Sures, Bernd:
The use of fish parasites as bioindicators of heavy metals in aquatic ecosystems: a review.
In: Aquatic Ecology, Jg. 35 (2001), Heft 2, S. 245 - 255
2001Artikel/Aufsatz in Zeitschrift
Biologie
Damit verbunden: 1 Publikation(en)
Titel:
The use of fish parasites as bioindicators of heavy metals in aquatic ecosystems: a review.
Autor*in:
Sures, BerndUDE
GND
173045731
LSF ID
47226
ORCID
0000-0001-6865-6186ORCID iD
Sonstiges
der Hochschule zugeordnete*r Autor*in
Erscheinungsjahr:
2001

Abstract:

Parasites are attracting increasing interest from parasite ecologists as potential indicators of environmental quality due to the variety of ways in which they respond to anthropogenic pollution. In environmental impact studies certain organisms provide valuable information about the chemical state of their environment not through their presence or absence but instead through their ability to concentrate environmental toxins within their tissues. Free living invertebrates, notably bivalve molluscs, are commonly employed in this role as `sentinel organisms' to monitor the concentrations of bioavailable metals in aquatic ecosystems. Also certain parasites, particularly intestinal acanthocephalans of fish, can accumulate heavy metals to concentrations orders of magnitude higher than those in the host tissues or the environment. The comparison of metal accumulation capacities between acanthocephalans and established free living sentinel organisms revealed significantly higher concentrations of several elements in Acanthocephalus lucii (Müller) than in the Zebra mussel Dreissena polymorpha (Pallas) which is a commonly used bioindicating organism in Europe. In contrast to the high heavy metal concentrations recorded in adult acanthocephalans, the larval stages in their respective crustacean intermediate hosts show little tendency to accumulate metals. A number of experimental studies demonstrate a clear time dependent accumulation of lead for acanthocephalans in their final hosts. These investigations provide evidence that the extremely high metal concentrations in intestinal acanthocephalans of fish are not the result of a slow process of accumulation but instead a relatively rapid uptake to a steady-state level. Thus, metal concentrations in adult acanthocephalans respond rapidly to changes in environmental exposure of their hosts. The value of parasites for environmental monitoring will be discussed in detail in the present article.