Investigation of initial attachment and biofilm formation of mesophilic leaching bacteria in pure and mixed cultures and their efficiency of pyrite dissolution

Dateibereich 30740

5,98 MB in einer Datei, zuletzt geändert am 19.06.2012

Dateiliste / Details

DateiDateien geändert amGröße
Diss_Florian.pdf04.06.2012 16:41:495,98 MB
The objective of this thesis was to investigate initial attachment and biofilm formation to pyrite surfaces of the mesophilic, acidophilic leaching bacteria Leptospirillum ferrooxidans DSM 2705, Acidithiobacillus ferrooxidans ATCC 23270 and Acidithiobacillus thiooxidans DSM 622 in pure and mixed cultures and their efficiency in pyrite dissolution.

The highest initial attachment of pure cultures to pyrite grains was detected for Leptospirillum ferrooxidans DSM 2705 and Acidithiobacillus thiooxidans DSM 622. However, Leptospirillum ferrooxidans DSM 2705 showed the highest leaching rates of pure cultures, whereas Acidithiobacillus thiooxidans DSM 622 is not able to leach pyrite at all. The highest attachment rate for mixed cultures to pyrite grains was detected for Acidithiobacillus ferrooxidans ATCC 23270 with Leptospirillum ferrooxidans DSM 2705. The highest leaching rates were detected for the pure culture of Leptospirillum ferrooxidans DSM 2705 and all mixed cultures including this strain. Contrary to the high attachment of the mixed culture composed of cells of Acidithiobacillus ferrooxidans ATCC 23270 and Acidithiobacillus thiooxidans DSM 622 to pyrite grains, leaching of pyrite grains was low. The investigation of bacterial attachment and leaching of pyrite grains indicated that high attachment rates do not necessarily correlate with high leaching rates.

In particular, initial attachment of Acidithiobacillus ferrooxidans ATCC 23270, Acidithiobacillus thiooxidans DSM 622 and Leptospirillum ferrooxidans DSM 2705 in pure and mixed cultures to pyrite coupons was investigated. A combination of atomic force microscopy and epifluorescence microscopy allowed the visualization of cells, biofilms and pyrite surfaces at the same side with high spatial accuracy.
Visualization of cells on pyrite coupons showed heterogeneous attachment and biofilm formation by both pure and mixed cultures. The bacteria attached as single cells or in small cell clusters to the mineral surface. Only cells of Leptospirillum ferrooxidans DSM 2705 showed rarely cluster formation with higher cell numbers on the pyrite surfaces. However, large areas of the pyrite surface remained cell-free, whereas, others where highly colonized. The highest attachment to pyrite coupons was determined for the pure culture of Leptospirillum ferrooxidans DSM 2705 and the mixed culture of Acidithiobacillus ferrooxidans ATCC 23070 with Acidithiobacillus thiooxidans DSM 622 and Leptospirillum ferrooxidans DSM 2705. The investigation of individual species in mixed cultures on pyrite coupons showed heterogeneously distributed cells with no physical interspecies contact. Depending on the composition of the mixed culture individual species showed increased (Acidithiobacillus ferrooxidans ATCC 23270) or decreased (L. ferrooxidans DSM 2705) attachment to pyrite coupons. Attachment of pure cultures of Leptospirillum ferrooxidans DSM 2705, Acidithiobacillus ferrooxidans ATCC 23270 and Acidithiobacillus thiooxidans DSM 622 considerable changed, if coupons were previously colonized by biofilms whose cells were heat-inactivated before secondary colonization. Increased attachment for Acidithiobacillus ferrooxidans ATCC 23270 and Acidithiobacillus thiooxidans DSM 622 and decreased attachment for Leptospirillum ferrooxidans DSM 2705 was detected.
However, no significant difference in leaching of virgin pyrite coupons compared to precolonized pyrite coupons by pure cultures of Leptospirillum ferrooxidans DSM 2705 and Acidithiobacillus ferrooxidans ATCC 23270 was detected.
Permalink | Teilen/Speichern
Wissenschaftliche Abschlussarbeiten » Dissertation
Fakultät / Institut:
Fakultät für Chemie » Biofilm Center
Dewey Dezimal-Klassifikation:
500 Naturwissenschaften und Mathematik » 540 Chemie » 540 Chemie und zugeordnete Wissenschaften
Bioleaching, Pyrite
Prof. Dr. rer. nat. Sand, Wolfgang [Betreuer(in), Doktorvater]
Prof. Dr. Flemming, Hans-Curt [Gutachter(in), Rezensent(in)]
Kollektion / Status:
Dissertationen / Dokument veröffentlicht
Promotionsantrag am:
Dokument erstellt am:
Dateien geändert am:
Datum der Promotion:
Acuña, J., Rojas, J., Amaro, A., Toledo, H., Jerez, C. (1992). Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. FEMS Microbiol. Lett., 96, pp. 37 - 42. Akcila, A., Ciftcia, H., Devecib, H. (2007). Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner. Eng., 20, pp. 310 - 318. Amann, R., Fuchs, B., Behrens, S. (2001). The identification of microorganisms by fluorescence in situ hybridisation. Curr. Opin. Biotechnol., 12, pp. 231 - 236. Amann, R., Krumholz, L., Stahl, D. (1990). Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol., 172, pp. 762 - 770. Amann, R., Ludwig, W., Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59, pp. 143 - 169. Andrews, G. (1988). The selective adsorption of Thiobacilli to dislocation sites on pyrite surfaces. Biotechnol. Bioeng., 31, pp. 378 - 381. Anonymous. (1984). Bestimmung von Eisen, E1, In: Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung. Weinheim, Germany: Verlag Chemie. Bacela-Nicolau, P., Johnson, D. (1999). Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl. Environ. Microbiol., 65, pp. 585 - 590. Balashova, V., Vedinina, I. Y., Markosyan, G., Zavarzin, G. (1974). The autotrophic growth of Leptospirillum ferrooxidans. Microbiology (English translation of Mikrobiologiya), 43, pp. 491 - 494. Barker, B., Banfield, J. (2003). Microbial communities in acid mine drainage. FEMS Microbiol. Ecol., 44, pp. 139 - 152. Barnes, H., Romberger, S. (1968). The chemical aspects of acid mine drainage. J. Water Pollut. Control Fed., 40, pp. 371 - 384. Barton, L., Shively, J. (1968). Thiosulfate utilization by Thiobacillus thiooxidans ATCC 8085. J. Bacteriol., 95, p. 720. Battaglia, F., Morin, D., Garcia, J.-L., Ollivier, P. (1994). Isolation and study of two strains of Leptospirillum-like bacteria from a natural mixed population cultured on a cobaltiferrous pyrite substrate. Antonie van Leeuwenhoek, 66, pp. 295 - 302. Beard, S., Paradela, A., Albar, J., Jerez, C. (2011). Growth of Acidithiobacillus ferrooxidans ATCC 23270 in thiosulfate under oxygen-limiting conditions generates extracellular sulfur globules by means of a secreted tetrathionate hydrolase. Front. Microbio., 2, doi: 10.3389/fmicb.2011.00079. Beech, I., Smith, J., Steele, A., Penegar, I., Campbell, S. (2002). The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloid. Surface. B, 23, pp. 231 - 247. Bevilaqua, D., Garcia, O., Tuovinen, O. (2010). Oxidative dissolution of bornite by Acidithiobacillus ferrooxidans. Process. Biochem., 45, pp. 101 - 106. Binning, G., Quate, C., Gerber, C. (1986). Atomic force microscopy. Rev. Lett., 56, pp. 930 - 933. Bird, L., Bonnefoy, V., Newman, D. (2011). Bioenergetic challenges of microbial iron metabolisms. Trends. Microbiol., 19, pp. 330 - 340. Bond, P., Banfield, J. (2001). Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb. Ecol., 41, pp. 149 - 161. Bond, P., Smriga, S., Banfield, J. (2000). Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol., 66, pp. 3842 - 3849. Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev., 20, pp. 591 - 604. Brierley, C. (1997). Mining Biotechnology: Research to commercial development and beyond. In D. Rawlings, Biomining: Theory, Microbes and Industrial Processes (pp. 3 - 17). Berlin, Deutschland: Springer. Bryant, R., Costerton, J., Laishley, E. (1984). The role of Thiobacillus albertis glycocalyx in the adhesion of cells to elemental sulfur. Can. J. Microbiol., 30, pp. 81 - 90. Brock, T., Gustafson, J. (1976). Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Mirobiol., 32, pp. 567 - 571. Brunauer, S., Emmett, P., Teller, E. (1938). Adsorption of gases in multimolecular layers. J. Amer. Chem. Soc., 30, pp. 309 - 319. Busscher, H., Sjollema, J., van der Mei, H. (1990). Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. In R. Doyle, M. Rosenberg, Microbial Cell Surface Hydrophobicity (pp. 335 - 359). Washington: American Society for Microbiology. Chan, C., Suzuki, I. (1994). Thiosulfate oxidation by sulfur-grown Thiobacillus thiooxidans cells, cell-free extracts, and thiosulfate-oxidizing enzyme. Can. J. Microbiol., 40, pp. 816 - 822. Chen, Y., Busscher, H., van der Mei, H., Norde, W. (2011). Statistical analysis to substratum surfaces as measured using atomic force microscopy. Appl. Environ. Microbiol., 77, pp. 5065 - 5070. Colmer, A., Hinkel, M. (1947). The role of microorganisms in acidic mine drainage: a preliminary report. Science, 106, pp. 253 - 256. Cullander, C. (1999). Fluorescent probes for confocal microscopy. Methods Mol. Biol., 122, pp. 59 - 73. Curutchet, G., Pogliani, C., Donati, E. (1995). Indirect bioleaching of covellite by Thiobacillus thiooxidans with an oxidant agent. Biotechnol. Lett., 17, pp. 1251 - 1256. DeLong, E., Wickham, G., Pace, N. (1989). Phylogenetic strains: ribosomal RNA-based probes for the identification of single cells. Science, 243, pp. 1360 - 1363. DiSpirito, A., Tuovinen, O. (1982a). Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans. Arch. Microbiol., 133, pp. 28 - 32. DiSpirito, A., Silver, M., Voss, L., Tuovineni, O. (1982b). Flagella and pili of iron-oxidizing Thiobacilli isolated from an uranium mine in northern Ontario, Canada. Appl. Environ. Mirobiol., 43, pp. 1196 - 1200. Doetsch, R., Cook, T., Vaituzis, Z. (1967). On the uniqueness of the flagellum of Thiobacillus thiooxidans. Antonie van Leeuwenhoek J. Microbiol. Serol., 33, pp. 196 - 202. Donlan, R. (2002). Biofilms: Microbial life on surfaces. Emerg. Infectious. Dis., 8, pp. 881 - 890. Dopson, M., Lindström, E. (1999). Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol., 65, pp. 36 - 40. Drobner, E., Huber, H., Stetter, K. (1990). Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl. Environ. Mirobiol., 56, pp. 2922 - 2923. Edelbro, R., Sandström, Å., Paul, J. (2003). Full potential calculations on the electron bandstructures of sphalerite, pyrite and chalcopyrite. Appl. Surf. Sci., 206, pp. 300 - 313. Edwards, K., Rutenberg, A. (2001). Microbial response to surface microtopography: The role of metabolism in localized mineral dissolution. Chem. Geol., 180, pp. 19 - 32. Edwards, K., Bond, P., Banfield, J. (2000). Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: a chemotactic response to sulphur minerals. Environ. Microbiol., 2 (3), pp. 324 - 332. Edwards, K., Gihring, T., Banfield, J. (1999). Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl. Environ. Microbiol., 65, pp. 3627 - 3632. Edwards, K., Schrenk, M., Hamers, R., Banfield, J. (1998). Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment. Am. Mineral., 83, pp. 1444 - 1453. Ehrhardt, C., Banas, E., Janik, J. (1968). Application of spherically curved chrystals for X-ray fluorescence. Appl. Spectrosc., 22, pp. 730 - 735. Engel, A., Schoenenberger, C.-A., Müller, D. (1997). High-resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr. Opin. Struc. Biol., 7, pp. 279 - 284. Espejo, R., Romer, P. (1987). Growth of Thiobacillus ferrooxidans on elemental sulfur. Appl. Environ. Microbiol., 53, pp. 1907 - 1912. Etzel, K. (2008). Biological and abiotic dissolution of natural, cut and synthetic pyrite surfaces. Dissertation. Kiel. Farah, C., Vera, M., Morin, D., Haras, D., Jerez, C., Guiliani, N. (2005). Evidence for a functional quorum-sensing type Al-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol., 71, pp. 7033 - 7040. Fife, D., Bruhn, D., Miller, K., Stoner, D. (2000). Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria. Appl. Environ. Microbiol., 66, pp. 2208 - 2210. Fischer, J., Quentmeier, A., Gansel, S., Sabados, V., Friedrich, C. (2002). Inducible aluminium resistance of Acidiphilum cryptum and aluminium tolerance of other acidophilic bacteria. Arch. Microbiol. , 178, pp. 554 - 558. Florian, B., Noël, N., Thyssen, C., Felschau, I., Sand, W. (2011). Some quantitative data on bacterial attachment to pyrite. Miner. Eng., 24, pp. 1132 - 1138. Florian, B., Noël, N., Sand, W. (2010). Visualization of initial attachment of bioleaching bacteria using combined atomic force and epifluorescence microscopy. Min. Eng., 23, pp. 532 - 535. Florian, B. (2007). Study of the attachment behavior of moderate thermophilic bacteria to metal sulfides. Master thesis. Aquatische Biotechnologie, Universität Duisburg-Essen, Duisburg. Fub, B., Zhoua, H., Zhanga, R., Qiua, G. (2008). Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Int. Biodeter. Biodegr., 62, pp. 109 - 115. Garcia, O., Bigham, J., Tuovinen, O. (1995). Oxidation of galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Can. J. Microbiol., 41, pp. 508 - 514. Gehrke, T., Hallmann, R., Kinzler, K., Sand, W. (2001). The EPS of Acidithiobacillus ferrooxidans - a model for structure-function relationships of attached bacteria and their physiology. Water. Sci. Technol., 43, pp. 159 - 167. Gehrke, T., Hallmann, R., Sand, W. (1995). Importance of exopolymers from Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for bioleaching. In T. Vargas, C. Jerez, J. Wiertz, H. Toledo, Biohydrometallurgy processing. Santiago. Gehrke, T., Telegdi, J., Thierry, D., Sand, W. (1998). Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol., 64, pp. 2743 - 2747. Goebel, B., Stackebrandt, E. (1994). Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol., 60, pp. 1614 - 1621. Göksel, A. (2000). Einfluss der extracellulären, polymeren Substanzen (EPS) auf die Oxidation von Elementarschwefel von acidophilen Laugungsbakterien. Diplomarbeit. Bteilung Mikrobiologie, Institut für Allgemeine Botanik, Universität Hamburg. Gomez, C., Bosecker, K. (1999). Leaching heavy metals from contaminated soil by using Thiobacillus ferrooxidans or Thiobacillus thiooxidans. Geomicobiol. J., 16, pp. 233 - 244. González-Toril, E., Gómez, F., Malki, M., Amils, R. (2006). The isolation and study of acidophilic microorganisms. In F. Rainey, A. Oren, Extremeophiles- Methods in Microbiology (Vol. 35, pp. 471 - 510). Amsterdam, Netherlands: Elsevier/Academic Press. Gray, N. (1996). Environmental impact and remediation of acid mine drainage: a management problem. Environ. Geol., 30, pp. 62 - 71. Grundwell, F. (1988). The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy, 21, pp. 155 - 190. Guidone, G. (1998). Physiologische Untersuchungen an vier Stämmen der Gattung "Leptospirillum". Diplomarbeit. Institut für Allgemeine Botanik, Universität Hamburg. Hallberg, K., Hedrich, S., Johnson, D. (2011). Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles, 15, 271–279. Hallmann, R., Friedrich, A., Koops, H.-P., Pommerening-Roeser, A., Rohde, K., Zenneck, C., et al. (1992). Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching. Geomicrobiol. J., 10, pp. 193 - 206. Harneit, K., Göksel, A., Kock, D., Klock, J., Gehrke, T., Sand, W. (2006). Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy, 83, pp. 245 - 254. Harrison, A., Norris, P. (1985). Leptospirillum ferrooxidans and similar bacteria: some characteristics and genomic diversity. FEMS Microbiol. Biotechnol. Let., 30, pp. 99 - 102. Harrison, A. (1982). Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans. Arch. Microbiol., 131, pp. 68 - 76. Harrison, A. (1981). Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int. J. Syst. Bacteriol., 31, pp. 327 - 332. Hazeu, W., Batenburg-van der Vegte, W., Bos, P., van der Pas, R., Kuenen, J. (1988). The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch. Microbiol., 150, pp. 574 - 579. Hippe, H. (2000). Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int. J. Syst. Evol. Microbiol., 50, pp. 501 - 503. Holuscha, D. (2010). Visualization of extracellular polymeric substances during attachment to metal sulfides by acidophilic microorganisms. Master Thesis, Universität Duisburg-Essen . Hongyu, M., Chen, Q., Du, J., Tang, L., Qin, F., Miao, B., et al. (2011). Ferric reductase activity of the ArsH protein from Acidithiobacillus ferrooxidans. J. Microbiol. Biotechnol., 21, pp. 464 - 469. Ingledew, W. (1982). Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph. Bioch. Biophys. Acta., 683, pp. 89-117. Jiao, Y., Cody, G., Harding, A., Wilmes, P., Schrenk, M., Wheeler, K., et al. (2010). Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl. Environ. Microbiol., 76, pp. 2916 - 2922. Jones, G., Starkey, R. (1961). Surface-active substances produced by Thiobacillus thiooxidans. J. Bacteriol., 81, pp. 788 - 789. Jones, D., Albrecht, H., Dawson, K., Schaperdoth, I. (2011). Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J online publication, p. doi:10.1038/ismej.2011.75. Karavaiko, G., Turova, T., Kondrat'eva, T., Lysenko, A., Kolganova, V., Ageeva, S., et al. (2003). Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. Int. J. Syst. Evol. Micr., 53, pp. 113 - 119. Kelly, D., Wood, A. (2000). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol., 50, pp. 511 - 516. Kimura, S., Coupland, K., Hallberg, K., Johnson, D. (2003). Composition of biofilm communities in acidic mine waters as revealed by combined cultivation and biomolecular approaches. Proceedings of the 15th International Biohydrometallurgy Symposium, pp. 1057 - 1065. Kinzler, K., Gehrke, T., Telegdi, J., Sand, W. (2003). Bioleaching - a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy, 71, pp. 83 - 88. Klock, J.-H. (2003). Oxidationsaktivität, extracelluläre polymere Substanzen und Anheftung an Metallsulfide bei Leptospirillum ferrooxidans. Diplomarbeit. Abteilung Mikrobiologie, Institut für Allgemeine Botanik, Universität Hamburg. Kock, D., Schippers, A. (2008). Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl. Environ. Mircrob., 74, pp. 5211 - 5219. Kock, D., Graupner, T., Rammlmair, D., Schippers, A. (2007). Quantification of microorganisms involved in cemented layer formation in sulfidic mine waste tailings. Adv. Mater. Res., 20/21, pp. 481 - 484. Kock, D. (2003). Untersuchung zur Anheftung von Acidithiobacillus ferrooxidans an verschiedenen Mineralen. Diplomarbeit. Abteilung Mikrobiologie, Institut für Allgemeine Botanik, Universität Hamburg. König, R., Winkler, G. (1989). C. Plinius Secundus d. Ä. Naturkunde. In R. König, K. Bayer, Lateinisch-Deutsch Buch XXXIV. Metallurgie. München. Landesman, J., Duncan, D., Walden, C. (1966). Oxidation of inorganic sulfur compounds by washed cell suspensions of Thiobacillus ferrooxidans. Can. J. Microbiol., 12, pp. 957 - 964. Leduc, L., Ferroni, G. (1994). The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol., 14, pp. 103 - 120. Li, Y.-Q., Wan, D.-S., Huang, S.-S., Leng, F.-F., Yan, L., Ni, Y.-Q., et al. (2010). Type IV pili of Acidithiobacillus ferrooxidans are necessary for sliding, twitching motility, and adherence. Curr. Microbiol., 60, pp. 17 - 24. Liu, H.-L., Chen, B.-Y., Lan, Y.-W., Cheng, Y.-C. (2003). SEM and AFM images after bioleaching by the indigenous Thiobacillus thiooxidans. Appl. Microbiol. Biotechnol., 62, pp. 414 - 420. Lizama, H., Suzuki, I. (1991). Interaction of chalcopyrite and sphalerite with pyrite during leaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Can. J. Microbiol., 37, pp. 304 - 311. Loosdrecht, M., Lyklema, J., Norde, W., Zehnder, J. (1990). Influence of interfaces on microbial activity. Microbiol. Rev., 54, pp. 75 - 87. Luther III, G. (1987). Pyrite oxidation and reduction: Molecular orbital theory consideration. Geochim. Cosmochim. Acta., 51, pp. 3193-3199. Mackintosh, M. (1978). Nitrogen fixation by Thiobacillus ferrooxidans. J. Gen. Microbiol., 105, pp. 215 - 218. Mafanya, K. (2007). The study of the attachment behaviour of different strains of Acidithiobacillus spp. to pyrite. Master thesis. Aquatische Biotechnologie, Universität Duisburg-Essen, Duisburg. Mangold, S., Harneit, K., Rohwerder, T., Claus, G., Sand, W. (2008 a). Novel combination of atomic force microscopy and epifluorescence microscopy for visualization of leaching bacteria on pyrite. Appl. Environ. Microbiol., 74, pp. 410 - 415. Mangold, S., Laxander, M., Harneit, K., Rohwerder, T., Claus, G., Sand, W. (2008 b). Visualization of Acidithiobacillus ferrooxidans biofilms on pyrite by atomic force microscopy and epifluorescence microscopy under various conditions. Hydrometallurgy, 94, pp. 127 - 132. Mangold, S. (2006). Attachment and leaching rate of different strains of Acidithiobacillus ferrooxidans on sulfide minerals. Laboratory project report, University of Duisburg-Essen, Duisburg. Markosyan, G. (1972). A new iron-oxidizing bacterium - Leptospirillum ferrooxidans nov. gen. sp. Biol. J. Armenia, 25, pp. 26 - 29. Meadows, P. (1971). The attachment of bacteria to solid surfaces. Arch. Microbiol. , 75, pp. 374 - 381. Medvedev, D., Stuchebrukhov, A. (2001). DNA repair mechanism by photolyase: Electron transfer path from the photolyase catalytic cofactor FADH- to DNA thymine dimer. J. Ther.Biol., 210, pp. 237 - 248. Moses, C., Nordstrom, D., Herman, J., Mills, A. (1987). Aqueous pyrite oxidation by dissolved oxygen and ferric iron. Geochim. Cosmochim. Acta., 51, pp. 1561 - 1571. Moter, A., Göbel, U. (2000). Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Meth., 41, pp. 85 - 112. Murowchick, J., Barnes, H. (1987). Effect of temperature and degree of supersaturation on pyrite morphology. Am. Mineral., 72, pp. 11 - 12. Nagaoka, T., Ohmura, N., Saiki, H. (1999). A novel mineral floating process using Thiobacillus ferrooxidans. Appl. Environ. Mirobiol., 65, pp. 3588 - 3593. Natarajan, K. (1990). Electrochemical aspects of bioleaching of base-metal sulfides. In H. Ehrlich, C. Brierley, Microbial Mineral Recovery (pp. 79 - 106). New York: McGraw-Hill. Neu, T. (1996). Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev., 60, pp. 151 - 166. Noël, N., Florian, B., Sand, W. (2010). AFM EFM study on attachment of acidophilic leaching organisms. Hydrometallurgy, 104, pp. 370 - 375. Noël, N. (2008). Comparative study of planktonic and sessile cells in cultures of Leptospirillum ferriphilum and Acidithiobacillus caldus on pyrite. Master thesis. Aquatische Biotechnologie, Universität Duisburg-Essen, Duisburg. Norris, P., Murrell, J., Hinson, D. (1995). The potential for diazotrophy in iron- and sulfur oxidizing acidophilic bacteria. Arch. Microbiol., 164, pp. 294 - 300. Norris, P. (1990). Acidophilic bacteria and their activity in mineral sulfide oxidation. In H. Ehrlich, C. Brierley, Microbial mineral recovery (pp. 3 - 27). New York: McGraw-Hill. Norris, P., Barr, D., Hinson, D. (1988). Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In P. Norris, D. Kelly. In: Biohydrometallurgy, proceedings of the international symposium (pp. 43 – 59). Warwick, Antony Rowe Ltd. Chippenham, Wiltshire, UK. Norris, P. (1983). Iron and mineral oxidation with Leptospirillum ferrooxidans. In G. Rossi, A. Torma, Progress in Biohydrometallurgy (pp. 83 - 96). Iglesias, Italy: Associazone Mineraria Sarda. Norris, P., Kelly, D. (1978). Dissolution of pyrite (FeS2) by pure and mixed cultures of some acidophilic bacteria. FEMS Microbiol. Lett., 4, pp. 143 - 146. Okibe, N., Johnson, D. (2009). Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles on pH-controlled bioreactors: significance of microbial interactions. Biotechnol. Bioeng., 87, pp. 574 - 583. Okibe, N., Gericke, M., Hallberg, K., Johnson, D. (2003). Enumeration and characterization of acidophilic microorganisms isolated from pilot plant stirred-tank bioleaching operation. Appl. Environ. Microbiol., 69, pp. 1936 - 1943. Pace, D., Mielke, R., Southam, G., Porter, T. (2005). Scanning force microscopy studies of the colonization and growth of A. ferrooxidans on the surface of pyrite minerals. Scanning, 27, pp. 136 - 140. Parro, V., Moreno-Paz, M. (2004). Nitrogen fixation in acidophile iron-oxidizing bacteria: The nif regulon of Leptospirillum ferrooxidans. Res. Microbiol. , 155, pp. 703 - 709. Parro, V., Moreno-Paz, M. (2003). Gene function analysis in environmental isolates: the nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans. PNAS., 100, pp. 7883 - 7888. Pistorio, M., Curutchet, G., Donati, E., Tedesco, P. (1994). Direct zinc sulfide bioleaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Biotechnol. Lett., 16, pp. 419 - 424. Pivovarova, T., Markosyan, G., Karavaiko, G. (1981). Morphogenesis and fine structure of Leptospirillum ferrooxidans. Microbology, 50, pp. 339 - 344. Porter, K., Feig, Y. (1980). The use of DAPI for identification and counting aquatic microflora. Limnol. Oceanogr., 25, pp. 943 - 948. Pronk, J., De Bruyn, J., Bos, P., Kuenen, J. (1992). Anaerobic growth of Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 58, pp. 2227 - 2230. Quatrini, R., Appia-Ayme, C., Denis, Y., Jedlicki, E., Holmes, D., Bonnefoy, V. (2009). Extending the model for iron and sulfur oxidation in the extreme acidophilic Acidithiobacillus ferrooxidans. BMC Genomics, 10:394, pp. doi:10.1186/1471-2164-10-394. Qui, M.-Q., Xiong, S.-Y., Zhang, W.-M., Wang, G.-X. (2005). A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner. Eng., 18, pp. 987 - 990. Rawlings, D. (2005). Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact. 4. doi:10.1186/1475-2859-4-13 Rawlings, D. (2002). Heavy metal mining using microbes. Annu. Rev. Microbiol., 56, pp. 65 - 91. Rawlings, D., Tributsch, H., Hansford, G. (1999). Reason why 'Leptospirillum' -like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology , 145, pp. 5 - 13. Rittenberg, S., Grady, R. (1950). Induced mutants of Thiobacillus thiooxidans requiring organic growth factors. J. Bacteriol., 60, pp. 509 - 510. Rodríguez, Y., Ballester, A., Balázquez, M., González, F., Muñoz, J. (2003). Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite. Geomicrobiol. J., 20, pp. 131 - 141. Rohwerder, T., Sand, W. (2007a). Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. In E. Donati, W. Sand, Microbial Processing of Metal Sulfides (pp. 35 - 58). Dordrecht, Netherlands: Springer. Rohwerder, T., Sand, W. (2007b). Oxidation of inorganic sulfur compounds in acidophilic prokaryotes. Eng. Life Sci. , 7, pp. 301 - 309. Rohwerder, T., Sand, W. (2003a). The sulfane sulfur of persulfates is the actual substrate of the sulfur-oxidizing systems from Acidithiobacillus and Acidiphilum spp. Microbiology, 149, pp. 1699 - 1709. Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W. (2003b). Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 63, pp. 239 - 248. Rohwerder, T., Schippers, A., Sand, W. (1998). Determination of reaction energy values for biological pyrite oxidation by calorimetry. Thermochim. Acta., 309, pp. 19 - 29. Rojas-Chapana, J., Tributsch, H. (2004). Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite. FEMS Microbiol. Ecol., 47, pp. 19 - 29. Ruiz, L., Gonzalez, A., Frezza, M., Soulere, L., Queneau, Y., Doutheau, A., Rohwerder, T., Sand, W., Jerez, C.A., Guiliani, N. (2007). Is the quorum sensing type Al-1 system of Acidithiobacillus ferrooxidans involved in its attachment to mineral surfaces? Adv. Mat. Res., 20-21, pp. 345 - 349. Rzhepishevska, O., Lindstrom, E., Tuovinen, O., Dopson, M. (2005). Bioleaching of sulfidic tailing samples with a novel, vacuum-positive pressure driven bioreactor. Biotechnol. Bioeng., 92, pp. 559 - 567. Sakaguchi, H., Torma, A., Silver, M. (1976). Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 31, pp. 7 - 10. Sampson, M., Phillips, C., Blake II, R. (2000). Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Miner. Eng., 13, pp. 373 - 389. Sand, W., Gehrke, T. (2006). Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res. Microbiol., 157, pp. 49 - 56. Sand, W., Gehrke, T., Jozsa, P.-G., Schippers, A. (2001). (Bio)chemistry of bacterial leaching- direct vs. indirect bioleaching. Hydromet., 59, pp. 159 - 175. Sand, W., Gehrke, T., Hallmann, R., Schippers, A. (1998). Towards a novel bioleaching mechanism. Min. Pro. Ext. Met. Rev. , 19, pp. 97 - 106. Sand, W., Gehrke, T., Hallmann, R., Schippers, A. (1995). Sulfur chemistry, biofilm, and the (in)direct attack mechanism - a critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol., 43, pp. 961 - 966. Sand, W., Rohde, K., Sobotke, B., Zenneck, C. (1992). Evaluation of Leptospirillum ferrooxidans for leaching. Appl. Environ. Microb., 58, pp. 85 - 92. Sand, W. (1989). Ferric iron reduction by Thiobacillus ferrooxidans at extremely low pH-values. Biogeochemistry, 7, pp. 195 - 201. Sanhueza, A., Ferrer, I., Vargas, T., Amils, R., Sanchez, C. (1999). Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy, 51, pp. 115 - 129. Sauer, K., Camper, A., Ehrlich, G., Costerton, J., Davies, D. (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol., 184, pp. 1140 - 1154. Schaeffer, W., Holbert, P., Umbreit, W. (1963). Attachment of Thiobacillus thiooxidans to sulfur christals. J. Bacteriol., 85, pp. 137 - 140. Schippers, A., Breuker, A., Blazejak, K., Bosecker, K., Kock, D., Wright, T. (2010). The biogeochemistry and microbiology of sulfuric mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy, 104, pp. 342 - 350. Schippers, A. (2007). Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In E. Donati, W. Sand, Microbial Processing of Metal Sulfides (pp. 3 - 34). Dordrecht, Netherlands: Springer. Schippers, A., Bosecker, K. (2005). Bioleaching: Analysis of microbial communities dissolving metal sulfides. In J.-L. Barredo, Methods in Biotechnology (Vol. 18: Microbial Processes and Products, pp. 405 - 412). Totowa, New York: Humana Press. Schippers, A., Sand, W. (1999a). Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol., 65, pp. 319 - 321. Schippers, A., Rohwerder, T., Sand, W. (1999b). Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl. Microbiol. Biot., 52, pp. 104 - 110. Schippers, A. (1998). Untersuchungen zur Schwefelchemie der biologischen Laugung von Metallsulfiden. Dissertation. Hamburg. Schippers, A., Jozsa, P.-G., Sand, W. (1996). Sulfur chemistry in bacterial leaching of pyrite. Appl. Environ. Microbiol. , 62, pp. 3424 - 3431. Schippers, A., Hallmann, R., Wentzien, S., Sand, W. (1995). Microbial diversity in uranium mine waste heaps. Appl. Environ. Microbiol., 61, pp. 2930 - 2935. Schrenk, M., Edwards, K., Goodman, R., Hamers, R., Banfield, J. (1998). Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans-implications for generation of acid mine drainage. Science, 279, pp. 1519 - 1522. Shao, Z., Mou, J., Czajkowsky, D., Yang, J., Yuan, J.-Y. (1996). Biological atomic force microscopy: what is achieved and what is needed. Adv. Phys., 45, pp. 1 - 86. Shrihari, J., Modak, M., Kumar, R., Gandhi, K. (1995). Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans. Hydrometallurgy, 38, pp. 175 - 187. Shrihari, J., Kumar, R., Gandhi, K., Natarajan, K. (1991). Role of cell attachment in leaching of chalcopyrite mineral by Thiobacillus ferrooxidans. Appl. Microbiol. Biotechnol., 36, pp. 278 - 282. Silver, S., Thorma, A. (1974). Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Can. J. Mirobiol., 20, pp. 141-147. Silverman, M., Lundgren, D. (1959). Studies on the chemoautotrophic iron bacterium Ferrooxidans ferrooxidans. I. An improved medium and harvesting procedure for securing high cell yields. J. Bacteriol., 77, pp. 642 - 647. Singer, P., Stumm, W. (1970). Acid mine drainage: the rate-determining step. Science, 167, pp. 1121 - 1123. Stein, S. (2004). Anheftung von Acidithiobacillus ferrooxidans an Mineraloberflächen nach Anzucht auf unterschiedlichen Substraten. Diplomarbeit. Biozentrum Klein Flottbek und Botanischer Garten, Universität Hamburg. Stevens, C., Noaha, K., Andrewsa, G. (1993). Large laboratory scale demonstration of combined bacterial and physical coal depyritization. Fuel, 72, pp. 1601 - 1606. Strathmann, M., Wingender, J., Flemming, H.-C. (2002). Application of fluorescently labeled lectins for the visualisation and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J. Microbiol. Meth., 50, pp. 237 - 248. Streudel, R. (1996). Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind. Eng. Chem. Res., 35, pp. 1417 - 1423. Suzuki, I., Chan, C., Takeuchi, T. (1992). Oxidation of elemental sulfur to sulfite by Thiobacillus thiooxidans cells. Appl. Environ. Microbiol., 58, pp. 3767-3769. Suzuki, I. (1965). Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans. Biochim. Biophys. Acta., 104, pp. 359 - 371. Tayler, E., Lower, S. (2008). Thickness and surface density of extracellular polymers on Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol., 74, pp. 309 - 311. Telegdi, J., Keresztes, Z., Pálinkás, G., Kálmán, E., Sand, W. (1998). Microbially influenced corrosion visualized by atomic force microscopy. Appl. Phys., 66, pp. 639 - 642. Temple, K., Colmer, A. (1951). The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans. J. Bacteriol., 62, pp. 605 - 611. Torma, A., Sakaguchi, H. (1978). Relation between the solubility product and the rate of metal sulfide oxidation by Thiobacillus ferrooxidans. J. Ferment. Technol., 56, pp. 173 - 178. Tributsch, H., Bennett, J. (1981a). Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps. J. Chem. Technol. Biotechnol., 31, pp. 565 - 577. Tributsch, H., Bennett, J. (1981b). Semiconductor-Electrochemical Aspects of Bacterial Leaching. Part 2. Survey of rate-controlling Sulphide Properties. J. Chem. Technol. Biotechnol., 31, pp. 627 - 635. Tuovinen, O., Bhatti, T., Bigham, J., Hallberg, K., Garcia, J., Lindström, E. (1994). Oxidative dissolution of arsenopyrite by mesophilic and moderately acidophilic thermophiles. Appl. Environ. Mirobiol., 60, pp. 3268 - 3274. Tyson, G., Chapman, J., Hugenholtz, P., Allen, E., Ram, R., Richardson, P., et al. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428, pp. 37 - 43. Valdés, J., Pedroso, I., Quatrini, R., Hallberg, K., Valenzuela, P., Holmes, D. (2007). Insights into the metabolism and ecophysiology of three Acidithiobacilli by comparative genome analysis. Adv. Mat. Res., 20-21, pp. 439 - 442. van der Aa, B., Dufrêne, Y. (2002). In situ characterization of bacterial extracellular polymeric substances by AFM. Colloid. Surface. B, 23, pp. 173 - 182. Waksman, S., Joffe, J. (1922). Microorganisms concerned in the oxidation of sulfur in the soil: II. Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil. J. Bacteriol., 7, pp. 239 - 256. Weiß, J. (1991). Ionenchromatographie. Weinheim: VCH-Verlagsgesellschaft. Winans, S., Bassler, B. (2002). Meeting Review: Mob Psychology. J. Bacteriol., 184, pp. 873 - 883. Wingender, J., Neu, R., Flemming, H.-C. (1999). What are bacterial extracellular polymeric substances? In J. Wingender, R. Neu, H.-C. Flemming, Microbial Extracellular Substances. Characterization, Structure and Function (pp. 1-15). Berlin Heidelberg: Springer-Verlag. Woese, C. (1987). Bacterial evolution. Microbiol. Rev., 51, pp. 221 - 271.
Februar/2008 - Februar/2012