Invariante Textursegmentierung mit Mehrkanalmethoden

Dateibereich 5103

7,68 MB in 6 Dateien, zuletzt geändert am 18.10.2006

Dateiliste / Details

DateiDateien geändert amGröße
01Titelseite.pdf02.03.2001 00:00:00218,7 KB
02Inhalt.pdf02.03.2001 00:00:00264,3 KB
03Kap1bis7.pdf02.03.2001 00:00:002,82 MB
04Kap8bis15.pdf02.03.2001 00:00:004,38 MB
index.html18.10.2006 14:31:105,6 KB
inhalt.htm18.10.2006 14:29:435,2 KB
This thesis introduces a method of texture segmentation, which is invariant with respect to orientation, scale and shift. The method is based on feature extraction by multi-channel Gabor filtering. The channels of the filter bank are organized in a polar-log scheme according to Fourier-Mellin approaches. The extracted features are classified with symmetric phase-only matched filtering. As these filters are optimal for the determination of peak location, orientation angle and scaling factor can be determined very precisely. Furthermore, the segmentation is insensitive with respect to noise. The thesis provides design criteria for filter banks. The segmentation algorithm automatically generates filter banks according to these criteria. The segmentation scheme consists of highly parallel and regular structures and is numerically efficient. A further speed-up is possible by employing sliding-window Fourier transform for Gabor filtering. The proposed segmentation scheme is suitable for the error detection in wood, cotton, textile or paper producing industries. It is suitable for texture-based object recognition and for aerial image analysis. The thesis shows segmentation results on textile textures, honing textures, Brodatz textures and artificial textures.
Keine URN zugeordnet
PURL / DOI:
Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Abschlussarbeiten » Dissertation
Fakultät / Institut:
Fakultät für Ingenieurwissenschaften » Elektrotechnik und Informationstechnik
Dewey Dezimal-Klassifikation:
600 Technik, Medizin, angewandte Wissenschaften » 620 Ingenieurwissenschaften
Stichwörter:
Fourier-Mellin approaches, image processing, computer vision, rotation and scale invariance, pattern recognition, fault detection, multi-channel approaches, surface inspection, noise robustness
Beitragende:
Prof. Ph. D. Hosticka, Bedrich J. [Betreuer(in), Doktorvater]
Prof. Dr.-Ing. habil. Rigoll, Gerhard [Gutachter(in), Rezensent(in)]
Sprache:
Deutsch
Kollektion / Status:
Dissertationen / Dokument veröffentlicht
Datum der Promotion:
02.03.2001
Dokument erstellt am:
02.03.2001
Dateien geändert am:
18.10.2006
Medientyp:
Text