Quantum size effect of valence band plasmon energies in Si and SnOx nanoparticles

In: Journal of vacuum science and technology : B Microelectronics and nanometer structures, Jg. 24 (2006) ; Nr. 3, S. 1156 - 1161
ISSN: 0734-211X, 1071-1023
Zeitschriftenaufsatz / Fach: Maschinenbau; Physik
Fakultät für Physik » Experimentalphysik
Spherical Si and SnOxnanoparticles in the size range between 3 and 30nm have been synthesized by microwave induced decomposition of silane and gas phase condensation, respectively. They are deposited on thin metal films and investigated by electron microscopy, Auger electron, and electron energy loss spectroscopy. An analysis of the surface composition and stoichiometry reveals that the Si particles are covered with a native oxide of less than 1nm. The energy loss spectra show features corresponding to electronic excitations in the nanoparticles due to valence bandplasmons, interband transitions, and core-level ionizations. The plasmonenergies are found to increase with decreasing particle diameter d as d−1.17 for Si and d−0.83 for SnOx. These energy shifts are related to the change of the dielectric band gapenergy of the semiconductor due to quantum size effects.