onumber \\
& \quad \text{Me} \quad \text{Me} \quad \text{Me}
onumber \\
& \quad \text{Me} \quad \text{Me} \quad \text{Me}
onumber \\
& \quad \text{Me} \quad \text{Me} \quad \text{Me}
onumber \\
& \quad \text{Me} \quad \text{Me} \quad \text{Me}
\end{align*}
\]

2.) Elektrocyclische Reaktionen
Ringöffnungs- oder Ringschlussreaktionen. Gegenseitige Umwandlung von \(\sigma\)- und \(\pi\)-Bindungen.

\[
\begin{align*}
\text{cis-3,4-Dimethyl-} & \quad \text{E/Z}
onumber \\
& \quad \text{Konrotatorisch}
onumber \\
& \quad \text{E/E}
onumber \\
& \quad \text{Disrotatorisch}
onumber \\
\text{Die Stereochemie ist sehr wichtig!!}
\end{align*}
\]

3.) Sigmatrope Reaktionen
Wanderung einer \(\sigma\)-Bindung über ein konjugiertes System, Umlagerungsreaktion

\[
\begin{align*}
& \quad \text{Cope-Umlagerung, [3,3]-Verschiebung}
onumber \\
& \quad \text{Bezeichnung richtet sich nach der Positionsänderung der Verknüpfungspunkte der fraglichen Bindung.}
\end{align*}
\]

4.) Cheletrope Reaktionen
Cycloaddition, bei der eine Komponente zwei Bindungen an einem Atom bildet.

\[
\begin{align*}
& \quad \text{Sulfolen}
onumber \\
& \quad \text{Carben}
\end{align*}
\]

5.) Gruppenübertragungen
Transfer einer oder mehrere Gruppen von einem Molekül auf ein anderes.
→ Woodward-Hoffmann-Regeln.
3. MO-Theorie

Jedes Molekül besitzt mehrere MOs, die im allgemeinen unterschiedliche Energie haben. Jedes MO kann zwei Elektronen mit antiparallelem Spin aufnehmen. Im elektronischen Grundzustand besetzen die Elektronen die am tiefsten liegenden MOs.

Grundzustand

angeregter Zustand

Das einfachste quantenmechanische Näherungsverfahren zur Konstruktion von MOs ist das sogenannte LCAO-Verfahren, bei dem die MOs durch Linearkombination aus den Atomorbitalen der beteiligten Atome konstruiert werden.
Elektronenkonfiguration der Atome

<table>
<thead>
<tr>
<th>1s</th>
<th>2s</th>
<th>2pₓ</th>
<th>2pᵧ</th>
<th>2p₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ne</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2pₓ, 2pᵧ, 2p₂ sind bei Atomen entartet (energiegleich).

Gestalt der AOs

s-Orbitale kugelförmig
p-Orbitale hantelförmig
Die beiden "Hälften" der Hanteln besitzen entgegengesetzte Phasen (Vorzeichen).

Die AOs lassen sich durch (Wellen)funktionen beschreiben.
Quadrat der Wellenfunktion ~ Aufenthaltswahrscheinlichkeit des Elektrons.

Valenzelektronenschale
Die unteren, vollständig besetzten Schalen (K-Schale bei der 1. Langperiode) werden bei der Bildung von Bindungen außer acht gelassen. Sie werden dem Atomrumpf zugerechnet.

Hybridisierung der AOs
Es gibt verschiedene Möglichkeiten der Kombination von 2s- und 2p-Orbitalen
Hybridorbitale: Anzahl gleich Zahl der kombinierten AOs
\[s + 3 \, p \rightarrow 4 \, sp^3\text{-Hybridorbitale} \quad (25\% \, s\text{-}, \, 75\% \, p\text{-Charakter}), \]
\[\text{nach den Ecken eines Tetraeders gerichtet} \]
\[s + 2 \, p \rightarrow 3 \, sp^2\text{-Hybridorbitale} \quad (33\% \, s\text{-}, \, 67\% \, p\text{-Charakter}), \]
\[\text{1 AO bleibt erhalten, planar trigonal} \]
\[s + 1 \, p \rightarrow 2 \, sp\text{-Hybridorbitale} \quad (50\% \, s\text{-}, \, 50\% \, p\text{-Charakter}), \]
\[\text{2 AOs bleiben erhalten, linear} \]
Bildung von MOs durch Linearkombination von AOs

Kombination von zwei 2s-AOs

\[\sigma^{\text{MO}} \]

\[\Delta E_1 \]

\[\Delta E_2 \]

\[\sigma \text{-MO} \]

\(\sigma \)-MOs sind Zylinder-symmetrisch, bindendes \(\sigma \)-MO, antibindendes \(\sigma^* \)-MO

Kombination von s und p (z.B. H-F)

Nur die lineare Kombination ergibt \(\sigma \) und \(\sigma^* \).

Die Kombination ist um so günstiger, je besser (größer) die Überlappung ist. (Vorzeichen beachten!)

Kombination von zwei p-AOs

Die parallele Kombination ergibt bindendes \(\pi \)- und antibindendes \(\pi^* \)-MO.

Die MOs mehratomiger Moleküle erhält man auf analoge Weise, wobei z.B. bei C die Ilybridorbitale und die nicht hybridisierten p-Orbitale verwendet werden können.
Gruppenorbitale

Wenn man die MOs verschiedener Moleküle vergleicht (MOs erstrecken sich über das gesamte Molekül, auch σ-MOs), stellt man fest, dass bestimmte typische Gruppen- oder Bindungsorbitale häufig vorkommen. Man kann daher auch die MOs des gesamten Moleküls aus diesen Gruppen- oder Bindungsorbitalen herleiten.

Beispielsweise lassen sich Kohlenwasserstoffe aus C-C, C=C, C-H, CH₂, und CH₃ Gruppen zusammen setzen. Ebenso können die MOs aus den Gruppenorbitalen GOs der Fragmente erhalten werden.

1.) C-C
 Kombination von 2 Hybridorbitalen (sp³, sp², sp): 2 σ-MOs (σ u. σ*)

2.) C=C
 2 σ-MOs (σ u. σ*), 2 π-MOs (π u. π*)

3.) C-H
 2 σ-MOs (σ u. σ*)

4.) CH₂
 σ(CH₂), σ*(CH₂), π(CH₂), π*(CH₂)

5.) CH₃
 σ(CH₃), σ*(CH₃), 2 π(CH₃), 2 π*(CH₃)

Gruppenorbitale der CH₂-Gruppe

![Diagram of CH₂-Group](image)

Symmetrieelemente der CH₂-Gruppe

π-Orbitale von CH₂ und CH₃ → Hyperkonjugation.
Wechselwirkung (WW) zwischen Orbitalen verschiedener Moleküle

→ Bindungsbildung
gleiche Regeln wie für AOs oder Gruppenorbitale
großer Abstand der Moleküle: ungestörte MOs der Moleküle
Annäherung = Störung, Bildung neuer MOs
stärkste WW zwischen MOs ähnlicher Energie
WW besetzter MOs = 2 Orbital- 4 Elektronen-WW → Abstossung, Destabilisierung
WW besetztes mit unbesetztem MO = 2 Orbital- 2 Elektronen-WW → Anziehung, Stabilisierung
Stärkste WW zwischen HOMO von Molekül A mit LUMO von Molekül B und umgekehrt.
Front-Orbitale: FMOs

Voraussetzung: Überlappung von HOMO und LUMO, korrekte Symmetrie
Beispiele:
1.) Bildung von HF aus H₂ und F₂
 \[\text{H}_2 + \text{F}_2 \rightarrow 2 \text{HF} \]
 Einschrittreaktion?

\[
\begin{align*}
\text{H} & \quad \text{H} \\
+ & \quad \xrightarrow{\text{LUMO}} \\
\text{F} & \quad \text{F} \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\quad & \quad \xrightarrow{\text{HOMO}} \\
\text{F} & \quad \text{F} \\
\end{align*}
\]

keine HOMO-LUMO-WW, kein cyclischer Übergangszustand, keine konzertierte Reaktion, sondern Radikalkette: \(\text{H} + \text{F}_2 \rightarrow \text{HF} + \text{F} \) usw.

2.) Nukleophile Substitution
 \(\text{S}_\text{N}2 \) (Fleming S. 88)

Stereochemie wird richtig erklärt.
4. Elektrocyclische Reaktionen

Ringöffnungs- oder Ringschlussreaktionen. Umwandlung von σ- und π-Bindungen

Butadien \rightarrow Cyclobuten

Reaktion kann auf zwei verschiedene Weisen erfolgen

Beteiligte Orbitale: π-System des Butadiens, π- und σ-Bindung des Cyclobutens

Symmetrielemente der Reaktion:
- konrotatorisch: C_2
- disrotatorisch: σ

Diese MOs werden in einander umgewandelt.
Konrotatorisch

Bei der konrotatorischen Reaktion werden Symmetrie-gleiche MOs ineinander überführt: bindende in bindende und antibindende in antibindende. Die Reaktion ist aus Symmetriegründen erlaubt, d.h. thermisch möglich.

Disrotatorisch

Gegenseitige Überführung je eines besetzten und unbesetzten MOs. Reaktion ist im Grundzustand Symmetrie-verboten. Photochemisch erlaubt.

Hexatrien → Cyclohexadien

Konrotation: thermisch Symmetrie-verboten, photochemisch Symmetrie-erlaubt
Disrotation: thermisch Symmetrie-erlaubt

"Symmetrie" ist nicht streng zu verstehen. Substituenten, Heteroatome, Abweichungen von der Planarität u. dgl., die die tatsächliche Symmetrie erniedrigen, werden als kleine Störungen aufgefasst.

Butadien und Hexatrien verhalten sich entgegengesetzt. Alternierendes Verhalten bei Zufügen einer Bindung.

Woodward-Hoffmann-Regeln für elektrocyclische Reaktionen:

<table>
<thead>
<tr>
<th>Anzahl π-Elektronen (im Edukt)</th>
<th>Reaktion</th>
<th>Stereochemie</th>
</tr>
</thead>
<tbody>
<tr>
<td>4n</td>
<td>Δ</td>
<td>konrotatorisch</td>
</tr>
<tr>
<td></td>
<td>hv</td>
<td>disrotatorisch</td>
</tr>
<tr>
<td>4n+2</td>
<td>Δ</td>
<td>disrotatorisch</td>
</tr>
<tr>
<td></td>
<td>hv</td>
<td>konrotatorisch</td>
</tr>
</tbody>
</table>

Δ = thermisch hv = photochemisch
Beispiele
Dreiringe

Solvolyse von Cyclopropanderivaten

Die Schritte 1 und 2 erfolgen konzertiert.

Relative Reaktivität bei 100 °C in CH_3COOH: 1 : 17000
Vierringe

Thermodynamik: Cyclisierung eines offenkettigen Diens wird im allgemeinen nicht beobachtet.

Unterschied zwischen erlaubtem und verbotenem Prozess
Ausmaß der Stereospezifität

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\end{align*}
\]

280 °C → \[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad + \\
\text{Me} & \quad + \\
\text{Me} & \\
\end{align*}
\]

99.9 % konrot. 0.005 % disrot. 0.1 %

Aus dem Produktverhältnis lässt sich ein Unterschied in der Aktivierungsenergie von 63 kJ/mol abschätzen.

Wahrscheinlich wird das "verbotene" Produkt über eine Radikalreaktion gebildet:

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\end{align*}
\]

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \\
\end{align*}
\]

Gleichgewicht bei 124 °C.

Nach 51 d keine Spur weiterer Stereoisomerer. In dieser Zeit hat jedes Molekül 2.6x10^6 konrotatorische Prozesse ausgeführt, ohne dass ein disrotatorischer erfolgte.

Synthese gespannter Bicyclen mit Vierringen

Bicyclo[2.1.0]pent-2-en

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\end{align*}
\]

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \\
\end{align*}
\]

Die Rückreaktion ist thermisch verboten.

\[t_{1/2} = 4 \text{ h bei } 34 \text{ °C} \]

Bicyclo[3. 2.0]hept-6-en

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \\
\end{align*}
\]

Rückreaktion erst > 400 °C.
Dewar-Benzol, Bicyclo[2.2.0]hexadien

\[\text{hv} < 200 \text{ nm} \]
\[t_{1/2} = 2 \text{ d bei 250 °C. } \Delta H^\circ = -251 \text{ kJ/mol!} \]
Reaktion ist thermisch verboten (Disrotation). \(4\pi \)-Elektronensystem bezüglich der elektrocyclischen Reaktion. Konrotatorische Ringöffnung liefert cis,cis,trans-Cyclohexatrien.

Sechs- und höhergliedrige Ringe

\[\text{Me} \]
\[\text{Me} \]
\[\text{Me} \]
\[\text{130 °C} \]
\[\text{Me} \]
\[\text{Me} \]
\[\text{Me} \]

6 \(\pi \)-Elektronen, disrotatorisch
(\(4n+2 \))-System

Gleichgewicht liegt auf der rechten Seite.

\[\text{:CH}_2 \]
\[\text{NC} \]
\[\text{CN} \]

Norcaradien

\[\text{100 °C} \]
\[\text{disrot.} \]

85 % 15 %

Schnelle reversible Reaktion. \(\Delta G^\circ = 6.3 \text{ kJ/mol} \)
5. Cycloadditionen

5.1 Übersicht
Reaktionstypen:

\[\text{[2+2]-Cycloaddition} \]

\[\text{[4+2]-Cycloaddition} \]

\[\text{1,3-dipolare Cycloaddition} \]

\[\text{cheletrope Cycloaddition} \]

\[\text{[4+2]-Cycloaddition, Diels-Alder-Reaktion, wichtigster Typ der Cycloaddition} \]

suprafaciale Wechselwirkung der Front-Orbitale (FMOs): \(4\pi_a + 2\pi_s \)
Symmetrie-erlaubt. Bei der Annäherung der Edukte findet bindende WW der FMOs statt, zwischen beiden Kombinationen. Günstig für die Reaktion.
[2+2]-Cycloaddition

FMO-Wechselwirkung:

LUMO

HOMO

\(2\pi_s + 2\pi_a\): Symmetrie-erlaubt, aber sterisch ungünstig, wird nur in Sonderfällen beobachtet

\(2\pi_s + 2\pi_s\): Symmetrie-verboten, konzertierte Reaktion nicht begünstigt

Wenn neue Bindungen an genügenderliegenden Seiten der Doppelbindung (oder eines konjugierten Systems) gebildet werden, wird dieser Prozess als antarafacial bezüglich dieser Komponente bezeichnet. Symbol \(a\)

Wenn neue Bindungen an derselben Seite einer Doppelbindung (oder eines konjugierten Systems) gebildet werden, wird dieser Prozess als suprafacialbezüglich dieser Komponente bezeichnet. Symbol \(s\)

Beispiele:

- Ethendimerisierung \(2\pi_s + 2\pi_a\) Symmetrie-erlaubt
- \(2\pi_s + 2\pi_s\) Symmetrie-verboten
- Diels-Alder-Reaktion \(4\pi_s + 2\pi_a\) Symmetrie-erlaubt
- \(4\pi_s + 2\pi_s\) Symmetrie-verboten

Symmetrie-verboten heißt nicht, dass die Reaktion überhaupt nicht möglich ist; sie könnte z.B. zweistufig sein oder auch mit wesentlich höherer Aktivierungsenergie einstufig ablaufen:

Reaktion erfordert relativ hohe Temperatur, ist im Gegensatz zur Diels-Alder-Reaktion stereospezifisch. Polarität des Lösungsmittels hat keinen Einfluss auf die Reaktionsgeschwindigkeit, dipolare Zwischenstufe scheidet also aus.
Beispiele für thermische Alken-Dimerisierungen:

\[
\text{F} = \text{F} + \text{H} = \text{D} \rightarrow \text{F} = \text{F} + \text{D} \rightarrow 1
\]

\[
\text{H} = \text{CH}_3 + \text{H} = \text{CH}_3 \rightarrow \text{F} = \text{CH}_3 + \text{F} = \text{CH}_3 \rightarrow 1
\]

Keine pericyclischen Reaktionen! [2π_s + 2π_a] ist offenbar nicht möglich!

Photochemisch lassen sich Alkene glatt zu den entsprechenden Cyclobutanen dimerisieren z.B.

Die Dimerisation verläuft stereospezifisch als [2π_s + 2π_s]-Reaktion.

Molekül A elektronisch angeregt
Beide Moleküle reagieren suprafacial.
Reaktionen mit Keten:

\[\text{H}_2\text{C}≡\text{C}≡\text{O} + \text{H}_2\text{C}≡\text{C}≡\text{O} \rightarrow \text{Cyclobutanon} \]

\[2 \text{H}_2\text{C}≡\text{C}≡\text{O} \rightarrow \text{Diketen} \]

\[2 \text{C}≡\text{C}≡\text{O} \rightarrow \text{Cyclobutanon} \]

Es handelt sich um konzertierte Reaktionen: \(2\pi_s + 2\pi_a\). Keten reagiert antarafacial.

Woodward-Hoffmann-Regeln für \([p+q]\)-Cycloadditionen:

<table>
<thead>
<tr>
<th>Anzahl (\pi)-Elektronen</th>
<th>supra/supra</th>
<th>supra/antara</th>
<th>antara/antara</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4n) ((4, 8, 12, 16))</td>
<td>(\Delta)</td>
<td>(\Delta)</td>
<td>(\Delta)</td>
</tr>
<tr>
<td>(4n+2) ((2, 6, 10, 14))</td>
<td>(\Delta)</td>
<td>(\Delta)</td>
<td>(\Delta)</td>
</tr>
</tbody>
</table>

antaraf-/antarafacial ist sterisch sehr ungünstig.
5.2 Cheletrope \[2+2\]-Cycloaddition
Addition von Carbenen und Nitrenen an Alkene

\[
\begin{align*}
\text{||} & \quad + \ :\text{CH}_2 & \rightarrow & \bigtriangleup \\
\text{||} & \quad + \ :\text{NR} & \rightarrow & \bigtriangleup \text{NR}
\end{align*}
\]
Wichtige Methode zur Synthese von Cyclopropanen und Aziridinen, glatte Reaktion, hohe Reaktivität, stereospezifische cis-Addition

Die lineare Annäherung ist ungünstig.

Die nicht-lineare Annäherung ist günstig: \(2\pi_s + 2\pi_a\)

Experimentelle Informationen über die nicht-lineare Annäherung gibt es nicht.
5.3 Diels-Alder-Reaktion, [4+2]-Cycloaddition

Zahlreiche Beispiele waren lange vor der Entwicklung der Theorie pericyclischer Reaktionen bekannt. O. Diels und K. Alder, 1928
Generelles Reaktionsprinzip, hohe Reaktivität, hohe Stereospezifität, hohe Regioselektivität, weites präparatives Anwendungsgebiet.

Literatur:
H. Wollweber, Diels-Alder-Reaktion, Thieme Verlag, Stuttgart 1972, <UVB 1081>

Auch für das Grundsystem ist die Reaktion bekannt.

\[
\text{Reaktivität ist am größten, wenn Dien und Dienophil Substituenten mit komplementärem elektronischen Einfluss tragen.}
\]

\[
\text{Üblicherweise: Dien-Substituenten Elektronen-liefernd (Donor)}
\]
\[
\text{Dienophil-Substituenten Elektronen-abziehend (Akzeptor)}
\]

Gegenteil: Diels-Alder-Reaktion mit inversem Elektronenbedarf
Beispiele für unterschiedliche Reaktivität:

\[\text{\(+ \)} \quad \xrightarrow{200 \, ^\circ \mathrm{C}} \quad \text{\(\)} \text{\(+ \)} \quad \xrightarrow{100 \, ^\circ \mathrm{C}} \quad \text{\(\)} \text{\(+ \)} \quad \xrightarrow{35 \, ^\circ \mathrm{C}} \quad \text{\(\)} \text{\(+ \)} \quad \xrightarrow{20 \, ^\circ \mathrm{C}} \quad \text{\(\)}

Stereochemie
beweist pericyclische Reaktion als Symmetrie-erlaubten \([4\pi_s + 2\pi_s]\)-Prozess.

\[\text{\(+ \)} \quad \xrightarrow{} \quad \text{\(\)} \text{\(+ \)} \quad \xrightarrow{} \quad \text{\(\)} \text{\(+ \)} \quad \xrightarrow{} \quad \text{\(\)} \text{\(+ \)} \quad \xrightarrow{} \quad \text{\(\)}

\text{cis-Addukt}

\text{trans-Addukt}
Alder-Regel für die Bildung von Bicyclen:

\[
\text{exo-Addukt}
\]

Reaktion ist der kinetisch kontrolliert.

Aldersche endo-Regel: maximale Häufung von Doppelbindungen im ÜZ.
Sekundäre Orbital-Wechselwirkung: WW der FMOs mit π und π* von Substituenten.
Nach neueren Befunden gibt es keine Anzeichen für solche WW. Satt dessen Solvenseffekte, sterische WW, H-Brücken, elektrostatische Kräfte u.a.:

Auch heteroanaloge Verbindungen gehen die Diels-Alder-Reaktion ein:

\[
\text{2,3-Benzo-7-oxa-bicyclo-[2.2.1]heptadien}
\]

"Hausen"
"Hausan"
Dien-Komponente

Prinzipiell jedes konjugierte Diensystem, sofern es die syn-Konformation besitzt oder einnehmen kann.

Aromatische Verbindungen reagieren nur mit "starken" Dienophilen.

Dienophil-Komponente

Reaktivität, Substituenteneffekte

Literatur:

\[
\text{Reaktivität} \sim \frac{1}{E_{\text{HOMO}}(\text{Dien}) - E_{\text{LUMO}}(\text{Dienophil})} + \frac{1}{E_{\text{HOMO}}(\text{Dienophil}) - E_{\text{LUMO}}(\text{Dien})}
\]

\[
= \frac{1}{\Delta E_1} + \frac{1}{\Delta E_2} \sim \frac{1}{E_{\text{HOMO}} - E_{\text{LUMO}}}
\]

Der geringste HOMO-LUMO-Abstand liefert den größten Beitrag.
Einfluß von Substituenten auf die Lage der Grenzorbitale

X-Substituenten

+I-, +M-Effekt, z.B. Alkyl, OH, NR₂, heben HOMO und LUMO von Dien und Dienophil an.

Z-Substituenten

-I-, -M-Effekt, z.B. CN, NO₂, CH=O, CR=O, CO₂R,.... senken HOMO und LUMO von Dien und Dienophil ab.

C-Substituenten

Konjugation, z.B. -HC=CH₂, Ph, ...

heben HOMO von Dien und Dienophil an,

senken LUMO von Dien und Dienophil ab.

Fig. 4-46 Frontier orbital energies and coefficients of olefins and dienes. Energies are typical values for each class of olefin and diene.⁴⁹(1 eV = 23 kcal = 96.5 kJ)

Normale Diels-Alder-Reaktion

hohe Reaktivität bei X- und C-Substituenten an Dien,
Z- und C-Substituenten an Dienophil

Beispiele:

\[
\text{R} = \text{H} \quad 78\% \text{ Ausb. in } 17 \text{ h bei } 165 \degree \text{C}, 900 \text{ atm.}
\]

\[
\text{R, R} = \text{CO-O-CO} \quad 100 \% \text{ Ausb. in } 24 \text{ h bei } 20 \degree \text{C}
\]

endo-Addukt,
stabile Form des
Cyclopentadiens

Relative
Reaktionsgeschw.

\[
1 \
12.6 \
5.9 \times 10^4 \
4.6 \times 10^8
\]
Diels-Alder-Reaktion mit inversem Elektronenbedarf
hohe Reaktivität bei Z- und C-Substituenten am Dien
X- und C-Substituenten am Dienophil
Beispiele?

Regiochemie der Diels-Alder-Reaktion
Außer der Energie werden durch Substituenten auch die Koeffizienten der FMOs von Dien und Dienophil beeinflusst.
Die Regiochemie richtet sich dann nach der größeren Überlappung der beiden wichtigsten Grenzorbitale, dabei gilt, dass die paarweise WW von zwei großen und zwei kleines Orbitalen günstiger ist als diejenige von großen und kleinen:
groß x groß + klein x klein >> 2 x groß x klein
Beispiele:
1.) C-Substituenten

\[\text{Ph} + \text{Ph} \rightarrow \text{Ph} + \text{Ph} \]

Ph = C-Substituent
Wichtigste Kombination: HOMO(Dien) x LUMO(Dienophil)
2.) C- und Z-Substituent

\[
\begin{align*}
\text{CHO} & \quad \text{CHO} \\
\text{CHO} & \quad \text{CHO}
\end{align*}
\]

Regiospezifische Reaktion

3.) X- und Z-Substituent

\[
\begin{align*}
\text{EtO} & \quad \text{CO}_2\text{Me} \\
\text{CO}_2\text{Me} & \quad \text{CO}_2\text{Me}
\end{align*}
\]

Regiospezifische Reaktion

Regiochemie der Paterno-Büchi-Reaktion

Photocycloaddition von Aldehyden und Ketonen mit Alkenen zu Oxetanen.

\[
\begin{align*}
\text{CHO} & \quad \text{CHO} \\
\text{CHO} & \quad \text{CHO}
\end{align*}
\]

1.) \(n \rightarrow \pi^*\) - Anregung des Ketons

2.) \(S_1 \rightarrow T_1\) Singulett-Triplett-Umwandlung durch Intersystem Crossing.

Bei aliphatischen Ketonen reagiert der \(S_1\)-Zustand.
5.4 1,3-Dipolare Cycloaddition

Literatur:

[4+2]-Cycloaddition
Wichtige Methode für die Synthese von Fünfringheterocyclen!
4π-Komponente ist ein 1,3-Dipol bzw. kann als 1,3-Dipol formuliert werden.
Beispiel: Diazomethan

\[\text{Acrylester cycl. Azoverbindung} \]

Regiochemie folgt auch Koeffizienten der FMOs
Pericyclische Reaktion: \([4\pi_s + 2\pi_s]\)

Weitere 1,3-Dipole:
Azide \(\text{Ph}-\text{N}=\text{N}^+=\text{N}^- \leftrightarrow \text{Ph}-\text{N}^-\text{N}=\text{N}^+\)
Nitriloxide: \(\text{R}-\text{C}^+=\text{N}=\text{O}^-\)
Nitrilimine \(\text{R}-\text{C}^+=\text{N}=\text{N}^-=\text{R}\)
\(\text{N}_2\text{O}: \text{N}^+=\text{N}=\text{O}^-\)
Ozon \(\text{O}^+=\text{O}=\text{O}^-\)

Tabelle s. Fleming S. 148.
6. Sigmatrope Umlagerungen

Literatur:
Fleming S. 98

Bei einer sigmatropen Umlagerung wandert eine σ-Bindung (also ein Substituent) über ein konjugiertes System an einen neuen Platz. Z.B. kann eine C-H-Bindung über ein Dien wandern:

\[
\begin{array}{c}
\text{H} \\
\text{[1,5]-H} \\
\text{H}
\end{array}
\]

Von dieser Reaktion ist bekannt, dass sie suprafacial verläuft: Der Wasserstoff bleibt auf derselben Seite des Diens:

\[
\begin{array}{c}
\text{Me} \\
\text{D} \\
\text{Me} \\
\text{Et}
\end{array} \xrightarrow{250 \, ^\circ \text{C}}
\begin{array}{c}
\text{Me} \\
\text{D} \\
\text{Me} \\
\text{Et}
\end{array}
\]

[1,5]-suprafacial
Die Reaktion kann als eine Cycloaddition der C-H-σ-Bindung an die π-Orbitale des Diens gedeutet werden: HOMO(σ_C\text{H}) \leftrightarrow LUMO(Dien).
Wenn das H-Atom um fünf Bindungen verschoben wird, muss die UL suprafacial erfolgen. Nur dann können auch die π-Bindungen konzertiert wandern.

Die Umlagerung findet z.B. beim Cyclopentadien schon bei Raumtemperatur statt:

\[
\begin{array}{c}
\text{R} \\
\text{H}
\end{array} \xleftrightarrow{} \begin{array}{c}
\text{R} \\
\text{H}
\end{array} \xleftrightarrow{} \begin{array}{c}
\text{R} \\
\text{H}
\end{array} \xleftrightarrow{} \text{u.s.w.}
\]

Wird das Dien durch eine einfache π-Bindung ersetzt, erkennt man an den FMOs, dass bei der Umlagerung der Wasserstoff auf die andere Seite wandern müsste, die Verschiebung also antarafacial wäre.

[1,3]-antarafacial
[1,3]-suprafaciale Verschiebung unter Inversion der Konfiguration. Beispiel:

Die [3,3]-sigmatrope Umlagerung (Cope-Umlagerung) kann als eine [4+2]-Cycloaddition betrachtet werden. Sesselförmiger ÜZ. Supra/suprafaciale Reaktion

Die [3,3]-sigmatrope Umlagerung (Cope-Umlagerung) kann als eine [4+2]-Cycloaddition betrachtet werden. Sesselförmiger ÜZ. Supra/suprafaciale Reaktion

C2-Achse
Entartete Cope-Umlagerung, Moleküle mit fluktuierender Struktur

\[
\begin{array}{c}
\text{cis-Divinylcyclopropan ist nicht beständig}
\end{array}
\]

Geschwindigkeitskonstante bei 25 °C: \(k = 3.4 \times 10^3 \text{ sec}^{-1} \)

\(^1\text{H-NMR:} > 80 \, ^\circ\text{C}: 1 \text{ Signal,} < -80 \, ^\circ\text{C: Spektrum der fixierten Struktur.} \)

Synthese von Bullvalen.

Übersicht:
Claisen-Umlagerung (= Oxa-Cope-UL)

\[
\begin{align*}
\text{O} & \quad \rightarrow \\
\text{O} & \quad \rightarrow
\end{align*}
\]

Allyl-vinylether

\[
\begin{align*}
\text{O} & \quad \text{200 °C} \\
[3,3] & \\
\text{O} & \quad \rightarrow \\
\text{O} & \quad \rightarrow
\end{align*}
\]

Allyl-phenylether

\[
\begin{align*}
\text{2-Allylphenol}
\end{align*}
\]

Fischer Indol-Synthese

\[
\begin{align*}
\text{R} & \quad \text{ZnCl}_2 \\
[3,3] & \\
\text{R} & \quad \rightarrow \\
\text{R} & \quad \rightarrow
\end{align*}
\]

- **H^+**
- **- H^+**

\[
\begin{align*}
\text{R} & \quad \text{NH}_3 \\
\text{NH}_2 & \quad \rightarrow \\
\text{R} & \quad \rightarrow
\end{align*}
\]
Benzidin-Umlagerung

Supra/suprafaciale [5,5]-sigmatrope Umlagerung.

\[
\begin{align*}
\text{Hydrazobenzol} & \quad \xrightarrow{\text{H}_2\text{SO}_4} \quad \text{Benzidin} \\
\text{Ph} \quad \text{N} \quad \text{N} & \quad \text{H} \quad \text{Ph} \quad \xrightarrow{2 \text{H}^+} \quad \text{H}_2\text{N} \quad \text{Ph} \quad \text{N} \quad \text{N} \quad \text{H} \quad \text{Ph} \\
\text{NH}_2 \quad \text{NH}_2 & \quad \xrightarrow{[5,5]} \quad \text{H}_2\text{N}^+ \quad \text{Ph} \quad \text{N} \quad \text{N} \quad \text{H} \quad \text{Ph} \\
\end{align*}
\]

Woodward-Hoffmann-Regeln für sigmatrope Umlagerungen:

<table>
<thead>
<tr>
<th>A. Ordnung [1,j]</th>
<th>1+j supra/Retention</th>
<th>supra/Inversion</th>
<th>antara/Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>4n</td>
<td>verboten</td>
<td>erlaubt</td>
<td>erlaubt</td>
</tr>
<tr>
<td>4n+2</td>
<td>erlaubt</td>
<td>verboten</td>
<td>verboten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Ordnung [i,j]</th>
<th>i+j supra/supra</th>
<th>supra/antara</th>
<th>antara/antara</th>
</tr>
</thead>
<tbody>
<tr>
<td>4n</td>
<td>verboten</td>
<td>erlaubt</td>
<td>verboten</td>
</tr>
<tr>
<td>4n+2</td>
<td>erlaubt</td>
<td>verboten</td>
<td>erlaubt</td>
</tr>
</tbody>
</table>
7. Aromatizität

7.1 Aromatischer Charakter

Verschiedene Bedeutung: Geruch, elektrophile Substitution statt Addition NMR-Ringstrom
Zweckmäßige Definition: Cyclisch-konjugiertes System, das stabiler ist als die stabilste mesomere Grenzform, d.h. positive Resonanzenergie
Delokalisierungsenergie der π-Elektronen DE in der HMO-Methode (problematisch wegen Bezugsstruktur)

Dewar-Resonanzenergie DRE [in β]

<table>
<thead>
<tr>
<th>Eπ(HMO)</th>
<th>DE Hückel</th>
<th>Δ</th>
<th>DRE Dewar</th>
</tr>
</thead>
<tbody>
<tr>
<td>C=C</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=C-C≡C</td>
<td>4.48</td>
<td>4.48-2x2.00 = 0.48</td>
<td>-0.48</td>
</tr>
<tr>
<td>C=C-C≡C≡C</td>
<td>7.00</td>
<td>7.00-3x2.00 = 1.00</td>
<td></td>
</tr>
<tr>
<td>C=C-C≡C≡C≡C</td>
<td>9.52</td>
<td>9.52-4x2.00 = 1.52</td>
<td>0.14</td>
</tr>
</tbody>
</table>

DRE: berücksichtigt partiellen Doppelbindungscharakter der Einfachbindungen in cycl.-konj. Systemen. C(sp^2)-C(sp^2) ≠ C(sp^3)-C(sp^3)

Cyclohexatrien: Eπ' = 3xHC=CH + 3xHC-CH = 3x2.07β + 3x0.47β = 7.61β
Benzol: DRE = 8.00β - 7.61β = 0.39β Aromat

Cyclobutadien
Eπ' = 2x2.07β + 2x0.47β = 5.08β
DRE = -1.08β Antiaromat

Cyclooctatetraen (COT)
Eπ' = 4x 2.07β + 4x0.47β = 10.16β
DRE = -0.50β Anti-Nichtaromat

DRE > 0 Aromat
DRE < 0 Antiaromat
DRE = 0 Nichtaromat
Mesomerieenergie des Benzols aus Hydrierwärme: 150 kJ/mol

7.2 Eigenschaften cyclisch konjugierter Verbindungen

Benzol

Elektrophile Substitution bevorzugt gegenüber Addition

Photoisomerisierungen (s. Photochemie)

CC 139.8 pm
CH 108 pm
(C-C: 153.6 pm;
C=C: 133.7 pm)

Valenzisomere des Benzols C₆H₆, (CH)₆

Fulven
Benzvalen
Bicyclohexadien
Prisman
3,3-Bi-cyclopropenyl

kein = Hückel-Benzol
(CH)₆! = Dewar-Benzol
= Ladenburg-Benzol
= Claus-Benzol

Zur Photochemie von Benzol siehe nächstes Kapitel (Seite 68?)

Cyclooctatetraen (COT)

Darstellung

\[
\begin{array}{c}
\text{N} \\
\text{O}
\end{array} \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \text{Ni(CN)₂} \quad \text{4 C₂H₂}
\]

Aus Pseudopelletierin (Willstätter 1911)
Aus Acetylen (Reppe 1942)

1 g in 8 Jahren
gelbe Flüssigkeit, Sdp. 142-143 °C
Hydrierwärme von COT: -410 kJ/mol
Mesomerieenergie: 96x4 – 410 = -26 kJ/mol ~ Anti-/Nichtaromat
Struktur: EB, Röntgen

148 pm

134 pm
Konformative Beweglichkeit (NMR, Anet)

Übersicht:

\[
\begin{align*}
\text{Bindungsverschiebung: } & \Delta H^* = 62.3 - 66.1 \text{ kJ/mol} \\
\text{Ringinversion: } & \Delta H^* = 45.6 - 50.6 \text{ kJ/mol}
\end{align*}
\]

Beide Übergangszustände sind planar, mit lokalisierten Doppelbindungen um ca. 17 kJ/mol stabiler als mit delokalisierten Bindungen.

\[\Delta \Delta H^* \approx 17 \text{ kJ/mol} \equiv \text{DRE} \neq \text{DE nach HMO}\]

Chemisches Verhalten: ~ Polyen

Valenztautomerie, Diels-Alder-Reaktion: nur das bicycl. Isomere reagiert

Reduktion 10\pi-System, aromatisch
Cyclobutadien

extrem instabil, reaktiv

\[
\begin{align*}
\text{Fe(CO)}_3 & \xrightarrow{\text{hv}} \text{CO}_2 \\
\text{Ce(IV)} & \xrightarrow{\text{Zn}} \text{Br} \\
\end{align*}
\]

Dimerisiert, kann abgefangen werden, z.B. mit Cyclopentadien

Struktur: rechteckig

relativ geringe Unterschiede Tetrahedran

G. Maier 1976

Einfluss der t-Bu-Gruppen.

Literatur:
G. Maier, Angew. Chem. 1988, 100, 317-341: Tetrahedran und Cyclobutadien (Übersichtsartikel)
Annulene

1H-NMR

[18]-Annulene, diatope Verbindung = 4n+2-System

![Diagram of annulene molecule]

Innere H-Atome: 6 H bei $\delta = 2.99$ ppm
Äußere H-Atome: 12 H bei $\delta = 9.28$ ppm
Diamagnetischer Ringstrom, Aromat

4n-Annulene sind nicht paramagnetisch
Der Jahn-Teller-Effekt bewirkt eine Verzerrung des Moleküls und damit eine Aufhebung der paarweise Entartung von MOs.

![Diagram of Jahn-Teller effect]

Triplett-Diradikal paramagnetisch
Singulett diamagnetisch
Energiedifferenz LUMO-HOMO ist viel kleiner als bei 4n +2-Systemen

14π-Elektronen = 4n+2-System, diatrop
Ringprotonen $\delta = 8.0 - 8.7$ ppm
CH$_3$- " $\delta = -14.3$ ppm

Dianion = 16π-Elektronen = 4n-System, paratrop
Ringprotonen $\delta = -3.2$ bis -14.0 ppm
CH$_3$- " $\delta = +2.1$ ppm
7.3 Das Möbius-Hückel-Konzept

Die Woodward-Hoffmann-Regeln zeigen bei den elektrocyclischen Reaktionen, bei den Cycloadditionen sowie bei den sigmatropen Umlagerungen entgegengesetztes Verhalten für $4n$ und $(4n+2) \pi$-Elektronensysteme. Dies legt die Vermutung nahe, dass hier aromatisches und antiaromatisches Verhalten im Spiel sein könnte.

Nach einem von Dewar und Zimmerman entwickelten Konzept verlaufen thermische pericyclische Reaktionen über einen aromatischen Übergangszustand.

Cyclisch-konjugierte Systeme mit einer geraden Anzahl von Knotenebenen (Vorzeichenwechsel der AOs, antibindende Wechselwirkungen) heißen Hückel-Systeme.

Hückel-Systeme mit $4n+2 \pi$-Elektronen sind aromatisch, mit $4n \pi$-Elektronen antiaromatisch.

Beispiele:

Cyclobutadien: 4π-Elektronen, Hückel-antiaromatisch

![Cyclobutadien Diagramm](image1)

Knotenebenen: 0, 2, 4

Benzol: 6π-Elektronen, Hückel-aromatisch

![Benzol Diagramm](image2)

Knotenebenen: 0, 2, 2, 4, 4, 6

Literatur:
Lowry-Richardson, S. 656
Harris-Wamser, S. 70
Carey-Sundberg, S. 483
March, S. 847
Cyclisch-konjugierte Systeme mit einer ungeraden Anzahl Knotenebenen (Vorzeichenwechsel der AOs, antibindende Wechselwirkung) werden als Möbius-Systeme bezeichnet. Sie ähneln einer Möbius-Schleife.

Normale Schleife Möbius-Schleife
Innen- ≠ Außenseite Innen- = Außenseite

Möbius-Systeme mit $4n\pi$-Elektronen sind aromatisch, mit $4n+2\pi$-Elektronen antiaromatisch.

Beispiele:
Elektrocyclische Reaktion
a) Konrotatorisch

4 π-Elektronen, 3 Knotenebenen, Möbius-System, aromatisch, erlaubt

b) Disrotatorisch

4 π-Elektronen, 2 Knotenebenen, Hückel-System, antiaromatisch, verboten
Cycloadditionen

a) [4+2]-Cycloaddition

Hückel-System, aromatisch (2 Knotenebenen)

HOMO LUMO

[4\pi_s + 2\pi_s]

b) [2+2]-Cycloaddition

Möbius-System, aromatisch (1 Knotenebene)

HOMO LUMO

[2\pi_s + 2\pi_s]

Sigmatrope Umlagerung

[1,3]-H-Verschiebung (4n-Elektronensystem)

a) antiharafacial

Möbius-System

(1 Knotenebene)

aromatisch erlaubt

b) suprafacial

Hückel-System

(2 Knotenebenen)

antiaromatisch verboten
Inhaltsübersicht:

1. Literatur
2. Jablonski-Diagramme und Molekülzustände
3. Photochemie
 3.1 Übersicht
 3.2 Primärprozesse
 3.3 Sekundärprozesse
 3.4 Experimentelles
 3.5 Photosensibilisierung
 3.6 Moleküle in elektronisch angeregten Zuständen
4. Photochemie organischer Verbindungen
 4.1 Übersicht
 4.2 Photochemie von Alkenen
 4.3 Photochemie von Azo-Verbindungen
 4.4 Photochemie von Carbonyl-Verbindungen
 4.5 Umlagerungen
 4.6 Photooxidationen mit Singulett-Sauerstoff
 4.7 Chemilumineszenz

1. Literatur
2. Jablonski-Diagramme und Molekülzustände

Energieschema für photochemische Prozesse

Vereinfachtes Jabłoński-Diagramm

A = Absorption, Anregung,

Emissionsprozesse: F = Fluoreszenz, P = Phosphoreszenz

Strahlungslose Prozesse: IC = innere Umwandlung (internal conversion),
ISC = Interkombinationsübergänge (intersystem crossing),
VR = Vibrationsrelaxation

Vereinfachtes Jabłoński-Diagramm

A = Absorption, Anregung,

Emissionsprozesse: F = Fluoreszenz, P = Phosphoreszenz,

Strahlungslose Prozesse: IC = innere Umwandlung (internal conversion),
ISC = Interkombinationsübergänge (intersystem crossing),
VR = Vibrationsrelaxation

(M. Klessinger, J. Michl, Lichtabsorption und Photochemie organischer Moleküle, VCH, Weinheim 1990.)
Lebensdauer elektronisch angeregter Zustände

Kinetik monomolekularer photophysikalischer Prozesse

Geschwindigkeitskonstanten der verschiedenen photophysikalischen Prozesse

Jabloński-Diagramm a) von Benzol und b) von 1-Chlornaphthalin

Lebensdauer einiger angeregter Zustände

<table>
<thead>
<tr>
<th>Molekül</th>
<th>Halbwertszeit / s (Singulett, 25°C, Lösung)</th>
<th>Halbwertszeit / s (Triplett, -196°C, Matrix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyren</td>
<td>4.5×10^{-7}</td>
<td>0.5</td>
</tr>
<tr>
<td>Benzol</td>
<td>3×10^{-8}</td>
<td>6.3</td>
</tr>
<tr>
<td>Biphenyl</td>
<td>1.6×10^{-8}</td>
<td>4.6</td>
</tr>
<tr>
<td>Benzophenon</td>
<td>5.0×10^{-12}</td>
<td>6.0×10^{-3}</td>
</tr>
<tr>
<td>Aceton</td>
<td>2.0×10^{-9}</td>
<td>6.0×10^{-4}</td>
</tr>
</tbody>
</table>
3. Photochemie

Als Photochemie (von griech.: phos = Licht) bezeichnet man ein Teilgebiet der Chemie, das sich mit elektronisch angeregten Molekülen befasst. Im allgemeinen werden hierzu die Moleküle durch passende elektromagnetische Strahlung des Wellenlängenbereichs 100–1000 nm (ultraviolette Strahlung, Licht, Infrarotstrahlung) angeregt. Es können aber auch elektronisch angeregte Moleküle durch chemische Prozesse gebildet werden, wozu der Begriff "Photochemie ohne Licht" eingeführt wurde (s. unten).

Wieviel Licht absorbiert werden kann, wird durch das Lambert-Beersche Gesetz beschrieben. Das absorbierte Licht führt längst nicht in allen Fällen zu chemischen Reaktionen; oft wird es lediglich in Wärme umgewandelt oder als Lumineszenzstrahlung anderer Wellenlänge innerhalb von 10^{-10} bis 10^{-7} s nach Anregung (Fluoreszenz) oder später (Phosphoreszenz) zurückgestrahlt. Häufig sind die absorbierten Lichtquanten zu energiearm, um direkt eine chemische Reaktion auszulösen; diesen Fall beobachtet man bei farbigen Stoffen; so absorbieren z. B. blaugrüne Farbstoffe rotes Licht, aber für einen chemischen Vorgang reicht diese Strahlungsenergie im allgemeinen nicht aus. Dennoch lassen sich viele Farbstoffe, sofern sie Sensibilisator-Eigenschaften aufweisen, für photochemische Reaktionen ausnutzen (s. unten).

Lambert-Beersches Gesetz

\[E = \log \left(\frac{I_0}{I} \right) = \varepsilon \cdot c \cdot d \]

Extinktion, \(\varepsilon \) Extinktionskoeffizient, \(c \) Konzentration, \(d \) Schichtdicke

Zusammenhang zwischen Wellenlänge und Anregungsenergie:

\[\Delta E = h \nu = 1.196 \times 10^5 / \lambda \text{ [kJ mol}^{-1}] \]

\(\lambda \) in nm

Die Zahl der bei photochemischen Prozessen umgesetzten Moleküle ist (bei Betrachtung des Primärvorgangs und Außerachtlassung von häufig sich anschließenden, sekundären chemischen Reaktionen) proportional der Zahl der absorbierten Lichtquanten. Die Quantenausbeute \(\Phi_j \) eines Prozesses \(j \) ist definiert als die Zahl \(n_A \) der Moleküle A, bei denen dieser Prozess abläuft, dividiert durch die Zahl \(n_Q \) der absorbierten Lichtquanten: \(\Phi_j = n_A / n_Q \).
3.2 Primärprozesse

Während des nur \(10^{-15}\) s dauernden Absorptions- und Anregungsprozesses ändern sich die relativen Kernabstände nicht wesentlich (Franck-Condon-Prinzip), doch müssen sich diese neu einschwingen, nachdem das Elektron sein kernferneres Orbital eingenommen hat. Vom Absorptionsprozess herrührende, überschüssige Schwingungsenergie geben die Moleküle unter Übergang in den \(S_1\)-Zustand an die Umgebung (z. B. das Lösungsmittel) ab (Relaxation). Damit sind die Primärprozesse abgeschlossen.

Elektronische Anregungsenergien

<table>
<thead>
<tr>
<th>Molekül</th>
<th>Anregung</th>
<th>Wellenlänge (\lambda_{\text{max}}) / nm</th>
<th>(\Delta E) kJ mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethan</td>
<td>(\sigma \rightarrow \sigma^*)</td>
<td>150</td>
<td>798</td>
</tr>
<tr>
<td>Ethan</td>
<td>(\pi \rightarrow \pi^*)</td>
<td>190</td>
<td>630</td>
</tr>
<tr>
<td>1,3-Butadien</td>
<td>(\pi \rightarrow \pi^*)</td>
<td>220</td>
<td>544</td>
</tr>
<tr>
<td>Benzol</td>
<td>(\pi \rightarrow \pi^*)</td>
<td>280</td>
<td>427</td>
</tr>
<tr>
<td>Naphthalin</td>
<td>(\pi \rightarrow \pi^*)</td>
<td>320</td>
<td>374</td>
</tr>
<tr>
<td>Anthracen</td>
<td>(\pi \rightarrow \pi^*)</td>
<td>380</td>
<td>315</td>
</tr>
<tr>
<td>Aceton</td>
<td>(n \rightarrow \pi^*)</td>
<td>273</td>
<td>438</td>
</tr>
<tr>
<td>Aceton</td>
<td>(\pi \rightarrow \pi^*)</td>
<td>187</td>
<td>640</td>
</tr>
<tr>
<td>Benzophenon</td>
<td>(n \rightarrow \pi^*)</td>
<td>340</td>
<td>460</td>
</tr>
<tr>
<td>Benzophenon</td>
<td>(\pi \rightarrow \pi^*)</td>
<td>260</td>
<td>352</td>
</tr>
</tbody>
</table>
3.3 Sekundärprozesse

Vereinfachtes Jabloński-Diagramm: A = Absorption, Anregung, F = Fluoreszenz, P = Phosphoreszenz, VR = Vibrationsrelaxation, IC = innere Umwandlung (internal conversion), ISC = Interkombinationsübergänge (intersystem crossing)

metastabler Zustand, dessen relativ lange Lebensdauer dadurch zu erklären ist, dass es sich bei $T_1 \rightarrow S_0$ um einen verbotenen Übergang handelt.

3.4 Experimentelles

Die Mehrzahl der photochemischen Reaktionen wird in Lösungen durchgeführt, doch sind Anregungs- und Folgeprozesse prinzipiell auch in gasförmiger und fester Phase möglich.

3.5 Photosensibilisierung

Eine weitere Möglichkeit, seine Anregungsenergie abzugeben, besteht für ein Molekül in der Energieübertragung auf ein anderes Molekül, dessen Anregungsenergie kleiner sein muss als die des angeregten Donatormoleküls. Siehe Abschnitt 3.5

Wenn die Akzeptormoleküle die soeben aufgenommene Anregungsenergie des Donators (Sensibilisators) durch strahlungslose Desaktivierung unwirksam machen, nennt man sie Löscher (Quencher). Technische Anwendung finden derartige Löschprozesse in Licht- und Sonnenschutzmitteln.

Übertragung elektronischer Energie von einem angeregten Molekül auf ein nicht angeregtes.

$$A^* + B \rightarrow A + B^*$$

Beispiel:

Mischung aus Naphthalin und Benzophenon bestrahlt mit $\lambda = 366$ nm, nur Benzophenon absorbiert, aber das Phosphoreszenzspektrum des Naphthalins wird beobachtet:

$$[\text{Ph}_2\text{CO}]^* + C_{10}H_8 \rightarrow \text{Ph}_2\text{CO} + [C_{10}H_8]^* \quad \Delta H = -33 \text{ kJ mol}^{-1}$$
Ph₂CO C₁₀H₈
S₁ 309 kJ mol⁻¹ 380 kJ mol⁻¹
T₁ 288 255

Erlaubte Tripplett-Triplett-Energieübertragung
Elektronen-Austausch, direkter Kontakt zwischen den Molekülen
Nützlicher Energieübertragungs-Mechanismus.
Häufig ist die direkte Anregung eines Moleküls $S₀ \rightarrow T₁$ nicht möglich.

Tripplett-Energie einiger Photosensibilisatoren

<table>
<thead>
<tr>
<th></th>
<th>$T₁ [kJ \text{ mol}^{-1}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzol</td>
<td>351</td>
</tr>
<tr>
<td>Acetophenon</td>
<td>335</td>
</tr>
<tr>
<td>Benzophenon</td>
<td>288</td>
</tr>
<tr>
<td>Phenanthen</td>
<td>260</td>
</tr>
<tr>
<td>Anthracen</td>
<td>178</td>
</tr>
</tbody>
</table>
3.6 Moleküle in elektronisch angeregten Zuständen

Struktordaten einiger Moleküle in verschiedenen elektronischen Zuständen. (Bindungslängen in pm.)

(P. Rademacher, Strukturen organischer Moleküle, Verlag Chemie, Weinheim 1987.)
4 Photochemie organischer Verbindungen

4.1 Übersicht
Die organische Photochemie hat in den letzten 30 Jahren, im Hinblick auf präparativ nutzbare Reaktionen in der organischen Synthese, eine rasante Entwicklung genommen. Die Grundlagen der organischen Photochemie liegen in den photophysikalischen Prozessen Absorption ($n \rightarrow \pi^*$-, $\pi \rightarrow \pi^*$-Anregung), Emission und Energieübertragung.

Beispiele für photochemische Reaktionen:
- Dimerisierung Alkenen
- cis-trans-Isomerisierung von Stilbenen
- elektrocyclische Reaktionen von Di- und Trienen
- Di-\(\pi\)-Methan-Umlagerung
- photochemische Fries-Umlagerung
- Photoadditionen von Singulett-Sauerstoff an Alkene und Diene

Einen großen Umfang nimmt die Photochemie der Carbonyl-Verbindungen ein.

Barton-Reaktion

![Barton-Reaktion](image)

Die organische Photochemie hat auch für industrielle Verfahren Bedeutung erlangt. So sind die photolytisch initierte radikale Halogenierung (Chlorierung, Sulfochlorierung), Gasphaseninitrierung, Nitrosierung (Oximierung) von Alkanen und Cycloalkanen wichtige industrielle Grundverfahren.
Photochemische Reaktionen organischer Verbindungen

<table>
<thead>
<tr>
<th>Photolyse organischer Moleküle (Kap. 3.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norrish-Typ-I Reaktion (Kap. 3.2.1, 5.1.1, 5.2.2.1, 7.1.4.2, 7.5, Versuch 3)</td>
</tr>
<tr>
<td>$R_2CH \cdot C \cdot CR_1 \cdot CHR_2 \xrightarrow{hv} R_2CH \cdot C \cdot CR_1 \cdot CHR \xrightarrow{O} R_2CH \cdot CR_2 \cdot CHR_2 + CO \rightarrow R_2CH \cdot CHO + R_2C = C$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Norrish-Typ-II Reaktion (Kap. 3.2.2, 5.1.1, 7.1.4.2, Versuch 5) - vgl. auch Yang-Cyclisierung (Kap. 3.2.2) und Photoenolisierung (Kap. 3.4.4)</td>
</tr>
<tr>
<td>\xrightarrow{hv}</td>
</tr>
<tr>
<td>\xrightarrow{hv}</td>
</tr>
<tr>
<td>\xrightarrow{hv}</td>
</tr>
</tbody>
</table>

Photoredoxreaktionen mit Photosensibilisatoren und Halbleitern (Kap. 4.4.3, 4.4.5, 4.5.5, 5.1.2, 5.2.2.1, 5.2.2.3, 5.4.3, Versuche 26-29, 31-36, 41, 43)	Photoinduzierter Energietransfer (Kap. 4.4.2, 4.4.5, 5.1.3 Versuche 21-24, 37-39, 40, 42)
PS \xrightarrow{hv} $1PS^*$ \xrightarrow{ISC} $3PS^*$	PS \xrightarrow{hv} $1PS^*$ \xrightarrow{ISC} $3PS^*$
Folgereaktionen mit $3PS^*$	$1,3PS^* + A \rightarrow PS + 1,3A^*$
Folgereaktionen mit $1,3A^*$	}

<table>
<thead>
<tr>
<th>Photoadditionen (Kap. 3.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2+2]-Cycloadditionen (Kap. 3.3.1, 4.4.2, 4.4.3, 5.1.4, 5.2.2.3, 5.3.2, 7.1.3, 7.1.5.2, Versuche 6,8)</td>
</tr>
<tr>
<td>[2+2+2]-Cycloadditionen (Kap. 3.3.2, 4.4.2, 4.4.3, Versuch 7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photoisomerisierungen (Kap. 3.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z/E)- bzw. (cis-trans)- Isomerisierungen (Kap. 4.1.2.1, 4.4.3, 4.5.1, 5.1.1, 5.1.3, 7.3.1.3, Versuche 10, 11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Homolytische Photodissoziation von CKW und FCKW (Kap. 8.4, Versuch 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Cl}_2\text{C} = \text{Cl} \xrightarrow{\text{hv}} \text{Cl}_2\text{C} \cdot + \text{Cl}\cdot)</td>
</tr>
<tr>
<td>(\text{FCl}_2\text{C} \cdot \text{Cl} \xrightarrow{\text{hv}} \text{FCl}_2\text{C} \cdot + \text{Cl}\cdot)</td>
</tr>
</tbody>
</table>

| Paterno-Büchi-Reaktion (Kap. 3.3.4, 4.4.2, Versuch 9) |
| [4+2]-Cycloadditionen (Photo-Diels-Alder) (Kap. 3.3.3, 4.4.3, Versuch 8) |

<table>
<thead>
<tr>
<th>Sigmatrope Reaktionen (Kap. 3.4.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,7]-H-Shift</td>
</tr>
</tbody>
</table>
Intramolek. Cycloadditionen und -reversionen (Kap. 3.3.1, 7.1.5.2)

\[
\text{Cycloadditionen: } \text{hv} \rightarrow \Delta \\
\text{Cycloreversionen: } \Delta \rightarrow \text{hv}
\]

Di-π-Methanumlagerungen (Kap. 3.4.1, 4.4.2, 5.1.4, 7.5)

\[
\begin{align*}
\text{A} & \quad \text{B} & \quad \text{C} & \quad \text{D} \\
\text{hv} \rightarrow & & \rightarrow & & \rightarrow \\
\text{A} & \quad \text{B} & \quad \text{C} & \quad \text{D}
\end{align*}
\]

Yang-Cylisisierung (Kap. 3.2.2, Versuch 4)

\[
\text{hv} \quad \eta = 75\%
\]

93% Enantiomeren überschüß

Barton-Reaktion (Kap. 3.4.3)

\[
\begin{align*}
\text{ONO} & \quad \text{hv} \\
\rightarrow & & \rightarrow \\
\text{O}^+ & \quad \text{NO}
\end{align*}
\]

Photo-Fries Umlagerung (Kap. 3.4.2, 5.1.1)

\[
\begin{align*}
\text{OCOR} & \quad \text{hv} \\
\rightarrow & & \rightarrow \\
\text{OH} & \quad \text{COR}
\end{align*}
\]

Elektrocyclische Umlagerung (Kap. 3.4.6, Versuch 12)

\[
\begin{align*}
\text{hv} & \rightarrow \\

\end{align*}
\]

Photochemische Radikalkettenreaktionen

Halogenierungen (Kap. 7.1.1, Versuch 13)

\[
\text{X}_2 + \text{RH} \xrightarrow{\text{hv}} \text{RX} + \text{HX}
\]

Nitrosylierung (Kap. 7.1.1)

\[
\begin{align*}
\text{Cycloadditionen: } & \text{hv} \rightarrow \\
\text{Nitrosylierung: } & \text{hv} \rightarrow \\
\end{align*}
\]

Sulfochlorierung (Kap. 7.1.1)

\[
\text{RH} + \text{Cl}_2 + \text{SO}_2 \xrightarrow{\text{hv}} \text{R} - \text{SO}_2\text{Cl} + \text{HCl}
\]

Sulfoxidation (Kap. 7.1.1)

\[
\begin{align*}
\text{RH} + \text{SO}_2 + \text{O}_2 \xrightarrow{\text{hv}} & \text{R} - \text{SO}_2 - \text{OOH} \\
\text{H}_2\text{SO}_4 + \text{R} - \text{SO}_2 - \text{OH} \xleftarrow{\text{H}_2\text{O}} & \text{SO}_2
\end{align*}
\]

Anmerkung: Die Photonitrosylierung verläuft radikalisch, ist aber keine Kettenreaktion, da \(Q<1\).
Photopolymerisationen (Kap. 5.3, Versuche 17, 18, 19)

\[n \text{CH}_2 = \text{CHR} \xrightarrow{\text{hv}} \{\text{CH}_2 - \text{CHR}\} \]

Radikalische Reaktionen in der Atmosphäre (Kap. 7.2, Versuch 14)

\[\text{NO}_2 \xrightarrow{\text{hv}} \text{NO} + \text{O} \]
\[\text{O} + \text{O}_2 \xrightarrow{\text{M}} \text{O}_3 \]
\[\text{RH} + \text{NO} + 1.5\text{O}_2 \xrightarrow{\text{hv}} \text{RCHO} + \text{NO}_2 + \text{H}_2\text{O} \]

vergleiche auch Photooxidationen in der Trophosphäre

Photoreduktionen/oxidationen (Kap. 3.5)

Photooxidationen mit molekularem Sauerstoff (Kap. 3.5.2, 4.4.1, Versuch 21)

\[\text{R}_1 \cdot \text{CH}_2 \cdot \text{OR}_2 + 3\text{O}_2 \xrightarrow{\text{hv, } \lambda < 280\text{nm}} \text{R}_1 \cdot \text{CH} \cdot \text{OR}_2 \]

Photokatalytische Oxidationen (Kap. 5.4.3, Versuch 33)

\[\text{C}_x\text{H}_y\text{O}_z\text{Cl}_w + \text{O}_2 + \text{H}_2\text{O} \xrightarrow{\text{hv, TiO}_2} x\text{CO}_2 + \frac{y}{2}\text{H}_2\text{O} + w\text{HCl} \]

Photooxidationen in der Trophosphäre (Kap. 7.2, Versuch 33)

\[\text{NO}_2 \xrightarrow{\text{hv, } \lambda < 400\text{nm}} \text{NO} + \text{O} \]
\[\text{O} + \text{O}_2 \xrightarrow{\text{M}} \text{O}_3 \]
\[\text{NO} + \text{CH}_3\text{CH} = \text{CH}_2 \xrightarrow{+1.5\text{O}_2} \text{NO}_2 + \text{CH}_3\text{CHO} + \text{HCHO} \]
\[\text{O} + \text{H}_2\text{O} \xrightarrow{} 2\text{H}_2\text{O} \]
\[\text{RH} + 2\text{NO} + \text{O}_2 \xrightarrow{} 2\text{NO}_2 + \text{RCHO} + \text{H}_2\text{O} \]

Photooxidation mit Singulettssauerstoff (Kap. 4.4.1.3, 7.4.1.2, Versuche 21, 22, 23, 39, 40)

\[3\text{O}_2 \xrightarrow{\text{hv, Sens}} \text{O}_2 \]

\[+ \text{O}_2 \xrightarrow{} \text{O} - \text{OH} \]

\[+ \text{O}_2 \xrightarrow{} \text{O} - \text{O} \]

\[+ \text{O}_2 \xrightarrow{} \text{O} \]

Photoreduktion von Farbstoffen (Kap. 4.5.5, Versuche 25, 32)

\[\text{N} \xrightarrow{\text{hv}} \text{N} \]

\[\text{N} \xrightarrow{\text{hv}} \text{N} \]
4.2 Photochemie von Alkenen

Cis/trans-Isomerisierung

\[
\begin{align*}
\text{E} & \xrightarrow{hv} \text{Z} \\
\text{hv} & \quad \pi \rightarrow \pi^* \\
313 \text{ nm} & \quad 7\% \quad 93\%
\end{align*}
\]

Photostationäres Gleichgewicht

Stilben
Verdrillung der Phenyl-Gruppen: E-Form 32°, Z-Form 43°, M. Traetteberg, ED

[2+2]-Cycloaddition
Photochemische [2π + 2π]-Cycloaddition, Beispiele siehe Pericyclische Reaktionen.

Norbornadien \quad Quadricyclan
4.3 Photochemie von Azo-Verbindungen

\[
\begin{align*}
\text{N=NR} & \quad \xrightarrow{\text{hv}} \quad \text{N=N} \quad \xrightarrow{n \rightarrow \pi^*} \quad \text{R-N}_2^- + \text{R}^- \quad \rightarrow \quad \text{R-R} + \text{N}_2
\end{align*}
\]

Verfahren zur Synthese hochgespannter Verbindungen

Beispiel: [3]-Prisman

\[
\begin{align*}
\text{N} & \quad \xrightarrow{\text{hv}} \quad \text{N} \quad \rightarrow \quad \text{anderen Produkten} & \text{- N}_2 & \quad 1.8 \%
\end{align*}
\]
4.4 Photochemie von Carbonyl-Verbindungen

\[\text{α-Spaltung, Norrish-Typ-I-Reaktion} \]

\[\begin{align*}
\text{R} & \quad \text{hv} \\
C=O & \quad \text{T} \\
\text{n} \rightarrow \pi^* & \quad \text{ISC} \\
\text{R} \quad \text{R} & \quad \text{R}^\ast + \text{R} \quad \text{C}=\text{O} \quad \rightarrow \quad \text{R} \quad \text{R} + \text{CO} \\
\text{~Diradikal} &
\end{align*} \]

Beispiel: \(R = \text{CH}_2\text{-Ph}, \text{R-R = Ph-CH}_2\text{-CH}_2\text{-Ph}, \text{Dibenzyl, 70 \%} \)

Bei cyclischen Ketonen kann sich an die \(\alpha \)-Spaltung eine intramolekulare H-Abstraktion anschließen, die zu einem offenkettigen ungesättigten Aldehyd führt.

\[\begin{align*}
\text{hv} & \quad \text{77 K} \\
\text{R} & \quad \text{R} \\
\text{C}=\text{O} & \quad \text{R}^\ast + \text{R} \quad \text{C}=\text{O} \quad \rightarrow \quad \text{R} \quad \text{R} + \text{CO} \\
\text{77 K} &
\end{align*} \]
β-Spaltung, Norrish-Typ-II-Reaktion

\[
\begin{align*}
&\text{Intramolekulare H-Abstraktion} \\
&\text{Produktverhältnis 9 : 1}
\end{align*}
\]

Paterno-Büchi-Reaktion

Je nach Orientierung werden verschiedene Konstitutions- und Stereoisomere gebildet, wobei das stabilste Diradikal die Selektivität bestimmt.
de Mayo-Reaktion

Synthese von 1,5-Diketonen aus 1,3-Diketonen

\[
\begin{align*}
R^1\text{C}\text{H}_2\text{C}\text{H}_2\text{C}_2\text{R}^2 & \quad \leftrightarrow \quad \text{C}_2\text{C}_2\text{R}^2\text{H}_2\text{C}\text{R}^2 \quad \text{hv} \quad \text{[2+2]-Photocycloaddition} \\
\text{R}^1\text{C}\text{H}_2\text{C}\text{H}_2\text{C}_2\text{R}^2 & \quad \text{Retro-Aldol-Reaktion} \quad \leftrightarrow \\
\text{R}^1\text{C}\text{H}_2\text{C}\text{H}_2\text{C}_2\text{R}^2 & \quad \text{H}_2\text{C}\text{R}^2\text{H}_2\text{C}_2\text{R}^2
\end{align*}
\]

Photoreduktion

Abstraktion von \(\alpha\)-ständigen Wasserstoff-Atomen von Alkoholen durch Ketone

\[
2 (\text{H}_5\text{C}_6)\text{C} \equiv \text{O} + \text{HO} \text{CH(CH}_3)_2 \quad \text{hv} \quad \rightarrow \\
(\text{H}_5\text{C}_6)\text{C} \equiv \text{C(C}_6\text{H}_5)\text{C} \equiv \text{O} + (\text{H}_3\text{C})\text{C} \equiv \text{O}
\]
4.5 Umlagerungen

Photochromie

Beispiel: 2-(2,4-Dinitrobenzyl)pyridin

\[
\begin{align*}
\text{2-(2,4-Dinitrobenzyl)pyridin} \\
\text{h}, 1386-1387 \text{ (hier wird eine falsche Erklärung gegeben).} \\
\text{H. Sixl, R. Warta, Chem. Phys. 1985, 94, 147-155.} \\
\text{J.-M. Lehn et al., J. Phys. Chem. 1996, 100, 16175-16186.} \\
\end{align*}
\]

Formal handelt es sich um eine 1,3-sigmatrope Umlagerung.

Photochemische Fries-Umlagerung

\[
\begin{align*}
\text{Photochemische Fries-Umlagerung} \\
\text{ArO} - C - R \xrightarrow{hv} \left[\text{ArO} \cdot + \cdot \text{COR} \right] \\
\text{Die analoge thermische Reaktion verläuft unter Lewis-Säure-Katalyse.}
\end{align*}
\]
Wichtige Methode zur Darstellung von Hydroxyarylketonen aus den Arylestern aliphatischer oder aromatischer Carbonsäuren.

Photoisomerisierungen des Benzols

Valenzisomere des Benzols

Aus dem ersten angeregten Singulettzustand bilden sich über ein Biradikal Benzvalen und Fulven, während die vom zweiten angeregten Zustand ausgehende Umwandlung zum Dewarbenzol führt. Prisman entsteht nicht direkt aus Benzol, sondern bildet sich aus dem Dewarbenzol.

\[\lambda = 205 \text{ nm} \]
\[\lambda = 254 \text{ nm} \]

Die Umwandlung von Benzol in Dewarbenzol kann formal als disrotatorischer 4π-Ringschluss aufgefasst werden. Das macht verständlich, warum sie als Grundzustandsreaktion verboten und als Photoreaktion erlaubt ist.

Die Umwandlung von Dewarbenzol in Prisman kann als $[2\pi_\text{s} + 2\pi_\text{s}]$-Cycloaddition angesehen werden. Die Bildung von Benzvalen kann als photochemische $\pi[2 + 2]$-Cycloaddition interpretiert werden, bei der sich überkreuzende σ-Bindungen entstehen.

Literatur:

Di-π-methan-Umlagerung

1,4-Diene mit Alkyl- oder Arylsubstituenten an C-3 gehen photochemisch die sog. Di-π-methan-Umlagerung ein, wobei Vinylcyclopropane entstehen. Die Reaktion verläuft über diradikale Zwischenstufen bzw. Übergangszustände.

\[\text{1,4-Diradikal} \rightarrow \text{1,3-Diradikal} \]

Eine interessante Di-π-methan-Umlagerung stellt die Umwandlung von Barrelen in Semibullvalen dar.

\[\text{Barrelen} \rightarrow \text{Semibullvalen} \]

β,γ-ungesättigte Ketone lagern unter den gleichen Bedingungen in Acylcyclopropane um:

Oxa-di-π-methan-Umlagerung
4.6 Photooxidationen mit Singulett-Sauerstoff

\[
\text{Sens} \stackrel{\text{hv}}{\longrightarrow} ^1\text{Sens}^* \stackrel{\text{ISC}}{\longrightarrow} ^3\text{Sens}^* \\
^3\text{Sens}^* + ^3\text{O}_2 \longrightarrow \text{Sens} + ^1\text{O}_2
\]

\(^1\text{O}_2\) wirkt als Dienophil bei der [4+2]-Cycloaddition. Dabei entstehen 1,2-Dioxene (Endoperoxide).

Beispiele:

\[
\text{\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1.5,0.5) -- (1,1) -- (0,1) -- cycle;
\draw (1,0) -- (1,-0.5);
\node at (0.5,0.25) {\text{O}};
\node at (0.5,0.75) {\text{O}};
\end{tikzpicture}} + ^1\text{O}_2 \longrightarrow \text{\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1.5,0.5) -- (1,1) -- (0,1) -- cycle;
\draw (1,0) -- (1,-0.5);
\node at (0.5,0.25) {\text{O}};
\node at (0.5,0.75) {\text{O}};
\end{tikzpicture}}
\]

\[
\text{\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1.5,0.5) -- (1,1) -- (0,1) -- cycle;
\draw (1,0) -- (1,-0.5);
\node at (0.5,0.25) {\text{O}};
\node at (0.5,0.75) {\text{O}};
\end{tikzpicture}} + ^1\text{O}_2 \longrightarrow \text{\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1.5,0.5) -- (1,1) -- (0,1) -- cycle;
\draw (1,0) -- (1,-0.5);
\node at (0.5,0.25) {\text{O}};
\node at (0.5,0.75) {\text{O}};
\end{tikzpicture}}
\]

Die Bildung von Hydroperoxiden aus Alkenen mit allylständigem Wasserstoff kann als eine nach einem En-Mechanismus ablaufende, konzertierte Reaktion aufgefasst werden.

\[
\text{\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1.5,0.5) -- (1,1) -- (0,1) -- cycle;
\draw (1,0) -- (1,-0.5);
\node at (0.5,0.25) {\text{O}};
\node at (0.5,0.75) {\text{O}};
\end{tikzpicture}} + ^1\text{O}_2 \longrightarrow \text{\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1.5,0.5) -- (1,1) -- (0,1) -- cycle;
\draw (1,0) -- (1,-0.5);
\node at (0.5,0.25) {\text{O}};
\node at (0.5,0.75) {\text{O}};
\end{tikzpicture}}
\]
4.7 Chemilumineszenz
Kann als Umkehrung einer photochemischen Reaktion aufgefasst werden. Ausgehend von einem energiereichen Ausgangsstoff kann mit Überwindung der entsprechenden Aktivierungsentnergie über eine (möglichst wenig) vermiedene Kreuzung die Potentialfläche eines angeregten Zustandes des Produktes erreicht werden, von wo aus durch Emission die Anregungsenergie abgegeben und der Grundzustand erreicht wird.

Beispiele
Oxidation von Luminol

![Chemical Structure]

3-Aminophthalsäurehydrazid
Luminol zeigt bei alkalischer Oxidation mit H₂O₂ sehr starke Chemilumineszenz, wird zum Nachweis von Blut, Kupfer, Eisen, Cyaniden, Peroxiden und Peroxidasen verwendet.

Literatur:

Thermolyse von 1,2-Dioxetanen

![Chemical Structure]

Biolumineszenz
Bezeichnung für das Teilgebiet der Chemilumineszenz, das sich mit der Entstehung des sog. "kalten Lichts" von Bakterien, Flagellaten (Meeresleuchten), Pilzen, Schwämmen, Quallen, Würmern, Krebsen und Fischen sowie Insekten befasst. Dabei kommt die der Aussendung von Lichtquanten vorausgehende Anregung durch eine enzymatisch gesteuerte Oxidation zustande. Am besten untersucht ist der Vorgang beim Leuchtkäfer (Glühwürmchen), bei dem zum Reaktionseintritt Luciferin, Magnesium-Ionen, ATP und Sauerstoff vorliegen müssen; das Enzym Luciferase katalysiert die Oxidation des Luciferins, wobei ein Photon ausgesandt wird. Luciferin wird zu einem α-Peroxylacton (1,2-Dioxetan-3-on) oxidiert, bei dessen Zerfall Lichtquanten ausgesandt werden. Biolumineszenz-Reaktionen werden in der Luminometrie zur Bestimmung kleinster Mengen an ATP, O₂, NAD(P) oder Ca²⁺-Ionen verwendet.
Die Luciferine der verschiedenen Organismen besitzen unterschiedliche Strukturen.

Synthesenmethoden

Inhaltsübersicht:
1. Literatur
2. Einleitung
3. Syntheseplanung
4. Methodik der Retrosynthese
5. Klassifizierung und Nomenklatur von Synthons
6. Aufbau des Kohlenstoffgerüstes durch Kombination von Synthons (Übersicht)
7. Umpolung
8. Aufbau eines C-Gerüstes
8.1 Darstellung von Alkanen
8.2 Darstellung von Alkenen
8.2.1 1,2-Eliminierung
8.2.2 Olefinierung von Carbonylverbindungen
8.2.3 Reduktive Kupplung von Carbonylverbindungen
8.3 Darstellung von Alkinen
8.4 Darstellung von 1,2-difunktionellen Verbindungen
8.5 Darstellung von 1,3-difunktionellen Verbindungen
8.6 Darstellung von 1,4-difunktionellen Verbindungen
8.7 Darstellung von 1,5-difunktionellen Verbindungen
8.8 Darstellung von 1,6- und 1,n-difunktionellen Verbindungen
8.9 Darstellung von Carbocyclen
9. Funktionelle Gruppen
9.1 Einführung funktioneller Gruppen FGA
9.2 Entfernung funktioneller Gruppen FGR
9.3 Umwandlung funktioneller Gruppen FGI
9.4 Schutz funktioneller Gruppen FGP
10. Stereochemische Kontrolle: diastereo- und enantioselektive Synthesen
10.1 Prochiralität, Prostereoisomerie, Topizität
10.2. Enantioselektive Synthesen in chiralen Solventien
10.3. Diastereoselektive Synthesen mit chiralen Reagenzien
10.4. Asymmetrische Synthese durch chirale Modifizierung des Substrats
10.5. Asymmetrische Synthese mit Hilfe chiraler Katalysatoren
10.6. Diastereosektive Synthesen
10.7 Beispiel für die mehrstufige Synthese eines Naturstoffs
11. Übungsbeispiele für Recherchen in der Beilstein-Crossfire-Datenbank

1. Literatur
2. **Einleitung**

Synthese, Definition: Darstellung einer gewünschten organischen Verbindung aus leicht zugänglichen (handelsüblichen) Substanzen.

Bedeutung der Synthese in der Organischen Chemie: Nur relativ wenige organische Verbindungen kommen natürlich in hinreichender Menge vor oder sind käuflich zu erwerben. Die meisten müssen synthetisiert werden, wenn man sie verwenden (untersuchen) will.

Aktuelles Beispiel: Konvergente Synthese von Sildenafil

Wichtig für die Synthese sind:

Synthesemethoden

Gezielte Stoffumwandlung, Reaktionen (→ Grundpraktikum, systematische Organische Chemie, Eigenschaften der Stoffklassen), Kenntnisse, Literatur, Datenbanken.

3. **Syntheseplanung**

Systematisches Auffinden eines effizienten Syntheseweges für eine Zielverbindung. Heute auch mit Hilfe von Computern möglich (→ zukünftige Entwicklung)

Kriterien:

1) geringer Zeitaufwand, möglichst wenige Stufen

2) hohe Ausbeute der einzelnen Schritte, z. B. 10 Stufen à 80 %: Gesamtausbeute 11 %

Eine konvergente Synthese ist günstiger als eine lineare:

\[
\begin{align*}
A & \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow X \\
& 5 \text{ Stufen mit je } 80 \% \text{ Ausbeute: } \\
& \text{Gesamtausbeute } 33 \%
\end{align*}
\]

\[
\begin{align*}
A & \rightarrow B & & \rightarrow C \\
D & \rightarrow E & & \rightarrow F & & \rightarrow X \\
& & & \text{Gesamtausbeute } 51 \%
\end{align*}
\]

Konvergente Synthese: Parallelarbeit an Teilabschnitten ist möglich: Teamarbeit, kein Totalverlust beim Misslingen einer Stufe, keine "Riesenansätze" wie bei einer vielstufigen linearen Synthese erforderlich

3.) einfache Durchführbarkeit, niedriger apparativer Aufwand, geringe Toxizität der Edukte, Reagenzien, Lösungsmittel, keine aufwendige (teure) Entsorgung,

4.) niedrige Kosten (wichtig für die Industrie)

Materialkosten (Edukte, Reagenzien, Lösungsmittel)
Investitionskosten (Apparaturen, Reaktoren)
Transportkosten
Personalkosten
Energiekosten
Entsorgungskosten (Abfälle, Nebenprodukte)

5.) Ggf. regio- und stereoselektive Reaktionsführung (wichtig für Naturstoffe, Pharmaka, ...
Synthese von Sildenafil (Viagra®)
Syntheseplan

```
D   E
  |   |
  B   F  G  H
  |   |
  C   A Zielverbindung
```

Synthesebaum

Einsatz von Computern

Vorwärtsstrategie
Ein bestimmtes Edukt E soll in die Zielverbindung umgewandelt werden. Wichtig für die Industrie. E ist z. B. billig und in großer Menge vorhanden, fällt als unverkäufliches Nebenprodukt an

Rückwärtsstrategie
→ Retrosynthese (retrosynthetische Analyse). Das Zielmolekül wird stufenweise in immer einfachere Moleküle zerlegt.

Synthons: Fragmente, die man bei der Retrosynthese erhält (z. B. Carbanion, Carbeniumion), müssen keine Zwischenprodukte sein. (Synthesebausteine, Corey 1967)

Reagenzien: Synthesäquivalente von Synthons
Beispiele: \(\text{CH}_3\text{-Li}, \text{CH}_3\text{-MgX} \rightarrow \text{CH}_3^- \)
\(\text{CH}_3\text{-Br} \rightarrow \text{CH}_3^+ \)
einfaches Beispiel:
a) Retrosynthetische Analyse und
b) Synthese von cis-3-Hexen-1-ol (Duftstoff frischer Gräser und Blätter)
(F. Sondheimer, JCS 1950, 877; Breitmaier/Jung OCII, S. 311).
→ Retrosynthese-Operation

\[
\begin{align*}
\text{I} & + \text{H} & \text{II} & + \text{O} \\
\text{III} & + \text{H}_2 (\text{Pd/CaCO}_3) \\
\end{align*}
\]

\[
\begin{align*}
1.) \text{NaNH}_2 & \\
2.) \text{O} \\
\end{align*}
\]

\[
\begin{align*}
\text{I} & \text{II} & \text{III} \\
\end{align*}
\]

Ethylidid Acetylen

Syntheseschritte

I:

\[
\begin{align*}
\text{C}_2\text{H}_5^+ & = \text{C}_2\text{H}_5\text{I} \\
\text{H} & \text{C} & \text{C} & \text{H} \\
\end{align*}
\]

SYNTHONS REAGENZIEN = Syntheseäquivalente
II:

\[
\begin{align*}
\text{SYNTHONS} & \quad \text{REAGENTZEN} = \text{Synthéseäquivalente} \\
\text{III:} & \\
& \text{Katalytische Hydrierung mit Lindlar-Katalysator} \\
& \text{FGI = Funktionsgruppenumwandlung (} \text{interconversion} \text{), vgl. Abschn. 9.3} \\
& \text{Schritte I und II: Aufbau des C-Gerüstes (mit einer funktionellen Gruppe)} \\
& \text{Schritt III: FGI} \\
& \text{Zusammenfassung bzw. Verallgemeinerung:} \\
& \text{Prinzip der Synthese einer organischer Verbindung} \\
& \text{Die Synthese besteht aus:} \\
1.) & \text{Aufbau des Kohlenstoffgerüstes} \\
& \text{Knüpfung von CC-Bindungen ist die wichtigste Reaktion in der organischen Chemie} \\
& \text{Methoden: s. Übungen im SS} \\
2.) & \text{Funktionelle Gruppen an den richtigen Stellen anbringen} \\
& \text{Einführung (FGA) (} \text{addition} \text{)} \\
& \text{Entfernung (FGR) (} \text{removal} \text{)} \\
& \text{Umwandlung (FGI) (} \text{interconversion} \text{)} \\
& \text{Schutz funktioneller Gruppen ("Schutzgruppen") (FGP) (} \text{protection} \text{)} \\
& \text{Methoden FGI: siehe z. B. Streitwieser/Heathcock, Anhang VIII} \\
3.) & \text{Kontrolle der Stereochemie (Regio-, Stereo-, Enantioselektivität)} \\
& \text{möglichst stereospezifische Reaktionen ausführen: } \rightarrow \text{bestimmtes Stereoisomer.} \\
& \text{Alternativ: Trennung von Isomerengemischen (z. B. Racematspaltung), Methoden} \\
\end{align*}
\]
4. Methodik der Retrosynthese

1.) Zerlegung der Zielverbindung in Synthons, retrosynthetische Zerlegung ("Antithese").
Im allgemeinen wird nur die heterolytische Spaltung von Bindungen betrachtet. Die meisten C-C-Bindungen werden durch polare Reaktionen ("ionische" Reaktionen, Elektrophil + Nucleophil) geknüpft. Demgegenüber kommt dem Aufbau des Kohlenstoffgerüstes durch Radikalreaktionen eine geringere Bedeutung zu. Deshalb werden bei der Retrosynthese i.d.R. keine homolytischen Bindungsspaltungen betrachtet. Die für die Knüpfung von C-C-Bindungen ebenfalls wichtigen pericyclischen Reaktionen (z. B. Diels-Alder), die bekanntlich nicht über polare Zwischenstufen ablaufen, können aus den polaren Spaltstrukturen der Retrosynthese hergeleitet werden:

\[\text{CO}_2\text{Me} + \text{C}^+ \text{C}^- \text{C}^+ \text{CO}_2\text{Me} \]

\[\text{CO}_2\text{Me} \]

2.) Bei der retrosynthetischen Zerlegung sollen möglichst Bindungen mit zentraler Bedeutung für den Aufbau des Moleküls gespalten werden.

3.) Bei der retrosynthetischen Zerlegung des Zielmoleküls dürfen nur solche Bindungen gespalten werden, die mit bekannten Methoden wieder geknüpft werden können.

Beispiel: 4-Methyl-3-heptanol (Pheromon) (Tietze/Eicher, S. 470)

sekundärer Alkohol, Darstellung aus Aldehyd + Grignard-Verbindung

Die Spaltung von Bindungen in Nachbarstellung zu funktionellen Gruppen ist zumeist sinnvoll.
Weg 1

\[\text{OH} \quad \text{CH}_3\text{CH}_2\text{OH} \quad \text{H}_3\text{C}^+\text{CH}_2^- + \text{HC}^-\text{HO} \quad = \text{C}_2\text{H}_5\text{MgBr} \]

\[\text{C}_2\text{H}_5\text{Br} \]

2-Methylpentanal
(nicht käuflich)

Weg 2

\[\text{OH} \quad \text{CH}^+\text{OH} \quad \text{HC}^-\text{HO} \quad = \]

\[\text{BrMg} \quad \text{CH}_2\text{OH} \quad \text{Br}_2\text{Mg} \]

Propanal
käuflich

2-Brompentan
käuflich

Weg 2 ist günstiger als Weg 1.

Synthese:

\[\text{Br} \quad \text{Mg} \quad \text{BrMg} \quad \text{BrMg} \quad \text{OH} \]
Stereochemie: Die Verbindung besitzt zwei Chiralitätszentren. Da keiner der Reaktionsschritte stereoselektiv durchgeführt werden kann, entstehen vier Stereoisomere (zwei racemische Diastereomere).

Alternative: FGI (Weg 3)

Das Keton besitzt nur noch ein C*.
Die Reduktion zum Alkohol lässt sich stereoselektiv durchführen.

Retrosynthetische Analyse des Ketons

Die direkte Alkylierung eines Ketons in α-Stellung führt zu Mehrfachalkylierung.
Das Hydrazon kann jedoch monoalkyliert werden. Außerdem kann diese Reaktion stereoselektiv durchgeführt werden. Dazu wird zunächst ein chirales Hydrazon benötigt.

(-)-(S)-1-Amino-2-(methoxymethyl)pyrrolidin = SAMP
im Handel erhältlich

E.J. Corey 1967:

Synthons: "Structural units within a molecule which are related to possible synthetic operations".

Fragmente, die man bei der Retrosynthese erhält. Retrosynthese-Spaltprodukte

Häufig wird nicht zwischen "Synthon" und "Syntheseäquivalent" unterschieden.

Retron: Kleinste Struktureinheit für die Retrosynthese der Verbindung.

Beispiel: Diels-Alder-Reaktion:

\[
\text{Retron} \quad \rightarrow \quad \text{Synthons}
\]
Beispiele für Retrons

<table>
<thead>
<tr>
<th>TGT STRUCTURE</th>
<th>RETRON</th>
<th>TRANSFORM</th>
<th>PRECURSOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ph} \ \text{Me} \ \text{CO}_2\text{t-Bu})</td>
<td>(\text{HO-C-C-C})</td>
<td>(E)-Enolate Aldol</td>
<td>(\text{PhCHO} + \text{Me-CO}_2\text{t-Bu})</td>
</tr>
<tr>
<td>(\text{Ph-C-C-C})</td>
<td>(\text{O-C-C-C})</td>
<td>Michael</td>
<td>(\text{Ph} \ \text{C}=\text{C} + \text{Me-CO})</td>
</tr>
<tr>
<td>(\text{Et}_2\text{COH})</td>
<td>(\text{EtCOH})</td>
<td>Orgmeta. Addn. to Ketone</td>
<td>(\text{Et}_2\text{CO} + \text{EtMe})</td>
</tr>
<tr>
<td>(\text{MeO}_2\text{C})</td>
<td>(\text{MeO}_2\text{C})</td>
<td>Robinson Annulation (Aldol + Michael)</td>
<td>(\text{Me}_2\text{NH} + \text{CHO} + \text{Me})</td>
</tr>
<tr>
<td>(\text{Me}_2\text{N-C-C-C})</td>
<td>(\text{N-C-C-C})</td>
<td>Mannich (Azaalldol)</td>
<td>(\text{Me}_2\text{NH} + \text{CHO} + \text{Me})</td>
</tr>
<tr>
<td>(\text{N} = \text{N})</td>
<td>(\text{N-C-C-C})</td>
<td>Double Mannich</td>
<td>(\text{CHO} + \text{MeNH}_2 + \text{Me})</td>
</tr>
<tr>
<td>(\text{Me}-\text{C}=\text{C})</td>
<td>(\text{Me}-\text{C}=\text{C})</td>
<td>Claisen Rearrangement</td>
<td>(\text{Me}-\text{C}=\text{C} + \text{MeCOX})</td>
</tr>
<tr>
<td>(\text{Fischer Indole})</td>
<td>(\text{Fischer Indole})</td>
<td>Fischer Indole</td>
<td>(\text{PhNH}_2 + \text{O})</td>
</tr>
<tr>
<td>(\text{Oxy-lactonization of Olefin})</td>
<td>(\text{Oxy-lactonization of Olefin})</td>
<td>Oxy-lactonization of Olefin</td>
<td>(\text{Me} \ \text{CO}_2\text{H})</td>
</tr>
</tbody>
</table>

Chart 2. Disconnective Transforms
Beispiele für Retrons

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>RETRON</th>
<th>TRANSFORM</th>
<th>PRECURSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aromatic Bromination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allylic Oxidation of CH₂ to C=O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allylic Oxidation by ¹Δ₂O₂, with C=C Transposition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allylic Oxidation by SeO₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sharpless Epoxidation with (R,R)-(+) DET</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cis-Addition of R₂CuMet to C=C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cis-Hydroxylation of C=C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"O" Insertion into C-H (O₃ or RuO₄)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barton Functionalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxidation of Ketones by SeO₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o-Metallation (RLi) and Carboxylation</td>
<td></td>
</tr>
</tbody>
</table>

Chart 3. Functional Group Removing Transforms
5. Klassifizierung und Nomenklatur von Synthons

Bei der Retrosynthese erfolgt zumeist Heterolyse von Bindungen. Die wichtigsten Synthons sind daher:

- **d-Synthon**: $d =$ Elektronen(paar)donor = Nucleophil = Lewis-Base = Carbanion
- **a-Synthon**: $a =$ Elektronen(paar)akzeptor = Elektrophil = Lewis-Säure = Carbeniumion

außerdem:

- **r-Synthon**: $r =$ Radikal-Synthon
- **e-Synthon**: $e =$ ungeladenes, nichtradikalisches Synthon (e für elektrocyclisch? z. B. bei Cycloaddition, solche Reaktionen können jedoch retrosynthetisch als Heterolysen behandelt werden.)

a- und d-Synthons werden bezeichnet nach der Stellung der funktionellen Gruppe relativ zum Reaktionszentrum

\[\begin{array}{c}
\text{Het} \\
\text{C}_1-\text{C}_2-\text{C}_3-\text{C}_4-\text{C}_5 \\
\text{FG}
\end{array} \]

Het = beliebiges Heteroatom

FG = funktionelle Gruppe
Beispiele für d-Synthons

<table>
<thead>
<tr>
<th>Synthon</th>
<th>Beispiel</th>
<th>Reagenz</th>
<th>FG</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^0)</td>
<td>CH(_3)-S-</td>
<td>CH(_3)-SH</td>
<td>(\text{C} \quad \text{S} \quad \text{C})</td>
</tr>
<tr>
<td></td>
<td>CH(_3)-O’</td>
<td>CH(_3)-OH</td>
<td>(\text{C} \quad \text{O} \quad \text{C})</td>
</tr>
<tr>
<td>(d^1)</td>
<td>(\equiv \text{C} \equiv \text{N})</td>
<td>KCN</td>
<td>-(\text{C} \equiv \text{N})</td>
</tr>
<tr>
<td></td>
<td>(\equiv \text{CH}_2\text{-NO}_2)</td>
<td>CH(_3)-NO(_2)</td>
<td>(\text{C} \quad \text{NO}_2 \quad \text{C})</td>
</tr>
<tr>
<td>(d^2)</td>
<td>(\equiv \text{CH}_2\text{-CHO})</td>
<td>CH(_3)-CHO</td>
<td>-(\text{CH}=\text{O})</td>
</tr>
<tr>
<td></td>
<td>(\equiv \text{C} \equiv \text{C} \equiv \text{N})</td>
<td>Li-C(\equiv \text{C} \equiv \text{C} \equiv \text{NH}_2)</td>
<td>(\text{C} \quad \text{NH}_2 \quad \text{C})</td>
</tr>
<tr>
<td></td>
<td>RO(_2\text{C}^-\text{H} \equiv \text{CO}_2\text{R})</td>
<td>RO(_2\text{C} \equiv \text{CO}_2\text{R})</td>
<td>-(\text{CO}_2\text{R})</td>
</tr>
<tr>
<td>Alkyl-d</td>
<td>(\equiv \text{CH}_3)</td>
<td>LiCH(_3)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH(_3)-Mg-Br</td>
<td></td>
</tr>
</tbody>
</table>
Beispiele für a-Synthons

<table>
<thead>
<tr>
<th>Synthon</th>
<th>Beispiel</th>
<th>Reagenz</th>
<th>FG</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₀</td>
<td>(\text{H}_3\text{C}\text{P})</td>
<td>(\text{Me}_2\text{PCl})</td>
<td>-PMe₂</td>
</tr>
<tr>
<td></td>
<td>(\text{H}_3\text{P})</td>
<td>Chlordimethylphosphin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{NO}_2^+)</td>
<td>HNO₃+H₂SO₄</td>
<td>-</td>
</tr>
<tr>
<td>a¹</td>
<td>(\text{H}_3\text{C}\text{C}^+\text{OH})</td>
<td>(\text{H}_3\text{C}\text{C}=\text{O})</td>
<td>>C=O</td>
</tr>
<tr>
<td>a²</td>
<td>(\text{H}2\text{C}^+\text{CH}{3})</td>
<td>Br-CH₂-CO-CH₃</td>
<td>>C=O</td>
</tr>
<tr>
<td>a³</td>
<td>(\text{H}_2\text{C}^+\text{O}^-)</td>
<td>H₂C=CH-CO₂R</td>
<td>-CO₂R</td>
</tr>
</tbody>
</table>

Alkylgruppen besitzen keine Funktionalität, da die funktionelle Gruppe bei der Reaktion verloren geht. Sie sind keine a¹- oder d¹-Synthons! → Alkyl-a, Alkyl-d
6. **Aufbau des Kohlenstoffgerüstes durch Kombination von Synthons (Übersicht)**

<table>
<thead>
<tr>
<th>Synthons</th>
<th>Produkt/Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl-a + Alkyl-d</td>
<td>unsubst. Kohlenwasserstoff (Alkan)</td>
</tr>
<tr>
<td>Alkyl-a + Alkyl-d¹</td>
<td>einfach substituierter KW</td>
</tr>
<tr>
<td>Alkyl-d + Alkyl-a¹</td>
<td>monofunktioneller KW</td>
</tr>
<tr>
<td>(a¹ + d¹)</td>
<td>1,2-difunktionelle Verbindung</td>
</tr>
<tr>
<td>(a¹ + d²)</td>
<td>1,3-difunktionelle Verbindung</td>
</tr>
<tr>
<td>(a² + d¹)</td>
<td></td>
</tr>
<tr>
<td>(a¹ + d³)</td>
<td>1,4-difunktionelle Verbindung</td>
</tr>
<tr>
<td>(a² + d²)</td>
<td></td>
</tr>
<tr>
<td>(a³ + d¹)</td>
<td></td>
</tr>
</tbody>
</table>
7. Umpolung
Umwandlung eines a-Synthons in ein d-Synthon und umgekehrt. Heteroatom-Austausch!

Beispiele

Alkyl-a → Alkyl-d

\[\text{C}^+ \rightarrow \text{C}^- \]

\[\delta^+ | \text{C} \rightarrow \text{Mg} \cdot \text{X} \]

\[\text{a}^1 \rightarrow \text{d}^1 \]

\[\text{R} \quad \text{HS} \rightarrow \text{SH} \quad \text{R} \quad \text{S} \rightarrow \text{S} \quad \text{R} \quad \text{H} \rightarrow \text{C}^- \]

1,3-Dithian
Thioacetal

\[\text{Ar} \quad \text{H} \quad \text{CN}^- \rightarrow \text{Ar} \quad \text{C}^- \quad \text{OH} \]

Vgl. Benzoin-Kondensation

Alkyl-d → Alkyl-a

\[\text{d}^1 \rightarrow \text{a}^1 \]

\[\text{R} \quad \text{H} \quad \text{NO}_2 \quad \text{H} \quad \text{R} \rightarrow \text{H} \quad \text{R} \]

Nef-Reaktion

\[\text{d}^2 \rightarrow \text{a}^2 \]

\[\text{R} \quad \text{H} \quad \text{O} \quad \text{Br}_2 \rightarrow \text{Br} \quad \text{R} \quad \text{R} \]

\[- \text{HBr} \quad \text{R} \quad \text{R} \]

\[\text{Br} \quad \text{R} \quad \text{R} \]
Michael-System
8. Aufbau eines C-Gerüsts

8.1 Darstellung von Alkanen
R-M + R’X + R-R’ M = Metall, X = Halogen, Wurtz-Reaktion
andere Methoden: → Lehrbücher

8.2 Darstellung von Alkenen

8.2.1 1,2-Eliminierung

\[
\begin{align*}
\text{X, Y = } & \text{H, OH, OH}_2^+, \text{OTs, Cl, Br, I, NR}_3^+, \text{SR}_2^+, \text{-O-COR,} \\
\text{E1, E2, E1}_{\text{cB}} \\
\text{Regiochemie: } & \text{Hofmann/Saytzeff} \\
\text{Stereochemie: } & \text{trans oder cis}
\end{align*}
\]

8.2.2 Olefinierung von Carbonylverbindungen (Wittig-Reaktion)
(Siehe auch: Vorlesung Organische Chemie IV, SS 2000, Zwitterionen)

\[
\begin{align*}
\text{O} & \text{Y} \\
\text{a} & \text{d} \\
\text{Synthon} \\
\text{Y = PR}_3 & \text{Wittig (1953, Nobelpreis 1979)} \\
\text{Y = PO(OR)}_2 & \text{Horner-Wadsworth-Emmons} \\
\text{Y = SiR}_3 & \text{Peterson (1968)} \\
& \text{Nur flüchtige Nebenprodukte (Sinalole)} \\
\text{Y = MoOCl bzw. MoCl}_3 & \text{Th. Kauffmann, Angew. Chem. 1984, 96, 500.} \\
& \text{Reaktion kann in Wasser oder EtOH durchgeführt werden.}
\end{align*}
\]

Wittig-Reaktion

Literatur:
Die Wittig-Reaktion ist gekennzeichnet durch: gute Ausbeute, milde Reaktionsbedingungen, Estergruppen reagieren nicht. Problem: Stereochemie

Mechanismus

\[
\begin{align*}
\text{Ph}_3\text{P} + \text{X-CH} & \rightarrow \text{Ph}_3\text{P}^+\text{CH} \rightarrow \text{Ph}_3\text{P}^-\text{CH}^+ \rightarrow \text{Ph}_3\text{P}^-\text{CH} & \text{Ylen-Form} \\
& \uparrow \uparrow \uparrow \uparrow \\
& \text{Ph}_3\text{P}^- \rightarrow \text{Ph}_3\text{P}^- \rightarrow \text{Ylid-Form} \\
\end{align*}
\]

Das 1,2-Oxaphosphetan ist eine echte Zwischenstufe, Nachweis durch \(^{31}\text{P}\)-NMR

Schritt 1 und Schritt 2: assoziativ, pseudokonzertiert, formale \([2+2]\)-Cycloaddition
Schritt 3 und Schritt 4: dissoziativ, je nach Substituenten synchron oder sukzessiv, entscheidend ist die Stabilität des P-C-Betains
Stereochemie der Wittig-Reaktion

\[
(R_1)_3P\begin{array}{c}R_2 \quad \text{H} \\
\text{H}
\end{array} + O\begin{array}{c}R_3 \quad \text{H} \\
\text{H}
\end{array} \rightarrow \begin{array}{c}R_2 \quad \text{H} \\
R_3 \quad \text{H}
\end{array} \quad \text{oder} \quad \begin{array}{c}R_2 \\
\text{H}
\end{array} \quad \begin{array}{c}R_3 \\
\text{H}
\end{array}
\]

Z oder \(E \)

Beispiele:

\[
\begin{array}{c}
\text{Ph}_{3}P\begin{array}{c}
\text{H} \\
\text{Ph}
\end{array} + O\begin{array}{c}
\text{Ph} \\
\text{H}
\end{array} \rightarrow \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array} + \begin{array}{c}
\text{Ph} \\
\text{H}
\end{array}
\end{array}
\]

Stilben \(30 \% \quad 70 \% \)

30 \% 70 \%

Relativ geringe Stereoselektivität

Einfluss auf die Stereochemie haben
die Substituenten \(R_1, R_2, R_3 \)
die Reaktionsbedingungen: Temperatur, Solvens, Salze (Lewis-Säuren)

Die Stereochemie kann sich entscheiden

a) bei der Bildung des Oxaphosphetans (d.h. im assoziativen Teil der Reaktion)

cis-Oxaphosphetan ist stabiler bei \(R_1 = \text{Ph} \rightarrow Z\)-Alken
trans-Oxaphosphetan ist stabiler bei \(R_1 = \text{C}_2\text{H}_5 \) u.ä. \(E\)-Alken

Modell betrachten!

b) beim Zerfall des Oxaphosphetans

H. J. Bestmann, Pure Appl. Chem. 1979, 51, 515:

Schritt 3 und Schritt 4 dürfen nicht synchron sein, d.h. das P-C-Betain muss relativ stabil (langlebig sein): \(R_2 = \) Elektronenakzeptorgruppen, z. B. CO_2R

Wenn das P-C-Betain im Vergleich zur inneren Rotation langlebig ist, entsteht das thermodynamisch kontrollierte Produkt.

"Salzfreie" Wittig-Reaktion (Brückner S. 315)

(1.) \(\text{NaNH}_2/\text{THF} \)

\[
\begin{array}{c}
\text{Ph}_3P \quad 1.) \quad \text{NaNH}_2/\text{THF} \\
\text{Br}^{-}
\end{array}
\]

(2.) \(R-\text{CH}=\text{O} \)

\[
\begin{array}{c}
\text{R} \quad \text{CH}_3 \\
\text{H} \quad \text{H}
\end{array}
\]

Z-Alken > 90 \%

cis-Selektivität

Das Oxaphosphetan steht nicht im Gleichgewicht mit den Edukten. Deshalb isomerisiert das primär gebildete cis-Oxaphosphetan nicht zum trans-Oxaphosphetan.
Schlosser-Variante der Wittig-Reaktion

\[
\text{Ph}_3\text{P} \quad \text{PhLi/LiBr} \quad \text{R-CH}=\text{O} \quad \text{H} \quad \text{H} \quad \text{E-Alken} \quad > 95 \%
\]

trans-Selektivität

Technische Anwendung der Wittig-Reaktion

1.) Vitamin A₁ (BASF) = Retinol, Diterpen-Alkohol mit β-Ionon-Struktur

\[
\text{Retinol-Acetat, 98%}
\]

2.) β-Carotin, Pro-Vitamin A

\[
\beta\text{-Carotin}
\]

3.) Pheromone (Bestmann)

4.) Vitamin D₃ (Inhoffen 1958)

5.) Die Synthese zahlreicher Pharmaka beinhaltet die Wittig-Reaktion als wichtige Syntheseschritte.
8.2.3 Reduktive Kupplung von Carbonylverbindungen
McMurry-Reaktion (1973)

Literatur:

Reduktion und Kupplung von Carbonyl-Verbindungen mit niedervalenten Titanverbindungen. Die Reaktion erfolgt auf der Metalloberfläche.

\[
2 \text{O} \xrightarrow{[\text{Ti}]} 2 \text{R} = \text{R} + \text{R} \quad \text{Ausbeute: } > 80 \%
\]

\([\text{Ti}] = \text{TiCl}_3 \text{ oder TiCl}_4\]
\(+ \text{Zn, Li, K, Mg, LiAlH}_4\)

\[
2 \text{R} \xrightarrow{\text{TiCl}_4/\text{Zn, THF}} 2 \text{H} \quad \text{H} = \text{R} \quad \text{H} + \text{H} \quad \text{R} = \text{CH}_2\text{-CH}_2\text{-CH}_3 \quad 3 : 1 \\
\text{CH(CH}_3)_2 \quad 6 : 1 \\
\text{C(CH}_3)_3 \quad >200 : 1
\]

Mechanismus:

\[
\text{O} \xrightarrow{[\text{Ti}]} 2 \text{O} = \text{O} \quad \xrightarrow{2x} \quad 2 \text{TiO} + \text{R} = \text{R}
\]

Die Reaktion eignet sich auch für sperrige Reste R.
Aus Diketonen werden Cycloalkene dargestellt.
Darstellung sterisch stark gehinderter Alkene

Mit der Wittig-Reaktion nicht möglich: \(R = \text{tBu} \)

Barton 1972

\[
\begin{align*}
\text{2} & \quad \text{N}_{2}\text{H}_{4} & \quad \text{Azin} & \quad \text{H}_{2}\text{S} \\
 & \quad \text{N} & \quad \text{NN} & \\
\end{align*}
\]

1,3,4-Thiadiazolidin

\[
\begin{align*}
\text{1,3,4-Thiadiazolin} & \quad \text{Pb(OAc)}_{4} \\
 & \quad \text{N} & \quad \text{NN} \\
\end{align*}
\]

- \(\text{N}_{2} \)

110 °C

Thiiran

Gesamtausbeute: 73 %

Alternative Darstellung des Thiirans:

\[
\begin{align*}
\text{R} & \quad \text{S} & \quad \text{N}=\text{N} & \quad \text{Ph} \\
\text{R} & \quad \text{S} & \quad \text{N}=\text{N} & \quad \text{Ph} \\
\text{Ph} & \quad \text{Ph} & \quad \text{Ph} & \quad \text{Ph} \\
\text{Ph} & \quad \text{Ph} & \quad \text{Ph} & \quad \text{Ph} \\
\end{align*}
\]

Diphenyl-diazomethan

\(\text{R} = \text{t-Bu} \)

8.3 Darstellung von Alkinen

\[
\begin{align*}
\text{R} & \quad \text{H} & \quad \text{LiNH}_{2} & \quad \text{LiX} \\
\text{R} & \quad \text{Li} & \quad \text{RX} & \quad \text{R'} & \quad \text{LiX} \\
\text{Alkinyl-d} & \quad \text{Alkyl-a} \\
\end{align*}
\]

8.4 Darstellung von 1,2-difunktionellen Verbindungen

Wichtigste Methode: Addition an Alkene (FGI)

\[
\begin{align*}
\text{X-Y} & \quad \text{H-OH, H-X, X}_{2}, \ldots \\
\text{Oxymercurierung, Hydroborierung, Halogenierung, Hydroxylierung, ...} \\
\text{Regiochemie, Stereochemie (} \rightarrow \text{Grundstudium) } \\
\text{Beispiel: cis- und trans-1,2-Diole}
\end{align*}
\]
Streckersche α-Aminosäure-Synthese
\[a^1 + d^1 \]
\[\text{R-CHO} \quad \text{NH}_3 \quad \text{H} \quad \text{NH} \quad \text{HCN} \quad \text{H} \quad \text{CN} \quad \text{NH}_2 \quad \text{H}_3\text{O}^+ \quad \text{R-CH-CO}_2\text{H} \]
Keine Kontrolle der Stereochemie, es entsteht ein racemisches Gemisch.
Zum Mechanismus siehe Streitwieser/Heathcock S. 974 (häufig wird fälschlich zuerst das HCN addiert → Cyanhydrin).

1,2-Diketone
a) Oxidation von 1,2-Diolen
\[2 \text{R-CHO} \quad \text{TiCl}_2 \quad \text{Oxidation} \quad \text{R-CO}_2\text{H} \]
Pinakol-Kupplung
b) Oxidation eines Ketons mit Selendioxid, SeO\(_2\) ist giftig!
\[\text{R-C} \quad \text{R'} \quad \text{H}_2 \quad \text{SeO}_2 \quad \text{R-C} \quad \text{R'} \]
Mechanismus:
8.5 Darstellung von 1,3-difunktionellen Verbindungen

Beispiel

\[a^1 + d^2 \]

Aldol-Addition und verwandte Reaktionen: Knoevenagel, Dieckmann, Claisen, Stobbe, Perkin,

Die Reaktion verläuft Säure- oder Base-katalysiert, d.h. über das Enol oder das Enolat. Eingesetzt werden: Aldehyde, Ketone, Ester,

Gemischte Aldol-Reaktion:

Carbonyl- u. Methylen-Komponenten sind verschieden.

Beispiel: **Tollens-Reaktion**

\[
\begin{align*}
\text{H}_3\text{C}^\equiv\text{CHO} & \quad + \quad 3 \text{CH}_2\text{O} & \quad \rightarrow & \quad (\text{HOCH}_2)_3\text{C}^\equiv\text{CHO} & \quad \text{CH}_2\text{O} & \quad \rightarrow & \quad \text{C(CH}_2\text{OH)}_4 \\
\text{Schritt (1):} & \quad \text{gemischte Aldol-Reaktion} & \quad \text{CH}_2\text{O} & \quad \text{ist die reaktivere Carbonyl-Komponente} \\
\text{Schritt (2):} & \quad \text{gekreuzte Cannizzaro-Reaktion} & \quad \text{CH}_2\text{O} & \quad \text{besitzt höheres Reduktionspotential} \\
\end{align*}
\]

Bei geringeren Reaktivitätsunterschieden entstehen Produktgemische.

Verbesserung: Verwendung des Enol-Silylethers anstelle des Enolats.

Beispiel: (Tietze/Eicher S. 436)
Es entsteht das kinetisch kontrollierte Enolat.

ist stabiler, wird bei höherer Temperatur gebildet.

gezielte Aldol-Reaktion siehe auch Wittig u. Reiff, Angew. Chem. 1968, 80, 8.

1,3-Diketone

\[\text{d}^2 + \text{a}^1 \]

R
\[
\begin{array}{c}
\text{CH}_3 \\
\end{array}
\]

\[\begin{array}{c}
\text{R'} \\
\text{R''}
\end{array} \]

\[\text{R} \]

\[\text{R}'' + \text{HOR'} \]

~Claisen

8.6 Darstellung von 1,4-difunktionellen Verbindungen

Beispiel: Michael-Addition, nukleophile Addition an CC-Doppelbindung

\[\text{d}^1 + \text{a}^3 \]
Nef-Reaktion. Darstellung von 1,4-Dicarbonylverbindungen

8.7 Darstellung von 1,5-difunktionellen Verbindungen
Beispiel: Darstellung eines 1,5-Diketons durch Michael-Addition eines Enolats an ein Vinylketon
d' + a^3

8.8 Darstellung von 1,6- und 1,m-difunktionellen Verbindungen
Beispiel: 1,6-Dicarbonylverbindung (1,6-Diketon)
Ozonolyse eines Cyclohexenderivates

Analog:
1,m-Dicarbonylverbindungen
Ozonolyse eines Cycloalkenderivates
8.9 Darstellung von Carbocyclen

Monocyclen

a) Cyclisierung von 1,ω-disubstituierten acyclischen Verbindungen, z. B. von Dihalogenalkanen \(X-(\text{CH}_2)_n-Y\), Abspaltung von \(X-Y\) bei fünf- und höhergliedrigen Ringen auch Dieckmann- und Acyloin-Kondensation

\[
\begin{align*}
\text{OR} & \quad \text{OR} \quad (\text{CH}_2)_n \quad \text{OR} \\
\text{O} & \quad \text{O} \quad \text{OH} \\
\text{CO}_2\text{R} & \quad \text{CO}_2\text{R}
\end{align*}
\]

\(n \geq 3\)

\(n \geq 4\)

b) Cycloaddition

Dreiring (Cyclopropan): Alken + Carben

\[
\begin{array}{c}
\bigcirc
\end{array} \quad \text{||} \quad + \quad \text{C}
\]

Vierring (Cyclobutan): [2+2]-Cycloaddition

\[
\begin{array}{c}
\square
\end{array} \quad \text{||} \quad + \quad \text{||}
\]

Sechsring (Cyclohexen): [4+2]-Cycloaddition

\[
\begin{array}{c}
\bigcirc
\end{array} \quad \text{||} \quad + \quad \text{||}
\]

Fünfring (zumeist Heterocyclus): 1,3-dipolare Cycloaddition

Polycyclen

Diels-Alder-Reaktion

Beispiele:
1.) Tricyclo[5.2.1.0^{2,6}]deca-3,8-dien

\[
\begin{array}{c}
\bigcirc
\end{array} \quad + \quad \begin{array}{c}
\bigcirc
\end{array} \quad \text{25 °C} \quad \text{endo-Addukt}
\]

\[
\begin{array}{c}
\bigcirc
\end{array} \quad \text{170 °C}
\]
2.) Triptycen

\[
\text{SO}_2^- + \Delta T \rightarrow \text{Knüpfung hochgespannter Bindungen} + \Delta T
\]

Prinzip: Abspaltung eines energiearmen Fragments

Beispiele:
1.) Bicyclo[2.1.0]pentan ("Hausan") und Bicyclo[2.1.0]pent-2-en ("Hausen")

\[
\text{CO}_2\text{Et} + \text{HH} \rightarrow \text{N-N} \rightarrow \text{H-H}
\]

\[
\text{Cu}^{2+} \quad 160 \, ^\circ \text{C} \rightarrow \text{- N}_2
\]

2.) Bicyclo[2.2.0]hexan

Robinson-Anellierung

Wichtig zur Synthese von Steroiden und Terpenen

Vinylketon + Enolat \[\text{Michael-Addition} \] \[\text{1,5-Diketon} \]

\[\text{a}^3-\text{Synthon} + \text{d}^2-\text{Synthon} \]

Retrosynthese!
Beispiel für intramolekulare Reaktion zwischen einem Donor- und einem Akzeptorzentrum. Analog: Darstellung von 8-Hydroxytwistanon
1,5-Diketon mit cis-Decalin-Struktur
9. Funktionelle Gruppen

Wenn beim Aufbau des Kohlenstoffgerüstes der Zielverbindung nicht auch gleich die richtige Substitution erhalten wird, kann es erforderlich sein:

funktionelle Gruppen einzuführen FGA (*Addition*)
umzuwandeln FGI (*Interconversion*)
zu entfernen FGR (*Removal*)
zu schützen FGP (*Protection*)

Bei polyfunktionellen Verbindungen soll die Umwandlung selektiv sein.

9.1 Einführung funktioneller Gruppen FGA
in ein gegebenes Kohlenstoff-Gerüst, der Kohlenwasserstoff wird funktionalisiert

Beispiel: Bromierung von Kohlenwasserstoffen

Radikalische Substitution \(S_R \)

\[
\begin{align*}
\text{H} - \text{Br}_2 & \xrightarrow{\text{hv}} \text{Br} - \text{HBr} \\
\end{align*}
\]

Allylische Bromierung

\[
\begin{align*}
\text{Ph}-\text{CH}_3 - \text{Br}_2 & \xrightarrow{\text{hv}} \text{Ph}-\text{Br} - \text{HBr} \\
\end{align*}
\]

Elektrophile Substitution \(S_E \)

\[
\begin{align*}
\text{Ph} - \text{Br}_2 & \xrightarrow{\text{Fe}} \text{Ph} - \text{Br} - \text{HBr} \\
\end{align*}
\]

Photosulfochlorierung

\[
\begin{align*}
\text{R-H} - \text{SO}_2 - \text{Cl}_2 & \xrightarrow{\text{hv}} \text{R-SO}_2\text{Cl} - \text{HCl} \\
& \xrightarrow{\text{r}} \text{R-SO}_3\text{Na}^+ \\
\end{align*}
\]
Oxidation von Kohlenwasserstoffen

R-CH₃ → R-CH₂OH → R-CHO → R-CO₂H

Oxidationsmittel z. B. HNO₃, näheres siehe Kap. 9.3

Einführung einer zweiten FG:

\[
\begin{align*}
\text{Oxidationsmittel z. B. } & \quad \text{HNO}_3, \text{ näheres siehe Kap. 9.3} \\
\end{align*}
\]

9.2 Entfernung funktioneller Gruppen (FGR)

Beispiele

Reduktive Desaminierung

Ph-NH₂ → Ph-N₂⁺ → Ph-H

\[
\begin{align*}
\text{Ph-NH₂} & \quad \text{NaNO₂/H⁺} \quad \text{H₃PO₂} \\
\text{Ph-N₂⁺} & \quad \text{Ph-H} + \text{N₂} \\
\end{align*}
\]

Hypophosphorige Säure

andere Reduktionsmittel: Cu₂O in abs. EtOH (Tietze/Eicher, S. 160)

Desaminierung in zwei Schritten: Eliminierung u. Hydrierung

z. B. Hofmann-Abbau nach erschöpfender Methylierung

\[
\begin{align*}
\text{HOFmann-Abbau} & \quad \text{Ähnliche Verfahren sind für viele funktionellen Gruppen möglich, z. B. -OH über Esterpyrolyse.}
\end{align*}
\]
Reduktive Dehalogenierung

\[R\text{--Hal} \xrightarrow{\text{Mg}} R\text{--Mg-Hal} \xrightarrow{\text{H}_2\text{/Kat.}} R\text{--H} \]

Tietze/Eicher S. 264

\[\text{Cl} \quad \text{Bu}_3\text{SnH} \xrightarrow{-78^\circ\text{C}} \]

radikalisch, selektiv

Abspaltung von OH-Gruppen aus Alkoholen
direkt nicht möglich, da OH- schlechte Abgangsgruppe

\[R\text{--OH} \xrightarrow{TsCl\text{ Pyridin}} R\text{--O--Ts} \xrightarrow{\text{LiAlH}_4\text{ Et}_2\text{O}} R\text{--H} \]

p-Toluolsulfonsäureester

Decarbonylierung (Abspaltung von C=O)

\[\text{Ar--CHO} \xrightarrow{\text{H}_2\text{SO}_4} \text{ArH} + \text{CO} \]

Dibenzylketon

Dibenzyl
Reduktion von Carbonyl- zu Methylengruppen

\[
\begin{align*}
\text{Clemmensen (sauer)} & : \\
\text{Wolff-Kishner (basisch)} & : \\
\text{Huang-Minlon (basisch)} & : \\
\text{(neutral)} & :
\end{align*}
\]

Decarboxylierung (Abspaltung von CO₂)

\[
\begin{align*}
\text{Malonsäure-Derivat} & : \\
\text{Carbonsäure} & : \\
\text{3-Oxocarbonsäure} & : \\
\text{Methylketon} & : \\
\text{α,β-ungesättigte Carbonsäure} & : \\
\text{Alken} & :
\end{align*}
\]
9.3 Umwandlung funktioneller Gruppen FGI

Erschöpfende Behandlung des Themas in dieser Vorlesung nicht möglich, hauptsächlich synthetische Aspekte werden berücksichtigt:
- Reduktion
- Oxidation
- Substitution

Reduktion

Reduktionsmittel

H₂/Katalysator (z. B. Ni, Pd, Pt, Ru, Rh)

Hydride z. B. NaBH₄, LiAlH₄, B₂H₆, Bu₃SnH, AlH₃

Metalle z. B. Li, Na, Mg, Ca, Zn

andere Verbindungen z. B. N₂H₄, N₂H₂, Ph₃P, (RO)₃P, Na₂S₂O₄

Stereochemie der Reduktion von Alkinen und Alkenen

Die heterogene Hydrierung mit Metallkatalysatoren erfolgt als stereospezifische cis-Addition.

Nebenreaktionen: H-Austausch zwischen Substrat und Katalysator,
Verschiebung von Doppelbindungen

\[
\begin{align*}
R - & \quad H_2 \xrightarrow{\text{H₂/Katalysator}} \quad R \quad \text{Lindlar-Kat.} \\
& \quad H \quad H \\
\text{Z-Alken} \\
R - & \quad \text{Na oder Li} \quad \xrightarrow{\text{Na oder Li}} \quad \text{flüss. NH₃} \\
& \quad - 33 °C \\
\end{align*}
\]

Birch-Reduktion

Mechanismus

\[
\begin{align*}
R \quad & \quad 2 \text{Na} \xrightarrow{\text{2 Na}} \\
\text{R} \quad & \quad \text{Na⁺} \\
\text{Na⁺} & \quad 2 \text{NH₃} \xrightarrow{\text{2 NH₃}} \\
& \quad + \text{2 NaNH₂} \\
\end{align*}
\]

Lindlar-Katalysator: 1-2 % Pd auf BaSO₄ oder CaCO₃ vergiftet mit Chinolin oder/und PbAc₂.
Die Birch-Reduktion ist besonders wichtig zur partiellen Reduktion von Aromaten. Es entstehen 1,4-Cyclohexadiene, 1,4-Addition z. B.

Dirigierender Substituenten-Einfluss

Asymmetrische (Enantioselective) Hydrierung, homogene Katalyse mit chiralem Katalysator

Kat*: heterogen: optisch aktiver Träger
homogen: optisch aktiver Wilkinson-Katalysator
Wilkinson-Katalysator (homogene Hydrierung 1965)
RhCl(Ph3P)3 u. ä.
Horner 1968: Hydrierung prochiraler Alkene mit Wilkinson-Kat. mit chiralen Phosphinen (Kokatalysator)
obiges Beispiel: optische Ausbeute 4 % ee, Rh-Komplex mit PMePrPh
anderer chiraler Kokat.: DIPAMP: 96 % ee

Enantioselektive Hydrierung von Ketonen

\[
\begin{align*}
\text{Ph-CHO} & \quad \text{H}_2/\text{XylBINAP} & \quad \text{OH} \\
\text{Ph-CH}_3 & \quad 99 \% \text{ ee}
\end{align*}
\]

Literatur:
W. A. Herrmann, Metallorganische Chemie in der industriellen Katalyse: Reaktionen, Prozesse, Produkte, Kontakte (Darmstadt) 1991, Heft1, 22-42; Heft 3, 29-52.

Reduktion von Aldehyden, Ketonen und Carbonsäurederivaten (Carbonylverbindungen)
R-CHO, R2C=O, R-CO-X
Mit komplexen Hydriden erfolgt durchweg Reduktion zum Alkohol, letzterer kann nicht direkt zum Kohlenwasserstoff reduziert werden, indirekte Reduktion ist möglich.
Reduktion von Aldehyden und Ketonen zum Kohlenwasserstoff: s.o.
Enantioselektive Reduktion von Ketonen
prochirales Keton → chiraler sek. Alkohol
Alternative: Reduktion mit einem chiralen komplexen Hydrid (Tietze/Eicher, S. 453)
(S)-Binaphthol + LiAlH₄ + EtOH → (S)-BINAL-H

Butyrophenon I (S)-1-Phenylbutanol

Siehe Abschn. 10.3
Reduktion von Stickstoffverbindungen

Die niedrigste Oxidationsstufe besitzt N in den Aminen. Praktisch alle Verbindungen mit N in einer höheren Oxidationsstufe können zum Amin reduziert werden.

Beispiele:

\[R\equiv N + \text{H}_2/\text{Pt} \text{ oder } \text{LiAlH}_4 \rightarrow R\text{-NH}_2 \]

\[R\text{C}=\text{N} + \text{H}_2\text{NOH} \rightarrow R\text{CH} - \text{NH}_2 \]

\[\text{ArNO}_2 + \text{H}_2/\text{Pt} \text{ oder Zn/H}_3\text{O}^+ \rightarrow \text{ArNH}_2 \text{ oder andere Produkte je nach Reaktionsbedingungen} \]

\[\text{RCO} + \text{H}_2/\text{Ni} \text{ oder } \text{LiAlH}_4 \rightarrow \text{RCH} - \text{NH}_2 \]

\[\text{RN}_3 + \text{H}_2/\text{Pt} \text{ oder } \text{LiAlH}_4 \rightarrow \text{R-NH}_2 \]

\[\text{NR} + \text{LiAlH}_4 \rightarrow \text{NRCH}_2 \]

Wichtige Methode zur Darstellung von N-Heterocyclen

Lactam

Cycl. Amin

Sonderfall β-Lactame:

\[\text{R=H} \]

\[\text{R≠H} \]

Azetidin

3-Aminopropanol
Oxidation

a) Oxidation nicht-aktivierter C-Atome:

\[
\begin{align*}
\text{C–H} & \rightarrow \text{C–OH} \\
\text{z.B. enzymatische Oxidation}
\end{align*}
\]

b) Oxidation aktivierter C-Atome:

z. B.

\[
\begin{align*}
\text{RCO}_3\text{H} & \rightarrow \text{RCOOH} \\
\text{H} & \rightarrow \text{H}_2\text{O}
\end{align*}
\]

\[
\begin{align*}
\text{SeO}_2 & \rightarrow \text{SeO}_3\text{H} \\
\text{H} & \rightarrow \text{H}_2\text{O}
\end{align*}
\]

c) Alkene:

\[
\begin{align*}
\text{R} & \text{C} = \text{O} \\
\text{RCO}_3\text{H} & \rightarrow \text{RCOOH}
\end{align*}
\]

\[
\begin{align*}
\text{alk} & \rightarrow \text{trans-1,2-Diol} \\
\text{alk} & \rightarrow \text{cis-1,2-Diol}
\end{align*}
\]

d) Alkohole:

\[
\begin{align*}
\text{H} & \text{O} \\
\text{OH} & \rightarrow \text{Ox.}
\end{align*}
\]

\[
\begin{align*}
\text{R} & \text{O} \\
\text{OH} & \rightarrow \text{Ox.}
\end{align*}
\]

Ox.: z.B. CrO\(_3\)/H\(_2\)SO\(_4\), KMnO\(_4\), ...
e) Ketone:

\[
\begin{align*}
\text{RCO}_2\text{H} & \quad \text{Persäure z.B.} \\
\text{CF}_3\text{CO}_2\text{H} & \quad \text{Baeyer-Villiger-Oxidation} \\
\text{Baeyer-Villiger-Umlagerung}
\end{align*}
\]

9.4 Schutz funktioneller Gruppen FGP

Literatur:
M. Angrick, Schutzgruppen: Hilfsmittel in der präparativen Chemie, Pharm. Uns. Zeit **1984**, 13, 83 (nur zur Orientierung!).

Bei der Synthese einer multifunktionellen Verbindung kann es erforderlich sein, eine funktionelle Gruppe so zu modifizieren, dass ein gewünschter Syntheseschritt nicht beeinträchtigt wird und die funktionelle Gruppe in maskierter Form erhalten bleibt. I.d.R. erfolgt der Schutz durch FGI.
Beispiel:

Geplante Synthese:

\[
\begin{align*}
\text{Br} & \quad \text{CO}_2\text{H} \\
\text{1) Mg/Ether} & \quad 2) \text{CO}_2 \\
\text{3) H}_2\text{O}^+ \\
\text{Br} & \quad \text{CO}_2\text{H}
\end{align*}
\]

Die Schutzgruppe soll

- bequem einzuführen sein
- bei der beabsichtigten Umsetzung nicht verändert werden
- leicht wieder zu entfernen (abspaltbar) sein
Beispiele für Schutzgruppen

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>geschützte Funktion</th>
<th>Abspaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schutzgruppen für R-OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac₂O/Py</td>
<td>R-O-Ac</td>
<td>NaOMe/MeOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NH₃/MeOH u.a.</td>
</tr>
<tr>
<td>DHP</td>
<td>THP-Ether</td>
<td>AcOH/H₂O</td>
</tr>
<tr>
<td></td>
<td>Alkali-beständig</td>
<td></td>
</tr>
<tr>
<td>Me₂tBuSiCl</td>
<td>R-O-SiMe₂tBu</td>
<td>AcOH/H₂O</td>
</tr>
<tr>
<td>Ph-CH₂-Cl</td>
<td>R-O-CH₂-Ph</td>
<td>H₂/Pd → ROH + Me-Ph</td>
</tr>
<tr>
<td></td>
<td>Säure- und Alkali-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>beständig</td>
<td></td>
</tr>
<tr>
<td>Schutzgruppen für R-NH₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph-CH₂-O-COCl</td>
<td>R-NH-COOC₂H₂Ph</td>
<td>H₂/Pd → RNH₂ + CO₂ + Me-Ph</td>
</tr>
<tr>
<td></td>
<td>BOC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzylxyloxy-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>carbonyl</td>
<td></td>
</tr>
<tr>
<td>Phthalimid</td>
<td>Phthalimid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phthalimid</td>
<td></td>
</tr>
<tr>
<td>CF₃O⁻</td>
<td>TFAC</td>
<td></td>
</tr>
<tr>
<td>/Pyridin</td>
<td>Trifluoracetyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ba(OH)₂/H₂O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NaHCO₃/H₂O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH₃/H₂O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCl/H₂O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NaBH₄/MeOH</td>
<td></td>
</tr>
</tbody>
</table>
Schutzgruppen für C=O

\[
\begin{align*}
\text{Schutzgruppen für } C=O & \\
\text{HO} /\text{BF}_3 & \quad \text{1,3-Dioxolan} & \quad \text{H}^+/\text{H}_2\text{O} \\
\text{HO} & \quad \text{2-Mercaptoethanol} & \quad \text{1,3-Oxathiolan} & \quad \text{H}^+/\text{H}_2\text{O} \\
\text{HS} & \quad \text{1,2-Ethandithiol} & \quad \text{1,3-Dithiolan} & \quad \text{H}^+/\text{H}_2\text{O} \\
\text{H/CN} & \quad \text{(+ Base) Malonsäuredinitril} & \quad \text{Knoevenagel-Kondensation} & \quad \text{NaOH/}H_2\text{O} \\
\text{H}_2\text{N-OCH}_3 & \quad \text{Säure-beständig} & \quad \text{NaOH/}H_2\text{O} \\
\end{align*}
\]

Schutzgruppen für R-CO_2H
(vgl. auch R-OH)

\[
\begin{align*}
\text{DHP} & \quad \text{THP-Ester} & \quad \text{AcOH/}H_2\text{O} \\
\text{Ph-CH}_2\text{-O-CH}_2\text{Cl} & \quad \text{H}_2\text{/Pd-C} \rightarrow \text{R-CO}_2\text{H} + \text{Me-Ph} + \text{CH}_2\text{O} \\
\text{H}_2\text{CN}_2 & \quad \text{Diazomethan} & \quad \text{R-CO}_2\text{-Me} & \quad \text{Hydrolyse} \\
\text{Ph}_2\text{CN}_2 & \quad \text{R-CO}_2\text{-CHPh}_2 & \quad \text{LiCl in DMF} \\
\text{R'}\text{O}^+\text{BF}_4^- & \quad \text{R-CO}_2\text{R'} & \quad \text{KO}_2/\text{Kronenether} \\
\text{Meerwein-Salz} & \quad \text{(Kaliumsuperoxid)} \\
\end{align*}
\]
Schutzgruppen für >C=C<

<table>
<thead>
<tr>
<th>Schutzgruppe</th>
<th>Reaktionsbedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br₂</td>
<td>Zn oder Mg</td>
</tr>
<tr>
<td>R-CO₃H</td>
<td>Oxiran beständig gegen Elektrophile</td>
</tr>
<tr>
<td>Dien</td>
<td>Diels-Alder-Addukt</td>
</tr>
<tr>
<td></td>
<td>Retro-Diels-Alder-Reaktion</td>
</tr>
</tbody>
</table>

Die Schutzgruppentechnik ist bei mehrstufigen Synthesen wichtig. Z. B. bei der Synthese von Peptiden und Polynucleotiden.
Synthese von Peptiden

Literatur:

Die gezielte Verknüpfung von Aminosäuren ist nur unter Anwendung der Schutzgruppentechnik möglich (auch bei der Biosynthese).

\[
\begin{align*}
\text{CO}_2^+ & \text{NH}_3^+ \rightarrow \text{R}^+ \text{H} \rightarrow \text{NH} \text{H} \text{CH} \text{R1} \\
\text{N} & \text{H} \text{O} \\
\text{N} & \text{H} \text{O} \\
\text{N} & \text{H} \text{O} \\
\text{C} & \text{O} \\
\text{C} & \text{O} \\
\text{C} & \text{O} \\
\text{C} & \text{O} \\
\end{align*}
\]

Peptidbindung

wird bei der Synthese gebildet

Die L-Konfiguration der Aminosäuren muss erhalten bleiben.

1.) Amino-Komponente

\[
\begin{align*}
\text{H}_3\text{N}^+ & \text{CO}_2^- \rightarrow \text{H}_2\text{N} \text{O-Sch}_1 \\
\text{R1} & \\
\text{H} & \text{O} \text{Sch}_1 \text{z.B. = Me, Et, CH}_2\text{-Ph, ..., Ester}
\end{align*}
\]

2.) Carboxyl-Komponente

\[
\begin{align*}
\text{H}_3\text{N}^+ & \text{CO}_2^- \rightarrow \text{Sch}_2 \text{NH} \text{O-H} \rightarrow \text{Sch}_2 \text{NH} \text{O-X} \\
\text{R2} & \\
\text{H} & \text{O} \text{Aktivierung} \text{Sch}_2 \text{H} \text{O} \text{X}
\end{align*}
\]

\[
\begin{align*}
\text{Sch}_2 & \\
\text{Abspaltung mit} & \\
\text{Ph-CH}_2\text{-O-CO-} & \text{H}_3\text{O}^+ \text{ oder } \text{H}_2/\text{Pd} \\
\text{H}_3\text{C} & \text{Na/NH}_3 \\
\text{C-S} & \text{H}_3\text{O}^+ \text{ oder } \text{OH}^-
\end{align*}
\]

Aktivierung: Erhöhung der Carbonyl-Reaktivität:
X = N₃, Azid

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{R} \\
\text{N} & \quad \text{H} \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{R} \\
\text{N} & \quad \text{H} \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{R} \\
\text{N} & \quad \text{H} \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{R} \\
\text{N} & \quad \text{H} \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{R} \\
\text{N} & \quad \text{H} \\
\end{align*}
\]

3.) Kupplung von Amino- und Carboxyl-Komponente

\[
\begin{align*}
\text{Sch}_2 & \quad \text{N} \\
\text{H} & \quad \text{O} \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{O} \\
\end{align*}
\]

4.) Entfernung der N-terminalen Schutzgruppe \(\text{Sch}_2\)

\[
\begin{align*}
\text{Sch}_2 & \quad \text{N} \\
\text{H} & \quad \text{O} \\
\end{align*}
\]

5.) Erneute Umsetzung mit einer N-geschützten, aktivierten Carboxyl-Komponente

\[
\begin{align*}
\text{Sch}_3 & \quad \text{N} \\
\text{H} & \quad \text{O} \\
\end{align*}
\]

6.) Weitere Schritte analog zu 4.) und 5.)

7.) Zum Schluss erfolgt die Abspaltung der Schutzgruppen, und das Peptid wird freigesetzt.
Festphasen-Peptidsynthese nach Merrifield

Literatur:

Das synthetisierte Polypeptid besaß nur ca. 20% der Aktivität des natürlichen Enzyms.

Nachteil der Methode: lineare Synthese, jede Stufe muss zu 100 % ablaufen, sonst entsteht ein Gemisch vieler verschiedener kleinerer Polypeptide.

Verbesserung: konvergente Synthese, zunächst kleinere Oligopeptide herstellen, die gereinigt werden können, dann diese zum Polypeptide verknüpfen.
10. Stereochemische Kontrolle: diastereo- und enantioselektive Synthesen

10.1 Prochiralität, Prostereoisomerie, Topizität
Prochirale Verbindung = achirale Verbindung, die in einem Reaktionsschritt in eine chirale umgewandelt werden kann.

Die beiden Gruppen a im linken Molekül sind enantiotop. Sie "sehen" den Rest des Moleküls in entgegengesetzter Konfiguration.

Die beiden Seiten einer prochiralen Verbindung werden gemäß den Sequenzregeln mit "re" und "si" unterschieden, Beispiele:

Betrachtung jeweils von vorn!

Ha und Hb sind diastereotop.
Optische Induktion

\[
\% \text{ optische Reinheit} = \frac{[\alpha]}{[\alpha]_0} \times 100
\]

\[\alpha\] Drehwert in Grad

l Länge in dm

c Konzentration in g/100 ml

\[\frac{[\alpha]}{[\alpha]_0} = \frac{\alpha}{l \times c}\]

\([\alpha] = \text{spezifische Drehung des Enantiomerengemisches}\]

\([\alpha]_0 = \text{spezifische Drehung eines Enantiomers}\]

\[
\% \text{ Enantiomerenreinheit } ee = \% \text{ optische Reinheit}, \% \text{ Diastereomerenreinheit } de
\]

\[
\begin{align*}
\text{ee} & = \frac{[R] - [S]}{[R] + [S]} \times 100 \\
\text{de} & = \frac{[D_1] - [D_2]}{[D_1] + [D_2]} \times 100
\end{align*}
\]

(Im Zähler Absolutwerte: ee und de sind stets > 0)
Enantiomerenüberschuss (engl. enantiomeric excess)

10.2. Enantioselektive Synthesen in chiralen Solventien

Asymmetrische Synthesen in Gegenwart chiraler Solventien oder Kosolventien führen i.d.R. nicht zu enantiomerenreinen Verbindungen. Je tiefer die Reaktionstemperatur, desto höher der Enantiomerenüberschuss.
10.3. Diastereoselektive Synthesen mit chiralen Reagenzien

10.3.1 Addition von chiralen Grignard-Verbindungen an Ketone

\[
\begin{align*}
R\,\overset{\text{O}}{\longrightarrow} + \, \ast R\text{-M} & \rightarrow \,\overset{\text{OH}}{\longrightarrow} + \, \overset{\text{OH}}{\longrightarrow} \\
\text{Diastereomere}
\end{align*}
\]

\[\ast R\text{-M} \ \text{z.B.:} \]

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>de (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Et</td>
<td>4-47</td>
</tr>
<tr>
<td>Et</td>
<td>Ph</td>
<td>6-52</td>
</tr>
<tr>
<td>iPr</td>
<td>Ph</td>
<td>24-82</td>
</tr>
</tbody>
</table>

10.3.2 Reduktion mit chiral modifiziertem Lithiumalanat

Beispiel (vgl. Abschn. 9.3, Seite 113)

\[\begin{align*}
\text{Ph} \overset{\text{O}}{\longrightarrow} + \, \overset{\text{Al(OEt)}\text{Cl}}{\longrightarrow} \overset{\text{Li}^+}{\longrightarrow} \\
\overset{\text{H}}{\longrightarrow} + \text{H}_2\text{O} & \rightarrow \, \overset{\text{OH}}{\longrightarrow} \\
\text{Ausb. 64} \% \quad \text{ee} \sim 100
\end{align*}\]

(S)-1-Phenylpentanol

Zahlreiche andere Phenone wurden in tertiäre Alkohole umgewandelt.
Ausbeute: 60 - 93 %; ee: 71 - 100 %.
Vgl. Abschn. 9.3.
10.3.3 Reaktionen mit chiralen Alkylboranen

\[
\text{R} \xrightarrow{\text{BH}_3} \text{R} \xrightarrow{\text{H}_2\text{O}_2} \text{OH}
\]

anti-Markonikov-Addition von \(\text{H}_2\text{O}\).

\[
\text{(+)-}\alpha\text{-Pinen} \xrightarrow{\text{THF} 0\,^\circ\text{C}} \text{Ipc}_2\text{BH} \xrightarrow{\text{IpcBH}_2} \text{Diisopinocampheylboran} \rightarrow \text{Isopinocampheylboran}
\]

\(\text{Ipc}_2\text{BH}:\) cis-Alken \(\rightarrow\) sek. Alkohol

\[
\text{(Z)-2-Buten} \xrightarrow{\text{Ipc}_2\text{BH}} \text{OH} \quad 98.4\,\%\text{ ee}
\]

\[
\text{(R)-2-Butanol}
\]

\[
\text{(R)-2-Pentanol} \quad 92.3\,\%\text{ ee}
\]

\[
\text{(S)-2-Butanol} \quad 73\,\%\text{ ee}
\]

\[
\text{(S)-3-Hexanol} \quad 75\,\%\text{ ee}
\]

\[
\text{(S)-2-Pentanol} \quad 53\,\%\text{ ee}
\]

\[
\text{(S)-3-Hexanol} \quad 82\,\%\text{ ee}
\]

E-Alkene und Alkene mit dreifach substituierter Doppelbindung werden besser mit \(\text{IpcBH}_2\) umgesetzt.
10.4. Asymmetrische Synthese durch chirale Modifizierung des Substrats

α-Alkylierung von Ketonen nach Enders
(siehe Kap. 4. Methodik der Retrosynthese)

α-Alkylierung von cyclischen Ketonen über ein chirales Enamin

\[\text{CH}_3\text{I} + \text{H}_2\text{O} \rightarrow \text{Me} \]

80 % ee
Ausb. 80 %

10.5. Asymmetrische Synthese mit Hilfe chiraler Katalysatoren

Literatur:

Beispiele: siehe Abschn. 9.3
Weitere Behandlung des Themas: Vorlesung "Stereochemie", Modul "Katalyse"

Ökonomische Bedeutung der chiralen Katalyse: Multiplikation der im Katalysator enthaltenen chiralen Information. Der Katalysator wird in substöchiometrischer Menge eingesetzt, gleiches Prinzip wie Enzyme in der Biochemie.

Chirale Katalysatoren: Übergangsmetallkomplexe mit chiralen Liganden, häufig optisch aktive Phosphine, Beispiele:

BMPP
(R,R)-(-)-Dipamp
(R,R)-(-)-Diop
(S)(-)-Binap

Metalle: Rh, Pd, Pt; Fe, Co, Ni, Cu (edle; "billige")

Chirale Katalysatoren werden in der Regel nicht rein dargestellt sondern in situ erzeugt:

Prokatalysator + Kokatalysator \rightarrow Katalysator

Prokat + Kokat \rightarrow Kat

Prokatalysatoren, Beispiele: Cu(OAc)$_2$, [Rh(cod)Cl]$_2$, [Rh(nbd)$_2$]BF$_4$, Pd(dba)$_2$

cod = 1,5-Cyclooctadien
nbd = Norbornadien
dba = Dibenzylidenaceton

Kokat = optisch aktiver Ligand

Homogene Katalyse: Die Katalysatoren sind selektiver als heterogene, besonders bezüglich der chiralen Induktion. Nachteil: Katalysator lässt sich nicht so leicht abtrennen wie ein heterogener (Filtration).

Wichtiges Beispiel für die enantioselektive Katalyse: Darstellung von Aminosäuren

\[
\begin{align*}
\text{H} & \quad \text{CO}_2\text{CH}_3 \\
\text{R} & \quad \text{NH-COCH}_3
\end{align*}
\]

$\xrightarrow{\text{H}_2}$

\[
\begin{align*}
\text{R} & \quad \text{CO}_2\text{CH}_3 \\
\text{H} & \quad \text{NH-COCH}_3
\end{align*}
\]

prochirales Dehydro-aminosäure-Derivat

Kokat: Dipamp

\[
\begin{align*}
\text{H} & \quad \text{CO}_2\text{CH}_3 \\
\text{R} & \quad \text{NH-COCH}_3
\end{align*}
\]

Aminosäure-Derivat

$R = \text{Ph}: \text{N-Acetyl-phenylalanin}$

\~ 95 % ee
10.6. Diastereosektive Synthesen

10.6.1 1,2-Induktion, Cramsche Regel

Addition von Nucleophilen an eine Carbonylgruppe, deren \(\alpha \)-C-Atom chiral ist. Die Cramsche Regel sagt voraus, welches Diastereomer überwiegt.

\[
\begin{align*}
\text{Ph} & \quad \text{CH}_3 \\
\text{O} & \quad \text{H} \\
\text{H} & \quad \text{CH}_3 \\
1.) & \quad \text{CH}_3\text{MgI} \\
2.) & \quad \text{H}_2\text{O}
\end{align*}
\]

Diastereomere

\[
\begin{align*}
\text{Ph} & \quad \text{CH}_3 \\
\text{O} & \quad \text{H} \\
\text{H} & \quad \text{CH}_3 \\
\text{H} & \quad \text{CH}_3 \\
\text{Ph} & \quad \text{OH} \\
\text{Ph} & \quad \text{OH}
\end{align*}
\]

Diastereomere

\[
\begin{align*}
\text{S} & \quad \text{S}, \text{R} \\
\text{S} & \quad \text{S}, \text{S} \\
\text{Hauptprodukt}
\end{align*}
\]

Diastereofaciale Seiten sind vorhanden, wenn eine Verbindung neben der (prochiralen) Carbonylgruppe ein Chiralitätszentrum besitzt.

\[
\begin{align*}
\text{Nu} & \quad \text{kl} \\
\text{O} & \quad \text{m} \\
\text{H} & \quad \text{g} \\
günstig & \quad \text{ungünstig}
\end{align*}
\]

Günstigste Konformation des Eduktes

Felkin (1968)

\[
\begin{align*}
\text{g} & \quad \text{kl} \\
\text{H} & \quad \text{m} \\
\text{or} \text{R} & \quad \text{Nu} \\
\text{A} & \quad \text{B}
\end{align*}
\]

Der Angriff des Nukleophils erfolgt antiperiplanar zum größten Substituenten.

Warum ist \(\text{B} \) günstiger als \(\text{A} \)? (Wenn R >> O ist \(\text{B} \) günstiger als \(\text{A} \).)

Felkin hat diese Frage offen gelassen.

Verbesserung des Felkin-Modells
Das Nukleophil greift nicht genau antiperiplanar zu \(g \) an, sondern weicht dem Carbonyl-Sauerstoff-Atom aus und greift den Carbonyl-Kohlenstoff schräg an. Die Trajektorie für die Annäherung des Nukleophils liegt bei einem Winkel \(\text{Nu-C-O} = 110^\circ \). Dies folgt aus der HOMO(\text{Nu})/LUMO(\text{C=O})-Wechselwirkung. \(\text{LUMO}(\text{C=O}) \approx \pi^*(\text{C=O}) \). Dabei ist der \(\text{si}-\text{Angriff} (\text{B}') \) günstiger als der \(\text{re}-\text{Angriff} (\text{A}') \).

Beispiel:

\[
\begin{array}{c}
\text{H} & \text{CH}_3 \\
\text{Ph} & \text{H}
\end{array} \quad \xrightarrow{\text{CH}_3\text{M}} \quad \begin{array}{c}
\text{H} & \text{CH}_3 \\
\text{Ph} & \text{H} \\
\text{H}_3\text{C} & \text{OH} \\
\text{HO} & \text{CH}_3
\end{array}
\]

\(M = \)
\[
\begin{array}{c c}
\text{MgI} & 1 : 2 \\
\text{Ti(OiPr)}_3 & 1 : 7 \\
\text{Ti(OPh)}_3 & 1 : 13
\end{array}
\]

Houk (1982)
Erweiterung auf Addition an Alkene (cis-Addition)
z. B. Hydroborierung, \(\text{OsO}_4 \)-Hydroxylierung, Cycloaddition (Diels-Alder)

\[\]

Nukleophile Addition an \(\alpha \)-Amino-, \(\alpha \)-Alkoxy- und \(\alpha \)-Hydroxycarbonylverbindungen. Das Reagenz (R'MgX oder LiR') bildet mit dem Substanz einen Komplex (Chelat).

\[
\begin{array}{c}
\text{g} \\
\text{kl}
\end{array} \quad \xrightarrow{R'^{-}\text{M}} \quad \begin{array}{c}
\text{g} \\
\text{kl}
\end{array}
\]

\(X = \text{NH}_2, \text{NR}_2, \text{OH}, \text{OR} \)

Das Nukleophil addiert sich bevorzugt von der dem größeren Substituenten \(g \) abgewandten Seite.
Prelog (1953)
Addition organometallischer Reagenzien an die Ester von α-Ketocarbonsäuren mit chiralen Alkoholen.

Z. B.: \(R = \text{Ph}, \ m = \text{CH}_3, \ g = \text{Ph}, \ R' = \text{CH}_3 \)
Überschuss des einen Diastereomers: \(\text{de} = 6.5 \% \)

Bevorzugter Angriff des Nukleophils \((R') \) von vorn, also antiperiplanar zu \(g \).
Die diastereofaciale Differenzierung ist kleiner als bei der 1,2-Induktion (Cramsche Regel). Ursache: größere Entfernung des Reaktionszentrums von der chiralen Gruppe.

Bei den genannten Beispielen für die 1,2- und die 1,4-Induktion sind die Übergangszustände Eduktähnlich ("frühe" ÜZ). Deshalb können sterische Effekte gut abgeschätzt werden.
10.7 Beispiel für die mehrstufige Synthese eines Naturstoffs
Totalsynthese von Prostaglandin PGF$_{2\alpha}$ nach Corey

1. Synthese einer polycyclischen Verbindung
Pentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecane-8,11-dion
(S. Warren, Organische Retrosynthese, S. 193 ff)

Beide Reaktionen sind in Crossfire enthalten.

2. Synthese von 4-Isopropylidencyclohexanon

In Crossfire enthalten.

3. Synthese von Dicyclohexyliden

Reagenz: TiCl₃ + LiAlH₄
In Crossfire enthalten.
4.) Synthese von Pentacyclo[12.2.2.2^{2,5} \cdot 2^{6,9} \cdot 2^{10,13}]1,5,9,13-tetracosatetraen

Reagenz: TiCl₃ + Zn + Cu
In Crossfire enthalten.