Fomin, Vladimir M.; Kratzer, Peter:

Thermoelectric transport in periodic one-dimensional stacks of InAs/GaAs quantum dots

In: Physical Review B, Jg. 82 (2010) ; Nr. 4, S. 045318/1-10
Zeitschriftenaufsatz / Fach: Physik
We investigate the effect of the narrow electronic minibands of periodic one-dimensional stacks of diskshaped
InAs quantum dots (QDs) in GaAs on their electronic transport characteristics by employing an
empirical tight-binding calculation and a continuum model of the electronic structure. Our model includes both
the minibands and the continuum of the host conduction band. The rate of the electron-acoustic-phonon
scattering is found using Boltzmann’s semiclassical transport theory. The electric conductivity, the Seebeck
coefficient and the thermoelectric figure-of-merit for n-doped QD arrays are then analyzed as a function of the
donor concentration and temperature. For QDs several nanometers in height, the figure-of-merit at temperatures
below 100 K as a function of doping is richly structured, reflecting the miniband electron energy
spectrum of a QD stack. Certain windows of concentration are revealed, where QD arrays display a geometrycontrolled
enhanced efficiency as thermoelectric converters. For optimizing the peak values of the figure-ofmerit
attainable for donor concentrations within the experimentally accessible range, a very thin spacer layer
between the QDs < 5 nm  is found to be most suitable. Assuming that the lattice thermal conductivity can be
reduced below 0.5 W/(mK), a figure-of-merit larger than 2 appears within reach.