Kerstan, Henning; König, Barbara:
Coalgebraic Trace Semantics for Probabilistic Transition Systems based on Measure Theory
Essen: Abteilung für Informatik und Angewandte Kognitionswissenschaft, Fakultät für Ingenieurwissenschaften, Universität Duisburg-Essen, 2012
(Technischer Bericht ; 2012-02)
Buch2012Informatik
Fakultät für Ingenieurwissenschaften » Informatik und Angewandte Kognitionswissenschaft
Titel:
Coalgebraic Trace Semantics for Probabilistic Transition Systems based on Measure Theory
Autor(in):
Kerstan, HenningLSF; König, BarbaraLSF
Erscheinungsort
Essen
Verlag
Abteilung für Informatik und Angewandte Kognitionswissenschaft, Fakultät für Ingenieurwissenschaften, Universität Duisburg-Essen
Erscheinungsjahr
2012
DuEPublico ID:
URN:

Abstract:

Coalgebras in a Kleisli category yield a generic definition of trace semantics for various types of labelled transition systems. In this paper we apply this generic theory to generative probabilistic transition systems, short PTS, with arbitrary (possibly uncountable) state spaces. We consider the sub-probability monad and the probability monad (Giry monad) on the category of measurable spaces and measurable functions. Our main contribution is that the existence of a final coalgebra in the Kleisli category of these monads is closely connected to the measure-theoretic extension theorem for sigma-finite pre-measures. In fact, we obtain a practical definition of the trace measure for both finite and infinite traces of PTS that subsumes a well-known result for discrete probabilistic transition systems.