Geissenhöner, Antje; Weise, Christoph; Ehrenhofer-Murray, Ann:
Regulation of ORC function by NatA-dependent Nalpha-acetylation in Saccharomyces cerevisiae
In: Molecular and Cellular Biology (MCB), Jg. 24 (2004), Heft 23, S. 10300 - 10312
2004Artikel/Aufsatz in Zeitschrift
BiologieFakultät für Biologie » Genetik
Damit verbunden: 1 Publikation(en)
Titel:
Regulation of ORC function by NatA-dependent Nalpha-acetylation in Saccharomyces cerevisiae
Autor*in:
Geissenhöner, Antje;Weise, Christoph;Ehrenhofer-Murray, AnnUDE
LSF ID
12062
Sonstiges
der Hochschule zugeordnete*r Autor*in
Erscheinungsjahr:
2004

Abstract:

Nα acetylation is one of the most abundant protein modifications in eukaryotes and is catalyzed by N-terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, consists of the subunits Nat1p, Ard1p, and Nat5p and is necessary for the assembly of repressive chromatin structures. Here, we found that Orc1p, the large subunit of the origin recognition complex (ORC), required NatA acetylation for its role in telomeric silencing. NatA functioned genetically through the ORC binding site of the HMR-E silencer. Furthermore, tethering Orc1p directly to the silencer circumvented the requirement for NatA in silencing. Orc1p was Nα acetylated in vivo by NatA. Mutations that abrogated its ability to be acetylated caused strong telomeric derepression. Thus, Nα acetylation of Orc1p represents a protein modification that modulates chromatin function in S. cerevisiae. Genetic evidence further supported a functional link between NatA and ORC: (i) nat1Δ was synthetically lethal with orc2-1 and (ii) the synthetic lethality between nat1Δ and SUM1-1 required the Orc1 N terminus. We also found Sir3p to be acetylated by NatA. In summary, we propose a model by which Nα acetylation is required for the binding of silencing factors to the N terminus of Orc1p and Sir3p to recruit heterochromatic factors and establish repression.