Explicit arithmetic of Brauer groups

ray class fields and index calculus

Dateibereich 10712

825,6 KB in einer Datei, zuletzt geändert am 09.04.2004

Dateiliste / Details

DateiDateien geändert amGröße
thesis2301.pdf25.02.2002 00:00:00825,6 KB

Dateibereich 10713

777,6 KB in einer Datei, zuletzt geändert am 09.04.2004

Dateiliste / Details

DateiDateien geändert amGröße
thesis2301.ps25.02.2002 00:00:00777,6 KB
In this thesis we examine the arithmetic of Brauer groups of local and global fields. Although Brauer groups are well studied from a theoretical point of view, no one has yet addressed the question of making this theory explicit. We propose to do exactly this in the case of relative Brauer groups. Let L=K be a local extension of degree l. Then the invariant map induces an isomorphism Br(L=K) ' Z=lZ. The first natural question is to compute this invariant map explicitly for a given element A 2 Br(K=L). In doing this we show that this problem is intimately related to the arithmetic of the underlying finite field. This motivates the following approach: calculate a local invariant map at a ramified place p via the Hasse{Brauer{Noether local{global principle by relating it to the invariant map at other (unramified) places q 6 = p. We show that { using the concept of smoothness { this leads to algorithms which are known as index calculus methods in order to compute the discrete logarithm in finite fields. Moreover we show how this approach links the question of solving the discrete logarithm in finite fields to the problem of solving discrete logarithms in the Galois group of certain global extensions. In order to apply the local global principle, we need to construct or at least prove the existence of global extensions with prescribed ramation and order. Except in the cases of K = Q and K an imaginary quadratic field we provide results about extensions of this kind in the case that K is a CM field. Using these results we are able to modify a well known algorithm in the case of discrete logarithms in certain subgroups of Fpn. We also give an interpretation of the function field sieve in the setting of Brauer groups. This interpretation explains a notable difference between number field sieve and function field sieve. Finally we link the discrete logarithm problem on abelian varieties to the arithmetic of Brauer groups using the Tate pairing.
Keine URN zugeordnet
Lesezeichen:
Permalink | Teilen/Speichern
Dokumententyp:
Wissenschaftliche Texte » Buch, Monographie
Fakultät / Institut:
Zentrale wissenschaftliche Einrichtungen » Institut für Experimentelle Mathematik (IEM) Essen
Stichwörter:
Brauergruppen, Klassenkörpertheorie, Public Key Kryptosysteme, Diskreter Logarithmus, Tatepaarung
Sprache:
Englisch
Kollektion / Status:
E-Publikationen / Dokument veröffentlicht
Dokument erstellt am:
25.02.2002
Dateien geändert am:
11.06.2002
Medientyp:
Text
Quelle:
Ergänzte Version 18.1.2002 der Dissertation vom 18.12.2001. Original-Diss. auch als Miless-Dokument u.d.T.: Nguyen, Kim: Explicit arithmetic of Brauer groups