Machine learning on normalized protein sequences

Dateibereich 27731

459,5 KB in 3 Dateien, zuletzt geändert am 31.07.2013

Dateiliste / Details

DateiDateien geändert amGröße
1756_0500_4_94.pdf07.06.2011 07:57:57337,3 KB
1756-0500-4-94.xml07.06.2011 07:57:56115,3 KB
mets.xml07.06.2011 07:57:576,9 KB
Background Machine learning techniques have been widely applied to biological sequences, e.g. to predict drug resistance in HIV-1 from sequences of drug target proteins and protein functional classes. As deletions and insertions are frequent in biological sequences, a major limitation of current methods is the inability to handle varying sequence lengths. Findings We propose to normalize sequences to uniform length. To this end, we tested one linear and four different non-linear interpolation methods for the normalization of sequence lengths of 19 classification datasets. Classification tasks included prediction of HIV-1 drug resistance from drug target sequences and sequence-based prediction of protein function. We applied random forests to the classification of sequences into "positive" and "negative" samples. Statistical tests showed that the linear interpolation outperforms the non-linear interpolation methods in most of the analyzed datasets, while in a few cases non-linear methods had a small but significant advantage. Compared to other published methods, our prediction scheme leads to an improvement in prediction accuracy by up to 14%. Conclusions We found that machine learning on sequences normalized by simple linear interpolation gave better or at least competitive results compared to state-of-the-art procedures, and thus, is a promising alternative to existing methods, especially for protein sequences of variable length.
PURL / DOI:
Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Texte » Artikel, Aufsatz
Fakultät / Institut:
Fakultät für Biologie
Dewey Dezimal-Klassifikation:
500 Naturwissenschaften und Mathematik » 570 Biowissenschaften; Biologie » 570 Biowissenschaften; Biologie
Sprache:
Englisch
Kollektion / Status:
E-Publikationen / Dokument veröffentlicht
Dokument erstellt am:
07.06.2011
Dateien geändert am:
31.07.2013
Medientyp:
Text
Rechtliche Vermerke:
Heider et al.; licensee BioMed Central Ltd.
http://purl.org/eprint/accessRights/OpenAccess
Quelle:
In: BMC Research Notes (2011) 4:94
DOI 10.1186/1756-0500-4-94