Dose-response modeling using linear Splines

Dateibereich 19740

1,64 MB in einer Datei, zuletzt geändert am 14.04.2008

Dateiliste / Details

DateiDateien geändert amGröße
Doktorarbeit_Martin_Kappler.pdf14.04.2008 14:38:411,64 MB

Dateibereich 19741

106 KB in 2 Dateien, zuletzt geändert am 14.04.2008

Dateiliste / Details

DateiDateien geändert amGröße
Abstrakt deutsch.pdf14.04.2008 14:39:0453,1 KB
Abstrakt englisch.pdf14.04.2008 14:39:0453 KB
The development of an appropriate model plays an important role for the estimation of unknown functional relations between medical, biological or epidemiological parameters. Such models can provide insight in the underlying mechanisms and be a basis during regulatory processes. However, the existing standard methods for analyzing the influence of a continuous predictor, such as analysis of variance or linear regression, exhibit numerous causes for criticism. The aim of this work is to examine linear splines for modeling dose-response relations in comparison to these standard methods, as well as to the more complex techniques of fractional polynomials and additive models. The methods are applied and compared to a dataset from an occupational study that examines the effects of exposure to polycyclic aromatic hydrocarbons in the workplace. In this context, the dose-response relation between exposure to phenanthrene and excretion of the urinary metabolites 1-, 2-+9-, 3- and 4-OH-phenanthrene is analyzed. Linear Splines, fractional polynomials and additive models are superior to the standard methods regarding the model fit. All three methods show a non-existant or weak relation between external and internal exposure in the low-dose range, while a clear influence becomes apparent in the high-dose range. Additionally, linear splines yield an estimate for the boundary between the two regions. Overall, the use of linear splines leads to a simple parametric model that is easy to communicate and present. Meanwhile it remains sufficiently flexible to fit complex shapes of dose-response curves. Linear splines represent a good compromise between standard methods and more complicated non-linear or non-parametric methods.
Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Abschlussarbeiten » Dissertation
Fakultät / Institut:
Medizinische Fakultät » Universitätsklinikum Essen » Institut für Medizinische Informatik, Biometrie und Epidemiologie
Dewey Dezimal-Klassifikation:
600 Technik, Medizin, angewandte Wissenschaften » 610 Medizin und Gesundheit » 610 Medizin und Gesundheit
Stichwörter:
Linear splines, fractional polynomials, additive models, dose-response relation, polycyclic aromatic hydrocarbons, Lineare Splines, Fractional Polynomials, Additive Modelle, Dosis-Wirkungs-Kurve, Polyzyklische aromatische Kohlenwasserstoffe
Beitragende:
PD. Dr. rer. nat. Neuhäuser, Markus [Betreuer(in), Doktorvater]
Priv.-Doz. Dr. Krämer, U. [Gutachter(in), Rezensent(in)]
Sprache:
Englisch
Kollektion / Status:
Dissertationen / Dokument veröffentlicht
Datum der Promotion:
03.12.2007
Dokument erstellt am:
04.03.2008
Promotionsantrag am:
12.02.2007
Dateien geändert am:
14.04.2008
Medientyp:
Text