Split-radix algorithms for discrete trigonometric transforms

Prof. Dr. rer. nat. Plonka-Hoch, Gerlind, Tasche, Manfred

Dateibereich 5235

279 KB in einer Datei, zuletzt geändert am 05.03.2002

Dateiliste / Details

DateiDateien geändert amGröße
mathe4.pdf05.03.2002 00:00:00279 KB
In this paper, we derive new split-radix DCT-algorithms of radix-2 length, which are based on real factorization of the corresponding cosine matrices into products of sparse, orthogonal matrices. These algorithms use only permutations, scaling with $sqrt{2}$, butterfly operations, and plane rotations/rotation-reflections. They can be seen by analogy with the well-known split-radix FFT. Our new algorithms have a very low arithmetical complexity which compares with the best known fast DCT-algorithms. Further, a detailed analysis of the roundoff errors for the new split-radix DCT--algorithm shows its excellent numerical stability which outperforms the real fast DCT-algorithms based on polynomial arithmetic.
PURL / DOI:
Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Texte » Artikel, Aufsatz
Fakultät / Institut:
Fakultät für Mathematik
Stichwörter:
65T50 Discrete and fast Fourier transforms, 15A23 Factorization of matrices, 65G50 Roundoff error
Kollektion / Status:
E-Publikationen / Dokument veröffentlicht
Dokument erstellt am:
05.03.2002
Dateien geändert am:
05.03.2002
Medientyp:
Text