Compactness Properties for some Hyperspaces and Function Spaces

Dateibereich 5494

1,12 MB in 2 Dateien, zuletzt geändert am 17.12.2014

Dateiliste / Details

DateiDateien geändert amGröße
bartschrostock.pdf30.08.2002 00:00:001,10 MB
index.html13.10.2006 11:41:3217,8 KB

Rostock, Univ., Diss., 2002 erschien beim Shaker-Verlag, Aachen 2002. - ISBN 3-8322-0771-6
"Compactness properties of function space topologies, usually referred to as Ascoli-Arzela type results, are most fundamental and useful in both Topology and Analysis." (S.A. Naimpally) Here we contribute new aspects and strong new results to this widely studied topic through an unusual approach involving hyperspaces. We consider topological spaces and set-open topologies, as well, as we study a generalization of Tukey's approach to uniformity, namely the strong topological universe of multifilter spaces and fine maps, which may be viewed as the extension of the classical (and not unsubstantiated) dichotomy in descriptions of uniform structures into the realm of 'convenient topology', developed by Gerhard Preu├č. Hyperspaces are studied for topological spaces as well as for multifilter spaces. Mostly emphasized are compactness properties for hit-and-miss topologies from topological spaces, simply, because they form the model for our new approach to Ascoli-theorems in this work. Nevertheless, not all results are completely devoted to this attempt - we think, some could be interesting in their own right. There is a fairly useful set-theoretical lemma, for instance, and a property called 'weak relative complete' is considered for subsets of topological spaces. It is a common generalization of closedness and compactness, and in fact it is exactly what is needed to get compactness from relative compactness. It is proved, that a hit-and-miss hyperspace, containing at least the nonempty closed subsets, is compact if and only if the base space is, whenever the miss-sets come from weak relative complete subsets. Most of the former known compactness results for Fell or Vietoris topology follow easily from this. Furthermore, a few results on (relative) compactness of unions of (relative) compact subsets are established. Concerning hyperstructures from multifilter-spaces, we feel a quite direct transcription of the Vietoris-construction being fruitful and we give a lemma concerning precompactness of unions of precompact sets here. Finally, we devote the main part of the text to the study of the simple but important map, as provided in a recent (1998) embedding theorem of Mizokami. The topological behaviour of this map is the key tool, that allow us to use our knowledge on hyperspaces to produce powerful theorems of the Ascoli-Arzela type.
PURL / DOI:
Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Abschlussarbeiten » Dissertation
Fakultät / Institut:
Sonstige Einrichtungen / Externe
Dewey Dezimal-Klassifikation:
500 Naturwissenschaften und Mathematik » 510 Mathematik
Stichwörter:
hyperspace, function space, multifilter, compactness, Ascoli, uniform, topological universe, precompactness
Beitragende:
Prof. Dr. Poppe, Harry [Betreuer(in), Doktorvater]
Prof. Dr. Preuß, Gerhard [Gutachter(in), Rezensent(in)]
Prof. Dr. Naimpally, Som [Gutachter(in), Rezensent(in)]
Sprache:
Englisch
Kollektion / Status:
E-Publikationen / Dokument veröffentlicht
Datum der Promotion:
30.08.2002
Dokument erstellt am:
30.08.2002
Dateien geändert am:
17.12.2014
Medientyp:
Text
Quelle:
Universitaet Rostock, Math.-Nat. Fakultaet