Optische und elektronische Eigenschaften von halbleitenden Nanopartikeln

Dateibereich 28597

16,37 MB in einer Datei, zuletzt geändert am 12.10.2011

Dateiliste / Details

DateiDateien geändert amGröße
Dissertation_Gondorf.pdf12.10.2011 09:32:3716,37 MB
In der vorliegenden Arbeit werden die elektronischen Eigenschaften halbleitender Nanopartikel untersucht. Es wird die Strom-Spannungs-Charakteristik einer Submonolage von Silizium-Nanopartikeln, die in eine Si3N4-Matrix eingebettet sind, berechnet und mit experimentellen Daten von Cho et al. verglichen. Dabei wird untersucht, ob Quantisierungseffekte wie die Coulomb-Blockade auch in den U-I-Kenn- linien eines Systems, das aus vielen Partikeln besteht, zu erwarten sind. Mit Hilfe von Reflexionsmessungen werden Silizium- und Germanium- Nanopartikel, die zu Presslingen kompaktiert wurden, untersucht. Dabei geht es darum die Ladungsträgerdichte in den Partikel zu bestimmen und zu untersuchen wie sich die Core-Shell-Struktur der Partikel (Ge/Si-Kern und eine Hülle aus Germaniumoxid bzw. Siliziumoxid) auf die Reflexionsspektren auswirkt. Des Weiteren wird der Einfluss von Dotierung auf die Eigenschaften der Partikel untersucht. Mit optischer Spektroskopie und Magneto-Transport-Messungen werden dünne Schichten aus zum Teil versinterten Indiumzinnoxid-Nanopartikeln (ITO-Nanopartikeln) untersucht. In optischer Spektroskopie wird die Dielektrizitätsfunktion der Partikel im Hochfrequenzbereich und daraus Ladungsträgerkonzentration und Beweglichkeit bestimmt. Magneto-Transport-Messungen ermöglichen es die Hall-Spannung und die makroskopische Leitfähigkeit zu bestimmen. Aus diesen Messungen (unter Berücksichtigung theoretisch hergeleiteter Korrekturfaktoren [Kharitonov2008]) lässt sich ebenfalls die Ladungsträgerkonzentration und die Beweglichkeit bestimmen. Die Kombination beider Messmethoden erlaubt einen Einblick in die elektronische Struktur dieses Systems. Schichten aus ITO-Nanopartikeln haben zudem die Eigenschaft, dass sobald ein Magnetfeld senkrecht zur Stromrichtung angelegt wird, sich deren spezifischer Widerstand verringert. Man spricht vom negativen transversalen Magnetowiderstand. Die Messergebnisse werden mit der Theorie der schwachen Lokalisierung in granularen Systemen erklärt. Dabei zeigt sich allerdings fu ̈r die Dephasierungszeit τH aufgrund des Magnetfeldes eine andere als von der Theorie vorhergesagte Abha ̈ngigkeit (Experiment: 1/τH ∝ H^1,6, Theorie: 1/τH ∝ H^2). Ergänzend zu diesen Messungen wird nanoporöses Gold (NPG) untersucht. Das NPG zeigt auch einen Magnetowiderstand, dieser ist jedoch positiv (der Widerstand steigt mit zunehmendem Magnetfeld). Die Ergebnisse lassen sich gut mit der Fuchs-Sondheimer-Theorie erklären, obwohl diese für dünne, nicht poröse Metallschichten aufgestellt wurde. Es kann die Magnetfeldabhängigkeit des Magnetowiderstandes und die mittlere freie Wegla ̈nge der Ladungsträger ermittelt werden.
Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Abschlussarbeiten » Dissertation
Fakultät / Institut:
Fakultät für Physik
Klassifikation Physik:
Festkörperphysik, Oberflächenphysik
Dewey Dezimal-Klassifikation:
500 Naturwissenschaften und Mathematik » 530 Physik
Stichwörter:
Nanopartikel, Halbleiter, Indiumzinnoxid, nanogranular
Beitragende:
Prof. Dr. Lorke, Axel [Betreuer(in), Doktorvater]
Prof. Dr. Heinzel, Thomas [Gutachter(in), Rezensent(in)]
Sprache:
Deutsch
Kollektion / Status:
Dissertationen / Dokument veröffentlicht
Datum der Promotion:
07.10.2011
Promotionsantrag am:
12.05.2011
Dateien geändert am:
12.10.2011
Medientyp:
Text
Bezug:
01.07.2006 - 07.10.2011