Shymanovich, Uladzimir; Nicoul, Matthieu; Kähle, Stefan; Lu, Wei; Tarsevitch, Alexander; Zhou, Ping; Wietler, Tobias; Horn-von Hoegen, Michael; von der Linde, Dietrich; Sokolowski-Tinten, Klaus:
The role of thermal and electronic pressure in the picosecond acoustic response of femtosecond laser-excited solids
2010
In: MRS Proceedings, Band 1230E (2010), S. 6
Artikel/Aufsatz in Zeitschrift / Fach: Physik
Fakultät für Physik » Experimentalphysik
Titel:
The role of thermal and electronic pressure in the picosecond acoustic response of femtosecond laser-excited solids
Autor(in):
Shymanovich, Uladzimir im Online-Personal- und -Vorlesungsverzeichnis LSF anzeigen; Nicoul, Matthieu im Online-Personal- und -Vorlesungsverzeichnis LSF anzeigen; Kähle, Stefan; Lu, Wei im Online-Personal- und -Vorlesungsverzeichnis LSF anzeigen; Tarsevitch, Alexander; Zhou, Ping im Online-Personal- und -Vorlesungsverzeichnis LSF anzeigen; Wietler, Tobias; Horn-von Hoegen, Michael im Online-Personal- und -Vorlesungsverzeichnis LSF anzeigen; von der Linde, Dietrich im Online-Personal- und -Vorlesungsverzeichnis LSF anzeigen; Sokolowski-Tinten, Klaus im Online-Personal- und -Vorlesungsverzeichnis LSF anzeigen
Erscheinungsjahr
2010
Erschienen in:
MRS Proceedings, Band 1230E (2010), S. 6
WWW URL

Abstract:

Ultrafast time-resolved X-ray diffraction has been used to study the dynamics of coherent acoustic phonons in fs laser-excited Ge and Au, with the particular goal to clarify the interplay of the electronic and thermal pressure contributions. For semiconductors it is usually assumed that the electronic pressure is the dominant driving force. Our measurements reveal that in Ge the relative strength of the electronic pressure decreases with increasing laser fluence. Only for low fluences the electronic pressure dominates, while at high fluences the thermal pressure exceeds the electronic pressure. For the case of Au the data are well described within the established theoretical framework using the known values for those material parameters which determine the laser-induced pressure, namely the energy relaxation time and the electronic and lattice Grüneisen parameters.