Numerische Konzepte und Fehleranalysis zu elliptischen Randsteuerungsproblemen mit punktweisen Zustands- und Kontrollbeschränkungen

Dateibereich 21972

1,75 MB in einer Datei, zuletzt geändert am 15.04.2009

Dateiliste / Details

DateiDateien geändert amGröße
krumbiegel_diss.pdf15.04.2009 13:15:001,75 MB
Physikalische und technische Anwendungen werden häufig durch partielle Differentialgleichungen beschrieben. Die Optimierung solcher Prozesse führt auf sogenannte Optimalsteuerprobleme mit partiellen Differentialgleichungen. Mit Hilfe einer Steuerungsvariable wird die Lösung der Differentialgleichung, welche Zustand genannt wird, beeinflusst. Gleichzeitig soll ein Zielfunktional minimiert werden. Bei vielen technischen Anwendungen sind punktweise Beschränkungen an den Zustand oder die Steuerung sinnvoll. Es ist bekannt, dass die zu den Zustandsbeschränkungen gehörigen Lagrangsche Multiplikatoren im allgemeinen nur reguläre Borel-Maße sind. Dies führt zu einer geringeren Regularität der optimalen Lösung des Problems. In dieser Dissertationsschrift wird ein linear-quadratisches Optimalsteuerproblem mit elliptischer partieller Differentialgleichung und Neumann-Randsteuerung untersucht. Wir betrachten punkteweise Zustandsschranken in einem inneren Teilgebiet und bilaterale Schranken an die Randsteuerung. Die räumliche Trennung der Zustandsbeschränkungen von dem Wirkungsgebiet der Steuerung gestattet an vielen Stellen den Einsatz von speziell konstruierten mathematischen Techniken. Dies betrifft sowohl Regularitätsaussagen als auch Fehlerabschätzungen. Allerdings sind die sogenannten dualen Variablen des Problems nicht eindeutig. Dies macht die Anwendung bekannter effizienter Optimierungsalgorithmen unmöglich. Es wird ein Regularisierungskonzept vorgestellt, um dieses Problem zu vermeiden. Dabei wird eine zusätzliche verteilte Steuerung ("virtuelle Steuerung") eingeführt, welche im Zielfunktional, in der rechten Seite der Differentialgleichungen und in den regularisierten Zustandsbeschränkungen auftaucht. Die Regularisierung wird durch verschiedene Parameterfunktionen beeinflusst. Wir leiten Abschätzungen für den Fehler zwischen der optimalen Lösung des Ausgangsproblems und der des regularisierten Problems her. Bei Verwendung geschickt gewählter Parameterfunktionen ergeben sich aus diesen Abschätzungen direkt Konvergenzraten für die Regularisierung. Im weiteren betrachten wir auch eine Diskretisierung des regularisierten Problems mit Hilfe von finiten Elementen. Basierend auf geeignet konstruierten zulässigen Testfunktionen wird eine Fehlerabschätzung der optimalen Lösung des unregularisierten Problems zur diskretisierten und regularisierten Lösung hergeleitet. Da der Regularisierungs- und der Diskretisierungsfehler gleichzeitig auftreten, wird eine geeignete Kopplung des Regularisierungsparameters mit der Gitterweite angegeben. Eine primal-duale aktive Mengenstrategie wird als Optimierungsalgorithmus zur Lösung der regularisierten Probleme vorgestellt. Weiterhin wird eine Fehlerabschätzung der aktuellen Iterierten dieses Algorithmus zur optimalen Lösung bewiesen. Basierend auf diesem Resultat wird ein Fehlerschätzer konstruiert, welcher als alternatives Abbruchkriterium für die aktive Mengenstrategie benutzt werden kann. Die Resultate der Arbeit werden durch verschiedene numerische Beispiele bestätigt.
Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Abschlussarbeiten » Dissertation
Fakultät / Institut:
Fakultät für Mathematik
Dewey Dezimal-Klassifikation:
500 Naturwissenschaften und Mathematik » 510 Mathematik
Stichwörter:
Optimal control problems, state constraints
Beitragende:
Prof. Rösch, Arnd [Betreuer(in), Doktorvater]
Prof. Apel, Thomas [Gutachter(in), Rezensent(in)]
Sprache:
Englisch
Kollektion / Status:
Dissertationen / Dokument veröffentlicht
Datum der Promotion:
25.03.2009
Dokument erstellt am:
15.04.2009
Promotionsantrag am:
11.11.2008
Dateien geändert am:
15.04.2009
Medientyp:
Text