Domain Decomposition Methods for Elastic Materials with Compressible and Almost Incompressible Components

Sabrina Gippert
geboren in Neuss

Fakultät für Mathematik
Universität Duisburg-Essen

November 2012

Dissertation im Fach Mathematik
zum Erwerb des Dr. rer. nat.
an der Fakultät für Mathematik
der Universität Duisburg-Essen
Erstgutachter: Prof. Dr. Axel Klawonn,
Mathematisches Institut, Universität zu Köln

Zweitgutachter: Prof. Dr. Gerhard Starke
Institut für Angewandte Mathematik, Leibniz Universität Hannover

Tag der mündlichen Prüfung: 11.01.2013
Contents

Introduction .. 1

1 Linear Elasticity 5
 1.1 Weak Formulation 5
 1.2 Material Parameters 7
 1.3 Mixed Formulation 8

2 Finite Elements and Domain Decomposition 11
 2.1 Finite Elements 11
 2.2 Nonconformity of the Combination of P_2 and Q_2 Finite Elements 13
 2.3 Scott-Zhang Interpolation 17
 2.4 FETI-DP Domain Decomposition Method 18
 2.5 Projector Preconditioning/Deflation 20

3 Compressible and Almost Incompressible Components 23
 3.1 Technical Assumptions 23
 3.2 Coarse Space 27
 3.3 Technical Tools 31
 3.4 Convergence Analysis 41
 3.5 Numerical Results 54
 3.5.1 Variable η 55
 3.5.2 Variable $1/H$ - Weak Scaling 55
 3.5.3 Variable H/h 56
 3.5.4 Variable ν 58
 3.5.5 Variable Young’s Modulus Combined with Almost Incompressibility .. 60
 3.5.6 P_2-P_0 Mixed Finite Elements 61
4 A New Coarse Space for Almost Incompressible Linear Elasticity 63
 4.1 Zero Net Flux for Face Terms 65
 4.2 Zero Net Flux for Edge Terms 66
 4.2.1 Transformation of Basis 67
 4.2.2 Projector Preconditioning 68
 4.3 Numerical Results 73
 4.3.1 Edges by Transformation of Basis 73
 4.3.2 Edges by Projector Preconditioning 80

Bibliography 83
First of all, I like to thank all the people who supported me during my doctoral thesis. I owe special thanks to my advisor Prof. Dr. Axel Klawonn; I am grateful for his support in the last years, his time for discussion and offering me the possibility to spend the time of my doctorate in his working group. I would also like to thank him and Prof. Dr. Gerhard Starke for reviewing this work. Additionally, I like to thank Dr. Oliver Rheinbach for his excellent implementation tips as well as for the encouragement he gave me. I am happy to thank my colleagues, especially Patrick for all the discussions and time we spend in front of the blackboard in our office in Essen and Martin for his support, in mathematical topics but also for his friendship.

I would not be at this point of my life without my parents who have always supported and encouraged me continuously, and my sister Katja who always has a sympathetic ear for me, her support and inspiration means so much to me. Last but not least I want to thank my friends, who always tried to find a compensation for scientific work. Thank you Marion, among other things, for your interest in my work, even if you say, you don’t like math— I don’t believe that!
Introduction

The finite element method (FEM) is a well established approximation method in engineering, physics and applied mathematics. In 1956 the FEM was first applied in structural and fluid mechanics for an aircraft wing [58]. The term finite element method was established four years later [9]. Today the finite element method is a frequently used tool to approximate solutions of partial differential equations (PDEs). Such approximations are inevitable since exact solutions of partial differential equations are known only for simple PDEs and simple geometries. In order to apply the finite element method a variational formulation is derived from a strong form of a partial differential equation. Minimization in a finite dimensional space then gives the finite element solution.

The discretization by finite elements leads, either directly or after linearization, to a large linear system of equations which needs to be solved. The number of unknowns is determined by the accuracy of the solution required for the specific application. Today the number of unknowns can range from millions to billions of unknowns in structural mechanics simulations. To solve linear systems of such size the use of parallel computers is necessary.

Domain decomposition methods (DDMs) are algorithms well suited for high performance parallel computers. They are inherently parallel methods based on an overlapping or nonoverlapping geometric decomposition of the computational domain. The solution of the original problem is then computed in an iterative process, typically accelerated by a Krylov subspace method such as conjugate gradients. In this work domain decomposition methods are thus always understood as preconditioned iterative methods.

In the construction of domain decomposition methods attention has to be paid to the different aspects of scalability. A DDM is called numerically scalable if the number of iterations is independent of the problem size. In order to obtain numerical scalability, a small coarse problem has to be solved in each iteration step in addition to the number of systems associated with the local subdomains. Such a coarse problem provides a mechanism for global exchange of information in each iteration step. Numerical scalability is a requirement to obtain parallel scalability of DDMs. Here, we distinguish between two versions of parallel scalability, i.e.,
strong and weak scalability. For a problem with a fixed number of unknowns, an algorithm is called strongly scalable, if ideally, it solves the problem twice as fast if the number of processors is doubled. An algorithm is called weakly scalable if doubling the number of unknowns and doubling the number of processors at the same time will, ideally, keep the solution time constant.

The convergence of preconditioned conjugate gradient methods is determined by the condition number of the problem. For the convergence theory of domain decomposition methods the derivation of condition number bounds is therefore essential. In this work new condition number bounds for classes of problems in linear elasticity for a well-known and widely applied family of nonoverlapping DDMs, the dual primal Finite Element Tearing and Interconnecting (FETI-DP) Method, are derived. These bounds also apply to the balancing DDM by constraints (BDDC) method, introduced by Dohrmann [13].

We focus on the equations of linear elasticity in three dimensions, where the task is to calculate the displacement of a linear elastic domain under the action of forces; see, e.g., [8, 3, 4, 57], or more precisely, we consider linear elasticity problems with compressible and almost incompressible components. To obtain the displacement we use dual-primal FETI methods (FETI-DP). These methods belong to the family of Finite Element Tearing and Interconnecting (FETI) domain decomposition methods, which have been first introduced by Farhat and Roux in 1991; see [20]. The computational domain, on which the given partial differential equation has to be solved, is decomposed into nonoverlapping subdomains. The continuity of the solution across the interface is established weakly by the introduction of Lagrange multipliers, thus enforcing continuity not before convergence of the iterative method. In FETI-DP methods, some continuity constraints are defined to be primal, which means that they are assembled before the iteration and therefore continuity is enforced in each iteration step. The primal constraints should be selected such that the subproblems are invertible and such that good condition number bounds can be derived. For the remaining dual variables Lagrange multipliers are introduced as in standard FETI methods. The basic idea of FETI-DP is to eliminate the primal variables by forming a Schur complement and then iterate on the Lagrange multipliers, usually using a preconditioner. For the numerical results presented in this dissertation only the Dirichlet preconditioner is used.

For linear elasticity problems in the plane, FETI-DP methods were introduced by Farhat et al. in [18] and extended to the three dimensional case by Farhat, Lesoinne, and Pierson [19]. To obtain the same quality of bounds for the condition number estimate of FETI-DP in case
of linear elasticity essential changes in the selection of primal constraints have to be made. While selecting an appropriate set of edge averages as primal constraints is sufficient to handle material coefficients without large jumps, for arbitrary jumps primal first-order moments and, sometimes, constraints over vertices are required; see [37, 31].

The first analysis for scalar second- and fourth-order elliptic partial differential equations in two dimensions was provided by Mandel and Tezaur [46] and it was extended to the three dimensional case in [38, 39, 36] and to three dimensional linear elasticity in [37]. In [34], a theory for irregular subdomains in 2D was introduced. In [29], FETI-DP methods for spectral element discretizations for a polynomial degree of up to \(p = 32 \) were considered. In [32], the weak parallel scalability of a new version of a FETI-DP method, introduced in [54], for up to 65,000 processor cores was shown. The work in Chapter 3 of this thesis can be understood as an extension of the theory in [37] for certain classes of problems with jumps inside subdomains. Problems in elasticity with coefficient jumps not aligned with the interface have been considered before in [31].

Coarse spaces for iterative substructuring methods that are robust either with respect to exact incompressibility constraints or with respect to almost incompressibility on the complete computational domain have been known for some time. For early works on Neumann-Neumann methods for incompressible elasticity, see [23, 24, 48, 49]. For a recent Neumann-Neumann method for almost incompressible elasticity, see [1]. A balancing domain decomposition method (BDDC) for the Stokes equation was introduced by Li and Widlund [42]; for a FETI-DP method for the Stokes and the incompressible Navier-Stokes equation, see Li [41, 40]. For an extension of a recent overlapping Schwarz method, see Dohrmann et al. [14], to almost incompressible elasticity problems, see Dohrmann and Widlund [15]. This overlapping Schwarz method borrows its coarse space from iterative substructuring methods. For a BDDC method with a coarse space that is robust with respect to the almost incompressibility, see, e.g., [13, 50, 11]. In [35, 55], a FETI-DP method for almost incompressible elasticity in 2D was discussed.

An application of FETI-DP methods to almost incompressible problems in biomechanics can be also found in Klawonn and Rheinbach [32], Brinkhues, Klawonn, Rheinbach, and Schröder [6], and Böse et al. [2].

BDDC methods, see, e.g., [12, 10, 44, 43, 45, 29] for references, are closely related to FETI-DP methods in the sense that they share essentially all eigenvalues. It was first shown in Mandel, Dohrmann, and Tezaur [45], that FETI-DP and BDDC methods have the same
eigenvalues, which are not zero or one. As a consequence all results presented are also valid for BDDC methods.

This thesis is organized as follows. In Chapter 1, we introduce the problem of linear elasticity. The finite element method and the discretization of the elastic domain, and a brief summary of the domain decomposition method FETI-DP is given in Chapter 2. After this introduction of the conceptual basics, we consider a special category of compressible and almost incompressible linear elasticity problems when using a FETI-DP domain decomposition method. We introduce convergence bounds of FETI-DP methods for problems in 3D with almost incompressible inclusions or compressible inclusions with different Young’s modulus embedded in a compressible matrix material using the coarse space for compressible linear elasticity. For such problems, where the material is compressible in the vicinity of the subdomain interface, we show a polylogarithmic condition number estimate for the preconditioned FETI-DP system, which only depends on the thickness of the compressible hull, but is otherwise independent of coefficient jumps between the hulls and the inclusions. We expand the convergence analysis, given by Klawonn and Widlund [37] for compressible linear elasticity, to the case where each subdomain contains an inclusion surrounded by a compressible hull of thickness η. Similar results for the diffusion problem and FETI-1 are already obtained by Pechstein and Scheichl [51, 52, 53]. The theoretical findings are numerically confirmed and presented at the end of Chapter 3. In Chapter 4, we focus on the problem of almost incompressible linear elasticity on the whole domain. Since in the previous chapter we used the coarse space for compressible elasticity, we need to expand the coarse space by using the zero net flux condition. In this approach, the face contributions need to be enforced by projector preconditioning, but for the edge contributions it is possible to enforce the zero net flux condition by projector preconditioning or using a transformation of basis; see [26, 33, 30]. We consider both concepts and we present numerical results for different experiments.
1 Linear Elasticity

The problem of linear elasticity consists in finding the displacement of an elastic domain under the action of forces. An elastic solid will return to its original state after removing the force; for example, a steel body will only show permanent deformation if very large forces are applied. In linear elasticity the strain tensor is only a linear approximation and therefore valid only for small displacements. Let $\Omega \subset \mathbb{R}^3$ be an elastic domain, see, e.g., Figure 1.1, on which a volume force is applied. The deformation, or more precisely the displacement in each meshpoint is calculated; see, e.g., Figure 1.2. In the figures the cube is fixed on the back side and we see that it is displaced, when a volume force in the direction of the front side is applied.

1.1 Weak Formulation

We consider an isotropic elastic domain $\Omega \subset \mathbb{R}^3$. Let u be the displacement and f a given volume force. In the theory of linear elasticity u satisfies the partial differential equation given
by

\[-\text{div}(\sigma(u)) = f \quad \text{in } \Omega \]
\[\sigma(u) \cdot n = g \quad \text{on } \partial \Omega_N \]
\[u = 0 \quad \text{on } \partial \Omega_D, \quad (1.1) \]

where the stress tensor is defined as \(\sigma(u) := G \varepsilon(u) + G \beta \text{tr}(\varepsilon(u)) I \), using the material parameters \(G \) and \(\beta \). The linearized strain tensor \(\varepsilon = (\varepsilon_{ij})_{ij} \) is defined as \(\varepsilon_{ij}(u) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \). We also use the notation \(\varepsilon(u) : \varepsilon(v) := \sum_{i,j=1}^{3} \varepsilon_{ij}(u)\varepsilon_{ij}(v) \) and \((\varepsilon(u), \varepsilon(v))_{L^2(\Omega)} := \int_{\Omega} \varepsilon(u) : \varepsilon(v) \, dx \).

Note that we impose homogenous Dirichlet boundary conditions on \(\partial \Omega_D \).

Assuming that equation (1.1) holds for \(u \in H^2(\Omega) \), then for all \(v \in H^1_0(\Omega, \partial \Omega_D) \), we obtain the weak formulation from integration by parts, see, e.g., [4, Chapter 11.2] or [3],

\[\int_{\Omega} f \cdot v \, dx = -\int_{\Omega} \text{div}(\sigma(u)) \cdot v \, dx \]
\[= \int_{\Omega} \sigma(u) : \nabla v \, dx - \int_{\partial \Omega_N} (\sigma(u) \cdot n) \cdot v \, ds \]
\[= \int_{\Omega} \sigma(u) : \varepsilon(v) \, dx - \int_{\partial \Omega_N} g \cdot v \, ds \]
\[\Leftrightarrow \int_{\Omega} \sigma(u) : \varepsilon(v) \, dx = \int_{\Omega} f \cdot v \, dx + \int_{\partial \Omega_N} g \cdot v \, ds. \]

We consider

\[\int_{\Omega} \sigma(u) : \varepsilon(v) \, dx = \int_{\Omega} (G \varepsilon(u) + G \beta \text{tr}(\varepsilon(u)) I) : \varepsilon(v) \, dx \]
\[= \int_{\Omega} G \beta \text{tr}(\varepsilon(u)) I : \varepsilon(v) \, dx + \int_{\Omega} G \varepsilon(u) : \varepsilon(v) \, dx \]
\[= \int_{\Omega} G \beta \text{div}(u) \text{div}(v) \, dx + \int_{\Omega} G \varepsilon(u) : \varepsilon(v) \, dx. \]

Then, the problem of linear elasticity is defined as follows:

Find the displacement \(u \in H^1_0(\Omega, \partial \Omega_D) \), such that

\[\int_{\Omega} G\varepsilon(u) : \varepsilon(v) \, dx + \int_{\Omega} G \beta \text{div}(u) \text{div}(v) \, dx = \langle F, v \rangle \quad \forall v \in H^1_0(\Omega, \partial \Omega_D) \]

with the material parameters \(G, \beta \), and the right hand side

\[\langle F, v \rangle = \int_{\Omega} f^T v \, dx + \int_{\partial \Omega_N} g^T v \, ds. \]
Now, we can write the bilinear form for linear elasticity as

\[a(u,v) = (G\varepsilon(u),\varepsilon(v))_{L^2(\Omega)} + (G\beta \text{div}(u),\text{div}(v))_{L^2(\Omega)}. \]

For a domain \(\Omega \) with diameter \(H \), we use the scaled Sobolev space norm

\[\|u\|^{2}_{H^1(\Omega)} = |u|^{2}_{H^1(\Omega)} + \frac{1}{H^2} \|u\|^{2}_{L^2(\Omega)} \]

with \(\|u\|^{2}_{L^2(\Omega)} := \sum_{i=1}^{3} \int_{\Omega} |u_i|^2 \, dx \) and \(|u|^{2}_{H^1(\Omega)} := \sum_{i=1}^{3} \|\nabla u_i\|^{2}_{L^2(\Omega)} \).

The continuity of the bilinear form \(a(\cdot,\cdot) \) with respect to \(\|\cdot\|_{H^1(\Omega)} \) depends on the material parameters. For all \(u,v \in H^1(\Omega) \), we have

\[|a(u,v)| \leq (1 + 3\beta) G \|u\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)} \leq (1 + 3\beta) G \|u\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)} ; \]

see, e.g., [37]. The ellipticity of \(a(u,v) \) for \(u,v \in H^1_0(\Omega,\partial\Omega_D) \) follows from Korn’s first inequality, i.e., for all \(u \in H^1_0(\Omega) \) we have

\[\|u\|_{H^1(\Omega)} \leq C (\varepsilon(u),\varepsilon(u))_{L^2(\Omega)} ; \]

see for example [8, 37].

Then, as a result of the lemma of Lax-Milgram, see, e.g., [4, Theorem (2.7.7)], there exists a unique solution of the variational formulation

\[a(u,v) = < F,v > . \]

1.2 Material Parameters

In our theory, we consider an isotropic elastic material, i.e., the material behaves identically in all directions. An example of isotropic material is steel while wood is anisotropic. We consider the material parameters \(G \) and \(\beta \), which can be expressed using Young’s modulus \(E \) and Poisson’s ratio \(\nu \) by

\[G = \frac{E}{1 + \nu} \quad \text{and} \quad \beta = \frac{\nu}{1 - 2\nu}. \]

The Young modulus \(E > 0 \) is a measure for the stiffness of an elastic material, since it relates strain to stress. As the value of \(E \) gets larger, the considered material becomes stiffer. In our numerical experiments, we use, e.g., \(E = 21e5 \) for steel and \(E = 0.037e5 \) for rubber.
The deformation by compression in one direction of an elastic domain results in an expansion in cross direction. This effect is called the Poisson effect; see Figure 1.3. Poisson’s ratio $\nu \in [0, \frac{1}{2})$ is a measure of this effect. As the value of the Poisson ratio is smaller, the expansion is smaller. In our numerical experiments, we use $\nu = 0.28$ for steel and $\nu = 0.485$ for rubber; see [8].

Compressibility is a measure of the relative volume change of a solid as a response to a change in the pressure. Elastic material is called almost incompressible if ν tends to $\frac{1}{2}$, i.e., the volume does not change significantly under pressure. The limit of $\nu = \frac{1}{2}$ is called perfect incompressibility and only topic of theoretical considerations.

1.3 Mixed Formulation

For almost incompressible linear elasticity, i.e., $\nu \to \frac{1}{2}$, the value of β tends to infinity, and the discretization by standard finite elements leads to locking effects and slow convergence. For more information about the locking effect, see, e.g., [4, 3]. As a remedy the variational formulation of the pure displacement problem is replaced by a mixed formulation. Therefore, we introduce the pressure $p := G\beta \, \text{div}(u) \in L_2(\Omega)$ as an auxiliary variable and consider the problem:

Find $(u, p) \in H_0^1(\Omega, \partial\Omega_D) \times L_2(\Omega)$, such that

$$
\int_{\Omega} G \varepsilon(u) : \varepsilon(v) \, dx + \int_{\Omega} \text{div}(v) \, p \, dx = \langle F, v \rangle \quad \forall v \in H_0^1(\Omega, \partial\Omega_D)
$$

$$
\int_{\Omega} \text{div}(u) \, q \, dx - \int_{\Omega} \frac{1}{G\beta} \, p \, q \, dx = 0 \quad \forall q \in L_2(\Omega).
$$

It is known, that in the case of almost incompressible linear elasticity the solution of this mixed
formulation exists and is unique, as a result of the \(V \)-ellipticity of the bilinear form and the inf-sup condition; see, e.g., \([3, 57, 5]\). The ellipticity of \(\int_\Omega G \varepsilon(u) : \varepsilon(v) \, dx \) is ensured by the first Korn inequality, and an inf-sup condition for \(\int_\Omega \text{div}(v) \, p \, dx \) follows from the analysis of the Stokes problem; see \([57]\). The involving estimates are independent of \(G \beta > 0 \), thus, for low-order, conforming finite elements, the solution of the finite element method converges uniformly in \(G \beta \); see \([3]\).

In our numerical experiments, we will later choose for the almost incompressible part \(Q_2 - P_0 \) mixed finite elements. The finite space for the displacement is \(V^h := (Q_2(h))^n \), where \(Q_2 \) is the space of triquadratic functions. The pressure space consists of discontinuous piecewise constant functions, i.e., \(U^h := \{ q \in L_2 : q |_{T \in P_0(T)} \forall T \in \mathcal{T}_h \} \). Both spaces are defined on the same hexahedral mesh. This finite element method satisfies an inf-sup condition in the sense that:

\[
\sup_{v \in V^h} \frac{b_i(v, q)}{a_i(v, v)^{1/2}} \geq \gamma c_i(q, q)^{1/2} \forall q \in U^h \cap L_{2,0}, \; \gamma > 0,
\]

where \(a_i(\cdot, \cdot), \; b_i(\cdot, \cdot), \; \) and \(c_i(\cdot, \cdot) \) are the corresponding bilinear forms of the mixed formulation; see also the comments in Chapter 2 and \([16]\).
2 Finite Elements and Domain Decomposition

In this chapter, we will introduce the assumptions needed for the convergence analysis of the FETI-DP algorithm, first for linear elasticity problems with different material components in Chapter 3 and then for the analysis of the zero net flux condition needed, for almost incompressible linear elasticity problems, considered in Chapter 4.

2.1 Finite Elements

The finite element method (FEM) is a numerical method to solve partial differential equations (PDEs) approximately. We consider the problem: Find \(u \in V \), such that

\[
a(u, v) = \langle f, v \rangle \quad \forall v \in V,
\]

where \(a(\cdot, \cdot) : V \times V \to \mathbb{R} \) is the corresponding bilinear form of the weak formulation of a scalar partial differential equation and \(f : V \to \mathbb{R} \) a linear functional. The infinite dimensional space \(V \) is approximated by the discrete finite dimensional space \(V_h \) and we solve the discrete problem: Find \(u_h \in V_h \), such that

\[
a(u_h, v_h) = \langle f, v_h \rangle \quad \forall v_h \in V_h.
\]

The discrete solution \(u_h \) can be written as

\[
u_h = \sum_{i=1}^{n} u_i \varphi_i,
\]

using the shape functions \(\varphi_i, \; i = 1, \ldots, n \), of \(V_h \). This presentation leads to the linear system

\[
Au = b,
\]

with the stiffness matrix \(A = (a(\varphi_i, \varphi_j))_{i,j=1,\ldots,n} \) and the load vector \(b = (f, \varphi_i)_{i=1,\ldots,n} \). The matrix \(A \) is positive definite since the bilinear form \(a(\cdot, \cdot) \) is symmetric and \(V \)-elliptic.
The accuracy of this approximation can be improved by increasing the number of degrees of freedom. Accordingly, the computational effort increases.

In Chapter 3, we analyze linear elasticity problems with compressible and almost incompressible material components. For the compressible part, we use the standard displacement formulation, cf. Chapter 1, i.e., we discretize the displacement by piecewise quadratic tetrahedral finite elements. For almost incompressible linear elasticity, i.e., $\nu \to \frac{1}{2}$, the value of β tends to infinity, and the discretization of the displacement formulation by standard finite elements leads to locking effects and slow convergence; for an analysis of locking effects see, e.g., [4, 3]. Therefore, we use the mixed formulation for the almost incompressible part; cf. Chapter 1. For the discretization of this mixed problem we can principally use any inf-sup stable mixed finite element method. For simplicity we use $Q_2 - P_0$ mixed finite elements, i.e., we discretize the displacement with piecewise triquadratic hexahedral finite elements and the pressure with piecewise constant elements. To obtain again a symmetric positive definite problem, the pressure is statically condensed element-by-element. The discretization by $Q_2 - P_0$ elements is known to be inf-sup stable. It follows, for example, from the inf-sup stability of the $Q_2 - P_{1nc}$ discretization with nonconforming piecewise linear pressure variables since the pressure space in the $Q_2 - P_0$ approach is smaller; see [47]. We are aware of the fact that this is not an optimal element with respect to finite element convergence, but we have used it due to its simple implementation. In general other elements, such as $Q_2 - P_{1nc}$, i.e., piecewise triquadratic displacement and nonconforming piecewise linear pressure approximations, can be used. Let us note, that at the interface between the compressible part and the almost incompressible part a nonconformity of the finite element space can arise, because there the piecewise quadratic finite element functions and the piecewise triquadratic finite element functions intersect; cf. Section 2.2. For our analysis of the condition number estimate of our FETI-DP algorithm in Section 3.4, we do not need the inf-sup stability of the almost incompressible part but the stability is of course necessary for the convergence of the finite element solution in the almost incompressible part.

In Chapter 4, we consider a new coarse space for almost incompressible linear elasticity problems, i.e., the zero net flux condition. The elastic domain is discretized with piecewise triquadratic hexahedral finite elements on the whole domain. These finite elements are both, inf-sup stable and conform.
2.2 Nonconformity of the Combination of P_2 and Q_2 Finite Elements

Finite elements are conforming if their corresponding finite element functions are contained in the appropriate Sobolev spaces, in which the variational formulation holds. Note, that the condition number estimate of the algorithm is independent of the conformity, but conformity is needed for the quality of the finite element solution. It is well-known that the triangulation of P_2 finite elements is conforming; also using only Q_2 finite elements produces a conforming triangulation; see, e.g., [3]. We use both finite elements in our implementation, tetrahedra for the compressible and hexahedra for the almost incompressible part. In our geometrical configuration we have an inclusion which is discretized with piecewise triquadratic finite elements. Those are surrounded by layers of piecewise quadratic finite elements. The tetrahedra and hexahedra coincide on the nodes on that interface and the interface is the union of planar faces, cf. Section 2.3. To understand the nonconformity of this combination it is sufficient to consider the continuity of the finite element functions on that interface. Suppose, we consider a cube as one element, which is connected with a tetrahedron; see Figure 2.5(a). We may write $u(x, y, z) \in Q_2$ as a linear combination of triquadratic shape functions $\varphi_i(x, y, z)$, $i = 1, \ldots, 27$, corresponding to the nodes in a hexahedral finite element, i.e.,

$$u(x, y, z) = \sum_{i=1}^{27} u_i \varphi_i(x, y, z).$$

For a global function we can choose, e.g., $u(x, y, z) = \varphi_6(x, y, z)$, such that $u_6 = 1$ and $u_i = 0$ for all $i \neq 6$. So, we have

$$u(x, y, z) = \varphi_6(x, y, z) = \frac{1}{8} (x + x^2)(y + y^2)(2 - 2z^2).$$

Since we restrict φ_6 to $y = 1$, we obtain

$$\varphi_6(x, 1, z) |_{y=1} = \frac{1}{4} (x + x^2)(2 - 2z^2) = \frac{1}{2} (x - xz^2 + x^2 - x^2z^2),$$

as a possible $u(x, y, z) \in Q_2$ on the face between a hexahedron and tetrahedron; see Figure 2.3(a) for the plot of the Q_2- shape function on the quadratic face, or Figure 2.3(b) for
a restriction on a triangle. For the corresponding P_2--shape function, we obtain
\[\hat{\varphi}_6(x, 1, z) = x - z + xz - z^2; \]
see Figure 2.2(a) for the plot of the P_2--shape function on the quadratic face, or Figure 2.2(b) for a restriction on a triangle. This means, we have a difference already between the shape function on one face, i.e.,
\[\varphi_6(x, 1, z) - \hat{\varphi}_6(x, 1, z) = -\frac{1}{2}x - \frac{1}{2}xz^2 + \frac{1}{2}x^2 - \frac{1}{2}x^2z^2 + z - xz + z^2. \]
Therefore, we cannot have continuity for all finite element functions on a face between hexahedral and tetrahedral finite elements; see Figure 2.4(c) for the difference on a triangle face or Figures 2.4(a), 2.4(b) for a quadratic face. Since the shape functions do not coincide, we do not have conformity of the combination of P_2 and Q_2 elements.

Figure 2.1: P_2--shape function

(a) P_2--shape function on a quadratic face.
(b) P_2--shape function restricted to a triangle face.
2.2. NONCONFORMITY OF THE COMBINATION OF P_2 AND Q_2 FINITE ELEMENTS

Figure 2.2: Q_2—shape function

(a) Q_2—shape function on a quadratic face.
(b) Q_2—shape function restricted to a triangle face.

Figure 2.3: Difference

(a) Difference of both shape functions on a quadratic face.
(b) Difference of both shape functions on a quadratic face (rotated).

(c) Difference of both shape functions restricted to a triangle face.
Figure 2.4: Geometrical configuration

(a) Hexahedron connected with a tetrahedron. The elements coincide on the nodes on that interface.

(b) Triangle face of the interface, with 6 nodes.
2.3 Scott-Zhang Interpolation

As we have mentioned before, we consider linear elasticity problems with different material components in Chapter 3. We will have an interior inclusion consisting of an almost incompressible material surrounded by a compressible hull. Our analysis will be established on a part of that hull which is bounded by straight edges and planar faces. So, on irregular meshes it might be necessary to cut through elements. We then define a slab of width η and define a regular mesh on this slab; see Figure 2.5. We have to assume that our irregular mesh resolves η in the sense that the incompressible inclusion is separated from the interface by at least one element; see Figure 2.5. For our analysis on irregular meshes we will use a Scott-Zhang interpolation; see [56, 4].

![Figure 2.5:](image)

A slab in 2D: A slab (or a hull) is allowed to cut through finite elements. In such situations, an auxiliary mesh with a similar mesh size h is introduced such that the completion of the slab (or the hull) can be again represented as the union of finite elements.

We choose the operator, such that $\Pi^h_i : W^{(i)} \rightarrow \tilde{V}^h$, i.e., a map from the original finite element trace space, into the finite element space on the regular mesh. The mesh size remains of the order of h. We assume the property $\Pi^h_i u \mid_{\partial \Omega_i} = u$ and the stability of the operator $\|\Pi^h_i u\|_{H^1(\Omega_i)}^2 \leq C \|u\|_{H^1(\Omega_i)}^2$. Note that, since we cut through elements to separate the compressible and the almost incompressible part, this is only done in the theory, but never in the implementation. For simplicity, we assume in the proof that each slab can be represented as the union of finite elements. The generalization to the case where the interior boundary of a slab cuts through certain finite elements can be treated by using a Scott-Zhang interpolation operator, cf. the comment at the end of the proof of Lemma 3.17.
2.4 FETI-DP Domain Decomposition Method

The FETI-DP (dual-primal Finite Element Tearing and Interconnecting) Methods are nonoverlapping domain decomposition methods which are used to solve large linear systems arising, e.g., from finite element discretization. The problem is decomposed into smaller subproblems, which are solved, at the best, in parallel. The solutions of the subproblems are merged to a global solution. To obtain numerical scalability we need to solve a smaller, global coarse problem, which is traditionally solved exactly.

But first we give a brief introduction into FETI-DP, which is essentially taken from [54, 29]; for a complete description, see, e.g., [18, 19, 30, 31, 34]. Starting with the method, the computational domain $\Omega \subset \mathbb{R}^3$ is decomposed into N nonoverlapping subdomains Ω_i, $i = 1, \ldots, N$, with diameter H_i. We obtain variables in the interior of the subdomains and those on the interface $\Gamma := \bigcup_{i \neq j} (\partial \Omega_i \cap \partial \Omega_j) \setminus \partial \Omega_D$, to which we refer to $u_i^{(i)}$ and $u_i^{(i)}$, respectively.

Concerning the interface Γ it is geometrically clear that Γ is the union of subdomain faces, edges, and vertices. Let us denote the sets of nodes on $\partial \Omega$ and Γ by $\partial \Omega_h$, Γ_h, and in Ω_i, by Ω_i,h. For any interface node $x \in \Gamma_h$, we define

$$N_x := \{ j \in \{1, \ldots, N\} : x \in \partial \Omega_{j,h} \}.$$

Thus, N_x is the set of subdomain indices which have x in their closure. A node x belongs to a face if x belongs to two subdomains, i.e., $|N_x| = 2$, a node x belongs to an edge if $|N_x| \geq 3$, and x is a vertex node if it is an endpoint of an edge. For more general meshes, i.e., outputs of graph partitioners, we refer to the detailed definition of faces, edges, and vertices in [37, Section 3].

Now the interface variables $u_i^{(i)}$ are partitioned into subdomain vertices, edges and faces. In FETI-DP methods, the variables on the subdomain boundaries are divided into two classes, the
primal and the dual variables. As primal variables $u^{(i)}_\Pi$, we call variables which are assembled before the iteration and in which continuity is enforced in each iteration step. For dual variables $u^{(i)}_\Delta$, continuity is established weakly by the introduction of Lagrange multipliers λ, thus enforcing continuity not before convergence.

However, we classify the variables into primal variables, associated with subdomain vertices and edge averages, and into nonprimal variables, associated with the interior variables and the subdomain edges and faces. For a description of the concept of primal constraints, we refer to Section 3.2 or [37].

For each subdomain we assemble the local stiffness matrix $K^{(i)}$ and the corresponding load vector $f^{(i)}$. Both are sorted according to the different sets of unknowns, this means the primal and the nonprimal variables

$$K^{(i)} = \begin{bmatrix} K_{BB}^{(i)} & K_{\Pi B}^{(i)} \\ K_{\Pi B}^{(i)} & K_{\Pi I}^{(i)} \end{bmatrix}, \quad f^{(i)} = \begin{bmatrix} f_B^{(i)} \\ f_\Pi^{(i)} \end{bmatrix}.$$

The nonprimal part is again partitioned into dual unknowns for which we later introduce Lagrange multipliers and interior variables. Thus we obtain

$$K_{BB}^{(i)} = \begin{bmatrix} K_{II}^{(i)} & K_{I\Delta}^{(i)} \\ K_{I\Delta}^{(i)} & K_{\Delta\Delta}^{(i)} \end{bmatrix}, \quad f^{(i)} = \begin{bmatrix} f_I^{(i)} \\ f_\Delta^{(i)} \end{bmatrix}.$$

We define the corresponding block matrices

$$K_{II} = \text{diag}(K_{II}^{(i)}) \quad K_{\Delta I} = \text{diag}(K_{\Delta I}^{(i)}) \quad K_{\Delta\Delta} = \text{diag}(K_{\Delta\Delta}^{(i)})$$

$$K_{\Pi I} = \text{diag}(K_{\Pi I}^{(i)}) \quad K_{\Pi\Delta} = \text{diag}(K_{\Pi\Delta}^{(i)}) \quad K_{\Pi\Pi} = \text{diag}(K_{\Pi\Pi}^{(i)}).$$

By assembly of the local subdomain matrices in the primal variables, such that

$$\bar{u}_\Pi = R_\Pi^T u_\Pi = \sum_{i=0}^{N} R_\Pi^{(i)T} u_\Pi^{(i)}$$

we obtain a partially assembled global stiffness matrix.

$$\bar{K} = \begin{bmatrix} K_{BB} \bar{K}_{\Pi B}^{T} \\ \bar{K}_{\Pi B} & \bar{K}_{\Pi\Pi} \end{bmatrix} = \begin{bmatrix} I_B & 0 \\ 0 & R_\Pi^T \end{bmatrix} \begin{bmatrix} K_{BB} & K_{\Pi B}^{T} \\ K_{\Pi B} & K_{\Pi\Pi} \end{bmatrix} \begin{bmatrix} I_B & 0 \\ 0 & R_\Pi \end{bmatrix}$$

$$\bar{f} = \begin{bmatrix} f_B \\ \bar{f}_\Pi \end{bmatrix} = \begin{bmatrix} I_B & 0 \\ 0 & R_\Pi^T \end{bmatrix} \begin{bmatrix} f_B \\ f_\Pi \end{bmatrix}.$$
The matrix \tilde{K} is coupled in the primal variables but has still a block structure in the nonprimal block K_{BB}.

Note, that the matrix \tilde{K} is symmetric positive definite, since we choose a sufficient number of primal variables to constrain the solution.

To enforce continuity on the remaining interface variables, we introduce a jump operator B_B with entries $\{-1, 0, 1\}$ and Lagrange multipliers λ. The constraint $B_B u_B = 0$ results in the FETI-DP saddle point problem

$$
\begin{bmatrix}
K_{BB} & \tilde{K}_{\Pi B}^T & B_B^T \\
\tilde{K}_{\Pi B} & K_{\Pi \Pi} & 0 \\
B_B & 0 & 0
\end{bmatrix}
\begin{bmatrix}
u_B \\
\tilde{u}_\Pi \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
f_B \\
\tilde{f}_\Pi \\
0
\end{bmatrix}.
$$

We obtain the FETI-DP system $F \lambda = d$, where

$$
F = [B_B \ 0]
\begin{bmatrix}
K_{BB} & \tilde{K}_{\Pi B}^T \\
\tilde{K}_{\Pi B} & K_{\Pi \Pi}
\end{bmatrix}
^{-1}
\begin{bmatrix}
B_B^T \\
0
\end{bmatrix},
$$

$$
d = [B_B \ 0]
\begin{bmatrix}
K_{BB} & \tilde{K}_{\Pi B}^T \\
\tilde{K}_{\Pi B} & K_{\Pi \Pi}
\end{bmatrix}
^{-1}
\begin{bmatrix}
f_B \\
\tilde{f}_\Pi
\end{bmatrix}.
$$

by calculating the Schur complement with respect first to the nonprimal and then again with respect to the assembled primal variables. The FETI-DP system is then solved iteratively with a preconditioned conjugate gradient algorithm using the Dirichlet preconditioner

$$
M^{-1} = B_{B,D}^{-1} [I \ \Delta^T] (K_{\Delta \Delta} - K_{\Delta I} K_{\Pi I}^{-1} K_{\Pi \Delta}^T) [I \ \Delta] B_{B,D}^T.
$$

For a full description of the Dirichlet preconditioner, see, e.g., [29, Section 3.2] or [30, 34, 37, 32].

2.5 Projector Preconditioning/Deflation

In substructuring methods as FETI-DP it is possible to expand the coarse space by additional constraints using projections; see, e.g., [33, 26]. For a given rectangular matrix U, which contains the constraints as columns, the condition $U^T B_B u_B = 0$ is enforced in each iteration of the preconditioned conjugate gradient method. We define the F–orthogonal projection

$$
P = U \left(U^T U\right)^{-1} U^T F
$$
onto $\text{range}(U)$ if F is symmetric positive definite or

$$P = U (U^T FU)^+ U^T F,$$

where $(U^T FU)^+$ denotes the pseudoinvers matrix of $U^T FU$, if F is symmetric positive semidefinite. We will then solve the projected system

$$(I - P)^T F \lambda = (I - P)^T d.$$

Since $\text{range}(P)$ and $\ker(P)$ are F–orthogonal the projection P is called an F–conjugate projection. If $\lambda \in \text{range}(U)$ we have

$$(I - P)^T F \lambda = F \lambda - P^T F \lambda = FU \hat{\lambda} - P^T FU \hat{\lambda} = 0 \Rightarrow U^T (I - P)^T F \lambda = 0$$

where $U \hat{\lambda} = \lambda$. Since U has full column rank, we have $\lambda \in \ker((I - P)^T F)$. For $\lambda \in \ker((I - P)^T F)$ we obtain $\lambda = F^+ FU(U^T FU)^+ U^T F \lambda + (I - F^+ F) \hat{\lambda}$, with arbitrary solutions $\hat{\lambda}$. Using $\hat{\lambda} := U(U^T FU)^+ U^T F \lambda + (I - F^+ F) \hat{\lambda}$ we get $\lambda = \hat{\lambda} \in \text{range}(U)$. It follows, that

$$\ker((I - P)^T F) = \text{range}(U).$$

The matrix $(I - P)^T F$ is singular but the linear system is consistent and can therefore be solved using the conjugate gradient method. The preconditioned system is

$$M^{-1}(I - P)^T F \lambda = M^{-1}(I - P)^T d,$$ \hspace{1cm} (2.1)

where M^{-1} denotes the Dirichlet preconditioner. Let λ^* be the solution of the original system $F \lambda = d$. We define

$$\overline{\lambda} := PF^+ d$$

for any pseudoinverse F^+ and additionally we denote by λ the solution of (2.1). The solution of the original problem can then be written as

$$\lambda^* = \overline{\lambda} + (I - P) \lambda \in \ker(I - P) \oplus \text{range}(I - P).$$

For construction of the Krylov space only the projections of the preconditioned residuals onto $\text{range}(I - P)$ are relevant, since

$$M^{-1}(I - P)^T F = M^{-1} F(I - P) = M^{-1} F(I - P)^2 = M^{-1}(I - P)^T F(I - P).$$
We will include the projection \((I - P)^T\) into the preconditioner and project the correction onto \(\text{range}(I - P)\) in each iteration. We obtain the symmetric preconditioner

\[
M_{PP}^{-1} = (I - P)M^{-1}(I - P)^T
\]

and solve the original problem applying this preconditioner. This preconditioned system is singular but consistent. The solution \(\lambda\) of this system is in the subspace \(\text{range}(I - P)\). The solution \(\lambda^*\) of the original problem is then computed by

\[
\lambda^* = \bar{\lambda} + \lambda \in \ker(I - P) \oplus \text{range}(I - P).
\]

If we include the computation of \(\bar{\lambda}\) into the iteration we get the balancing preconditioner

\[
M_{BP}^{-1} = (I - P)M^{-1}(I - P)^T + U(U^TFU)^{-1}U^T.
\]

From [33] it is known, that the finite element solutions corresponding to the iterates generated by the FETI-DP method using projector preconditioning satisfy the condition \(U^TB_Bu_B = 0\).
3 Compressible and Almost Incompressible Components

In this chapter we consider linear elasticity problems with varying coefficients inside subdomains. For each subdomain we will define an inclusion surrounded by a hull with a thickness of at least one element. For the inclusion we can choose either compressible or almost incompressible material and a different Young modulus, embedded in a compressible matrix material, because we use a coarse space for the FETI-DP algorithm designed for compressible linear elasticity. We expand the convergence analysis, given by Klawonn and Widlund [37] for compressible linear elasticity, to the case where each subdomain contains an inclusion surrounded by a compressible hull of thickness η. Similar results for the diffusion problem and FETI-1 are already obtained by Pechstein and Scheichl [51, 52, 53]. For such problems, where the material is compressible in the neighborhood of the subdomain interface, we show a polylogarithmic condition number estimate for the preconditioned FETI-DP system. The condition number bound only depends on the thickness of the compressible hull but is otherwise independent of coefficient jumps between the hull and the inclusion. These results are already published in [22] and the presentation here follows that in [22].

3.1 Technical Assumptions

First, we gather the assumptions that are made on the geometry of the finite element discretization and the domain decomposition and make some technical definitions.

We can write the bilinear form for linear elasticity as

$$a(u, v) = (G(x)\varepsilon(u), \varepsilon(v))_{L^2(\Omega)} + (G(x)\beta(x)\text{div}(u), \text{div}(v))_{L^2(\Omega)}.$$

For a domain Ω with diameter H, we use the scaled Sobolev space norm

$$\|u\|_{H^1(\Omega)}^2 = |u|_{H^1(\Omega)}^2 + \frac{1}{H^2} \|u\|_{L^2(\Omega)}^2.$$
24 3. COMPRESSIBLE AND ALMOST INCOMPRESSIBLE COMPONENTS

with \(\|u\|_{L^2(\Omega)}^2 := \sum_{i=1}^{3} \int_{\Omega} |u_i|^2 \, dx \) and \(|u|_{L^2(\Omega)}^2 := \sum_{i=1}^{3} \|\nabla u_i\|_{L^2(\Omega)}^2 \).

We assume that a triangulation \(\tau_h \) of \(\Omega \) is given with shape regular finite elements, having a typical diameter \(h \). In our numerical tests we use tetrahedra for the discretization of the compressible and hexahedra for the almost incompressible part, which coincide on the element nodes; cf. Chapter 2. We denote by \(W_h := W_h(\Omega) \subset (H^1_0(\Omega, \partial \Omega_D))^3 \) our finite element space.

The domain \(\Omega \) is decomposed into \(N \) nonoverlapping subdomains \(\Omega_i, \ i = 1, \ldots, N, \) with diameter \(H_i \). For simplicity, we assume for our analysis, that the subdomains are well-shaped parallelepipeds. The theory could be extended to more general hexahedral subdomains with planar faces using the theory of mapped hexahedral elements in [47]. Since this would increase the technicality of our proofs even further, we restrict ourselves to parallelepipeds. The resulting interface is given by \(\Gamma := \bigcup_{i \neq j} (\partial \Omega_i \cap \partial \Omega_j) \setminus \partial \Omega_D \). We assume matching finite element nodes on the neighboring subdomains across the interface \(\Gamma \). We also introduce the local finite element trace spaces \(W^{(i)} = W_h(\partial \Omega_i \cap \Gamma), \ i = 1, \ldots, N; \) see also Remark 3.5.

For our analysis, we need the corresponding partition-of-unity functions.

Definition 3.1. Let \(\theta_{F\!ij}, \theta_{E\!ik}, \) and \(\theta_{V\!il} \) be the partition-of-unity functions associated with the decomposition of the interface \(\Gamma \) into subdomain faces, edges, and vertices. These functions are piecewise linear finite element functions on the decomposition \(\tau_{h/2} \) of the deformed hexahedra by using the midpoints of the edges of the quadratic elements as new vertices; see Figure 3.1. Let \(\theta_{F\!ij}, \theta_{E\!ik}, \) and \(\theta_{V\!il} \) be discrete harmonic finite element functions which are piecewise linear on \(\tau_{h/2} \) and vanish at all nodes of \(\Gamma \) except of those of \(F\!ij, E\!ik, \) and \(V\!il, \) respectively, where the value is 1; see [28, Section 7].

In our analysis we allow that each of the \(N \) subdomains contains an almost incompressible part, here also called an inclusion, surrounded by a compressible hull. The inclusion may have a different Young modulus than the hull. It may also be compressible. We will now specify the definitions of a hull and a slab of a hull. We define the hull and the slab to be open sets.

Definition 3.2. The hull of a subdomain \(\Omega_i \) with width \(\eta \) is defined as \(\Omega_{i,\eta} := \{ x \in \Omega_i : \text{dist}(x, \partial \Omega_i) < \eta \} \); see Figure 3.2.

Definition 3.3. Let \(F^{ij} \subset \partial \Omega_i \) be a face. Then a slab \(\tilde{\Omega}_{i,\eta} \) of the hull \(\Omega_{i,\eta} \subset \Omega_i \) with \(F^{ij} \subset \partial \tilde{\Omega}_{i,\eta} \) is defined as \(\tilde{\Omega}_{i,\eta} := \{ x \in \Omega_{i,\eta} : \text{dist}(x, F^{ij}) < \eta \} \); see Figure 3.3.
Figure 3.1:

Decomposition of a tetrahedron into seven tetrahedra.
Since we made the assumption that our subdomains are parallelepipeds, the faces of a hull and of a slab are planar. In the following we assume that the completion of a hull and a slab are the union of finite elements. The inclusion can still be quite irregular in this situation; see Figure 3.4. Still, if the completion of a slab is not the union of finite elements, i.e., the boundary of a slab cuts through finite elements, then we remesh the slab with a mesh size similar to h, such that the auxiliary mesh satisfies the assumption. Note that this auxiliary mesh is only needed to extend our analysis to this case and is never used in the implementation of the algorithm. In the proof of Lemma 3.17, we then use a Scott-Zhang interpolation, cf. [56, 4], from the original finite element space to the finite element space on the auxiliary mesh; see Figure 2.5 and the end of the proof of Lemma 3.17. We assume that our original mesh resolves η in the sense that the inclusion is separated from the interface by at least one element; also see Figure 2.5.

The inclusion may be irregular even for a hull with planar faces if it can be encased in the hull of width η.

Now, we define the discrete elastic extension and the corresponding discrete harmonic extension to the hull and to the slab.
Definition 3.4. For \(w \in W(i) \) let \(\mathcal{H}_\varepsilon w \) be the discrete elastic extension of \(w \) from \(\partial \Omega_i \) to the subdomain \(\Omega_i \), i.e., \(\mathcal{H}_\varepsilon w \in U_i := \{ v \in (H^1(\Omega_i))^3 \cap W^h(\Omega_i) : v|_{\partial \Omega_i} = w \} \) defined by

\[
|a_i(\mathcal{H}_\varepsilon w, \mathcal{H}_\varepsilon w)| = \inf_{v \in U_i} |a_i(v, v)|
\]

and let \(\mathcal{H}_\eta w \) be the discrete harmonic extension of \(w \in W(i) \) from \(\partial \Omega_i \) to the hull \(\Omega_{i,\eta} \) with zero boundary conditions on the interior boundary of the hull, i.e., \(\mathcal{H}_\eta w \in U_{i,\eta} := \{ v \in (H^1(\Omega_{i,\eta}))^3 \cap W^h(\Omega_{i,\eta}) : v|_{\partial \Omega_i} = w, v|_{\partial \Omega_{i,\eta} \setminus \partial \Omega_i} = 0 \} \) defined by

\[
|\mathcal{H}_\eta w|_{H^1(\Omega_{i,\eta})} = \inf_{v \in U_{i,\eta}} |v|_{H^1(\Omega_{i,\eta})}.
\]

Additionally, we have for \(w \in W(i) \) with \(w(x) = 0 \) for all \(x \in \partial \Omega_i \setminus (\partial \Omega_{i,\eta} \cap \partial \Omega_i) \) the discrete harmonic extension \(\tilde{\mathcal{H}}_\eta w \) of \(w \) to the slab \(\tilde{\Omega}_{i,\eta} \), such that

\[
\tilde{\mathcal{H}}_\eta w = \begin{cases}
 w(x), & x \in \partial \Omega_i \\
 0, & x \in \Omega_i \setminus \tilde{\Omega}_{i,\eta}
\end{cases}
\]

discrete harmonic in \(\tilde{\Omega}_{i,\eta} \).

Remark 3.5. In order to avoid an excessive use of extension operators, in the following, we will always tacitly assume that a function \(u \in W(i) \) is discrete elastically extended to the interior of the subdomain.

3.2 Coarse Space

In FETI-DP algorithms primal constraints are used to make certain local problems invertible and to introduce a coarse problem. For simplicity, we consider FETI-DP methods with primal vertex constraints and edge averages over all edges as primal constraints. As a result all faces are fully primal in the sense of [37] and of Definition 3.6. For each subdomain \(\Omega_i \), we assemble the local linear system

\[
K^{(i)} u^{(i)} = f^{(i)}.
\]

Then, the FETI-DP saddle point problem is of the form

\[
\begin{bmatrix}
\tilde{K} & B^T \\
B & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{u} \\
\lambda
\end{bmatrix}
= \begin{bmatrix}
\tilde{f} \\
0
\end{bmatrix},
\]

where the matrix \(\tilde{K} \) and right hand side \(\tilde{f} \) are obtained from the local matrices \(K^{(i)} \) and local load vectors \(f^{(i)} \) by partial assembly in the primal variables; see, e.g., [31] or Section 2.4. The
continuity of the solution \tilde{u} across the interface Γ is enforced by the constraint $Bu = 0$, where $B = [B^{(1)}, \ldots, B^{(N)}]$ with entries from $\{-1, 0, 1\}$. The restriction of B to the interface Γ is denoted by B_{Γ}. In standard FETI-DP algorithms, the variables \tilde{u} are eliminated and the resulting Schur complement system $F\lambda = d$, with $F = B\tilde{K}^{-1}B^T$ and $d = B\tilde{K}^{-1}\tilde{f}$, is solved iteratively with a preconditioned conjugate gradient method. As a preconditioner we consider here exclusively the Dirichlet preconditioner M^{-1}, cf. [29, Section 3.2] or [30, 34, 37, 32]. For a complete description of FETI-DP algorithms, see, e.g., [18, 19, 29, 30, 31, 34]. Here we consider, in particular, the algorithm given in [37] and [31, 30]. See the latter references for an algorithmic description of parallel FETI-DP methods using primal edge constraints and a transformation of basis.

For the convenience of the reader we now recall the concept of edge average primal constraints, as given in [37, Section 5].

The null space $\ker(\varepsilon)$ is the space of rigid body modes. For a generic domain $\hat{\Omega}$ with diameter H, a basis for $\ker(\varepsilon)$ is given by the three translations

$$r_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad r_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad r_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

and the three rotations

$$r_4 = \frac{1}{H} \begin{pmatrix} x_2 - \hat{x}_2 \\ -x_1 + \hat{x}_1 \\ 0 \end{pmatrix}, \quad r_5 = \frac{1}{H} \begin{pmatrix} -x_3 + \hat{x}_3 \\ 0 \\ x_1 - \hat{x}_1 \end{pmatrix}, \quad r_6 = \frac{1}{H} \begin{pmatrix} 0 \\ x_3 - \hat{x}_3 \\ -x_2 + \hat{x}_2 \end{pmatrix}$$

where $\hat{x} \in \hat{\Omega}$.

In our proof of the condition number estimate we need to control the rigid body modes on each face. We use the concept of fully primal faces. A face is called fully primal, if there are at least six linearly independent constraints, given by appropriately selected averages over edges, which belong to the boundary of that face and which control the rigid body modes on that face. For a detailed description, see [37, Section 5]. The edge averages of the components of the displacements define linear functionals g_n, given by

$$g_n(w^{(i)}) = \frac{\int_{\mathcal{E}^{ik}} w_1^{(i)} \, dx}{\int_{\mathcal{E}^{ik}} 1 \, dx}, \quad n = 1, \ldots, 6, \quad l = 1, 2, 3$$

for $w^{(i)} = (w_{1}^{(i)}, w_{2}^{(i)}, w_{3}^{(i)}) \in W^{(i)}$ and edges $\mathcal{E}^{ik} \subset \partial \mathcal{F}^{ij}$. The edges \mathcal{E}^{ik} and the displacement components have to be chosen, such that the rigid body modes are controlled on \mathcal{F}^{ij}, i.e., if r is an arbitrary rigid body mode and $\sum_{i=1}^{6} g_n(r) = 0$, then $r = 0$.
The functionals \(g_n, n = 1, \ldots, 6 \), provide a basis of the dual space \((\ker(\varepsilon))'\). There exists a dual basis of \((\ker(\varepsilon))'\), spanned by the functionals \(f_1, \ldots, f_6 \), defined by \(f_m(r_l) = \delta_{ml}, m, l = 1, \ldots, 6 \). Thus, there exist \(\beta_{lk} \in \mathbb{R}, l, k = 1, \ldots, 6 \), such that for \(w \in W^{(i)} \)

\[
f_m(w) = \sum_{n=1}^{6} \beta_{mn} g_n(w), \quad m = 1, \ldots, 6.
\]

For further details, see, e.g., [37, Section 5].

Using a Cauchy-Schwarz inequality, we obtain

\[
\left| g_m(w^{(i)}) \right|^2 \leq CH_i^{-1} \left\| w^{(i)} \right\|_{L^2(\mathcal{E}_{ik})}^2.
\]

With Lemma 3.11 we can show that

\[
\left| g_m(w^{(i)}) \right|^2 \leq CH_i^{-1} \left(1 + \log \left(\frac{H_i}{h_i} \right) \right) \left\| w^{(i)} \right\|_{H^1(\Omega_i)}^2,
\]

and, accordingly,

\[
\left| g_m(w^{(i)}) \right|^2 \leq C\eta^{-1} \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left\| w^{(i)} \right\|_{H^1(\tilde{\Omega}_{i,\eta})}^2,
\]

where \(\tilde{\Omega}_{i,\eta} \) is a slab which contains \(\mathcal{E}_{ik} \) in its boundary. This motivates the definition of a fully primal face; see [37, Definition 5.3]. In contrast to [37], where trace spaces are used, we use standard Sobolev spaces.

Definition 3.6 (fully primal face). A face \(\mathcal{F}^{ij} \) is fully primal if, in the space of primal constraints over \(\mathcal{F}^{ij} \), there exists a set \(f_m^{ij}, m = 1, \ldots, 6 \), of linear functionals on \(W^{(i)} \) with the following properties:

\(i \) \(\left| f_m^{ij}(w^{(i)}) \right|^2 \leq CH_i^{-1} \left(1 + \log \left(\frac{H_i}{h_i} \right) \right) \left\{ \left\| w^{(i)} \right\|_{H^1(\Omega_i)}^2 + \frac{1}{H_i^2} \right\| w^{(i)} \right\|_{L^2(\Omega_i)}^2 \}
\)

\(ii \) \(\left| f_m^{ij}(w^{(i)}) \right|^2 \leq C\eta^{-1} \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left\{ \left\| w^{(i)} \right\|_{H^1(\tilde{\Omega}_{i,\eta})}^2 + \frac{1}{H_i^2} \right\| w^{(i)} \right\|_{L^2(\tilde{\Omega}_{i,\eta})}^2 \}
\)

\(iii \) \(f_m^{ij}(r_l) = \delta_{ml} \quad \forall m, l = 1, \ldots, 6, \ r_l \in \ker(\varepsilon). \)

Finally, we need an additional Korn inequality; see, e.g., [37, Lemma 6.2], where a corresponding version for trace spaces is given. The Korn constant of a domain depends on its aspect ratio; for an ellipse with semi-axes \(H \) and \(\eta \) it is explicitly known, i.e., \(K_e = 2(1 + (\frac{H}{\eta})^2) \); see [25]. In particular, we need Korn’s inequality on a slab.
Lemma 3.7. Let $\Omega \subset \mathbb{R}^3$ be a Lipschitz domain of diameter H, and let $r \in \ker(\varepsilon)$ be the minimizing rigid body mode. Then, there exists a positive constant $C > 0$, independent of h and H, such that for all $u \in H^1(\Omega)$, we have

$$\|u - r\|_{H^1(\Omega)}^2 \leq C \|\varepsilon(u)\|_{L^2(\Omega)}^2.$$

For an estimate on the slab $\tilde{\Omega}_{i,\eta}$, we have

$$\|u - r\|_{H^1(\tilde{\Omega}_{i,\eta})}^2 \leq C \left(\frac{H}{\eta}\right)^2 \|\varepsilon(u)\|_{L^2(\tilde{\Omega}_{i,\eta})}^2.$$

Proof. For a proof of the first part, see [37, Lemma 6.2]. Here, we prove the second inequality. The idea is to transform the slab to the smaller cube of length η, estimate by the first inequality, and transform it back to the slab. Let us denote the cube of length η by Ω_η and let T be the transformation from the slab $\tilde{\Omega}_{i,\eta} := [0, H]^2 \times [0, \eta]$ to this cube $\Omega_\eta := [0, \eta]^3$, such that

$$T(x, y, z) = \begin{pmatrix} \frac{\eta}{H} & 0 & 0 \\ 0 & \frac{\eta}{H} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Then we obtain

$$\|u - r\|_{H^1(\tilde{\Omega}_{i,\eta})}^2 = \|u - r\|_{L^2(\tilde{\Omega}_{i,\eta})}^2 + \frac{1}{H^2} \|u - r\|_{L^2(\tilde{\Omega}_{i,\eta})}^2 = \int_{\tilde{\Omega}_{i,\eta}} |\nabla(u - r)|^2 \, dx + \frac{1}{H^2} \|u - r\|_{L^2(\tilde{\Omega}_{i,\eta})}^2 = \int_{\Omega_\eta} \nabla(\hat{u} - \hat{r})^T D^T D T \nabla(\hat{u} - \hat{r}) \, d\hat{x} + \frac{1}{H^2} \|u - r\|_{L^2(\tilde{\Omega}_{i,\eta})}^2 \leq \left(\frac{H}{\eta}\right)^2 \int_{\Omega_\eta} |
abla(\hat{u} - \hat{r})|^2 \, d\hat{x} + \frac{1}{H^2} \|u - r\|_{L^2(\tilde{\Omega}_{i,\eta})}^2 = \left(\frac{H}{\eta}\right)^2 \|\hat{u} - \hat{r}\|_{L^2(\Omega_\eta)}^2 + \frac{1}{\eta^2} \|\hat{u} - \hat{r}\|_{L^2(\Omega_\eta)}^2 \leq C \left(\frac{H}{\eta}\right)^2 \|\varepsilon(\hat{u})\|_{L^2(\Omega_\eta)}^2.$$
Transforming back to the slab, we get with
\[
C \left(\frac{H}{\eta} \right)^2 \| \varepsilon(\hat{u}) \|_{L^2(\Omega_\eta)}^2
= C \left(\frac{H}{\eta} \right)^2 \int_{\tilde{\Omega}_{i,\eta}} (\nabla u + \nabla u^T)^T D T^{-T} D T^{-1} (\nabla u + \nabla u^T) |\det DT| \, dx
\leq C \left(\frac{H}{\eta} \right)^2 \| \varepsilon(u) \|_{L^2(\tilde{\Omega}_{i,\eta})}^2
\]
a Korn inequality on a slab.

\[\Box\]

3.3 Technical Tools

In this section, we introduce some technical tools which we need for the analysis of the condition number bound in Section 3.4.

The following lemma is directly related to [15, Lemma 5.4].

Lemma 3.8. Let \(F^{ij} \) be a common face of \(\Omega_i \) and \(\Omega_j \). There exists a piecewise linear finite element function \(\bar{\vartheta}_{F^{ij}} \) on \(\tilde{\Omega}_{i,\eta} \), which is equal to one at the nodal points of \(F^{ij} \), vanishes on \(\Gamma_h \setminus F^{ij} \), and satisfies
\[
|\bar{\vartheta}_{F^{ij}}|_{H^1(\tilde{\Omega}_{i,\eta})} \leq C \left(1 + \log \left(\frac{H_i}{h_i} \right) \right) \frac{H_i^2}{\eta}.
\]

Proof. We follow the proof for cubes in Casarin [7, Lemma 3.3.6]; also see [57, Lemma 4.25]. In [15, Proof of Lemma 5.4] the proof is given for cubes and then, by discussing the effects of compressing the cube, the result for cuboids is obtained. Here, we introduce a proof directly modified for a cuboid and obtain a result which is slightly different to the one in [15, Lemma 5.4], in the sense that we have also a dependency on the number of elements in each slab.

Let us consider a cuboid \(\tilde{\Omega}_\eta \) which has the dimension \(H \times H \times \eta \). The finite element function \(\bar{\vartheta}_{F^{ij}} \) is equal to 1 on the face \(F^{ij} \) and vanishes on the rest of the boundary nodes of \(\partial \tilde{\Omega}_\eta \setminus F^{ij} \). We divide \(\tilde{\Omega}_\eta \) into 24 tetrahedra by connecting the center of the cuboid \(C \) to all its vertices and all centers of its faces \(F^{ik} \) and by dividing these faces by their diagonals; see Figure 3.5. The function \(\bar{\vartheta}_{F^{ij}} \) associated with the face \(F^{ij} \) is defined to take the value \(\frac{1}{6} \)
at the center of the cuboid C. All six functions $\bar{\vartheta}_{F^{ik}}$, $k = 1, \ldots, 6$, corresponding to the six faces of the cuboid form a partition of unity at all nodes belonging to the closure of $\tilde{\Omega}_{\eta}$ except those on the wire basket, formed by the union of the edges and vertices of the cuboid, where $\bar{\vartheta}_{F^{ij}} = 0$. The values at the centers of the faces C_{ik} are $\bar{\vartheta}_{F^{ij}}(C_{ik}) = \delta_{jk}$, $k = 1, \ldots, 6$. On the segments $\overline{CC_{ik}}$ the function $\bar{\vartheta}_{F^{ij}}$ is linear, this means on the straight line $\overline{CC_{ij}}$ the function $\bar{\vartheta}_{F^{ij}}$ rises from $\frac{1}{6}$ to 1, on the other segments $\overline{CC_{ik}}$ the function $\bar{\vartheta}_{F^{ij}}$ decreases from $\frac{1}{6}$ to 0. The values inside each tetrahedron, formed by a segment $\overline{CC_{ik}}$ and one edge of F^{ij}, are defined to be constant on the intersection of any plane through that edge with the segment $\overline{CC_{ik}}$.

The value on the plane is given by the value of the intersection point, which we call E; see Figure 3.6. Such functions may not be finite element functions on our mesh. Therefore, we have to interpolate the functions $\bar{\vartheta}_{F^{ij}}$ to obtain corresponding finite element functions. Note, that
the interpolated functions still form a partition of unity.

We first only discuss finite elements that do not touch an edge of the cuboid. Our face F_{ij} is the base of the cuboid in Figures 3.7, 3.8, and 3.9. There are two possibilities for the distance of the center of the cuboid C to the center of the different faces; either the distance is of the order of H, see Figure 3.7 and 3.8, or the distance is of the order of η, see Figure 3.9.

Figure 3.7:

$\bar{\vartheta}_{F_{ij}} \neq 1$ on all faces of the tetrahedron.

We first consider the situations as in Figures 3.7 and 3.8, where the distance between C and C_{ik} is of the order of H. On the segment CC_{ik} the function $\bar{\vartheta}_{F_{ij}}$ decreases from $\frac{1}{6}$ to 0 and therefore here the Euclidean norm of the gradient can be bounded by

$$\|\nabla \bar{\vartheta}_{F_{ij}}\|_{l_2} \leq \frac{\hat{C}}{H}.$$

Let e be a point on the edge of the cuboid, see Figures 3.7 and 3.8, and consider a plane through the points e, C, and C_{ik}. When moving closer to the point e the segment CC_{ik} becomes the segment AB; see Figures 3.7-3.8. Since $\bar{\vartheta}_{F_{ij}}(C) = \bar{\vartheta}_{F_{ij}}(A)$ and $\bar{\vartheta}_{F_{ij}}(C_{ik}) = \bar{\vartheta}_{F_{ij}}(B)$ the gradient grows by a factor of $\frac{CC_{ik}}{AB}$, i.e.,

$$\|\nabla \bar{\vartheta}_{F_{ij}}\|_{l_2} \leq \frac{\hat{C}}{H} \cdot \frac{CC_{ik}}{AB} = \frac{\hat{C}}{H} \cdot \frac{eE}{r} \leq \frac{\hat{C}}{H} \cdot \frac{H}{r} \leq \frac{\hat{C}}{r},$$

where r is the distance of e to the midpoint of the segment AB. Here, \hat{C} is a generic constant independent of H, h, η and r. The tetrahedra fulfilling this bound are not critical for our analysis since the bound does not depend on η.
Figure 3.8:

\[\bar{\partial}_{Fij} \neq 1 \] on all faces of the tetrahedron.

Figure 3.9:

\[\bar{\partial}_{Fij} = 1 \] on the gray face, i.e., \[\bar{\partial}_{Fij}(C_{ij}) = 1 \] and \[\bar{\partial}_{Fij}(C) = \frac{1}{\eta}. \]
Next, we consider a tetrahedron, see Figure 3.9 (upper and left), which coincides on one face with \(\mathcal{F}^{ij} \), i.e., \(\bar{\vartheta}_{\mathcal{F}^{ij}} = 1 \) on this face. Thus, the length of the segment \(CC_{ij} \) is of the order of \(\eta \) and on the segment \(CC_{ij} \) the value of the function \(\bar{\vartheta}_{\mathcal{F}^{ij}} \) increases from \(\frac{1}{6} \) to 1. This means, \(\| \nabla \bar{\vartheta}_{\mathcal{F}^{ij}} \|_{L^2} \leq \frac{\dot{C}}{\eta} \) and again the gradient grows in proportion to \(\frac{CC_{ik}}{AB} \) when moving closer to the edge of the cuboid. Thus, the norm of the gradient can be estimated by

\[
\| \nabla \bar{\vartheta}_{\mathcal{F}^{ij}} \|_{L^2} \leq \frac{\dot{C}}{\eta} \cdot \frac{CC_{ik}}{AB} = \frac{\dot{C}}{\eta} \cdot \frac{eE}{r} \leq \frac{\dot{C}}{\eta} \cdot \frac{H}{r},
\]

in which \(\dot{C} \) is a generic, positive constant independent of \(H, h, \eta, \) and \(r \).

Next, we consider local cylindrical coordinates around the edges of the cuboid. The critical tetrahedra are the ones where the bound depends on \(H/\eta \); see Figure 3.9. It is therefore sufficient to consider integrals in local cylindrical coordinates around edges of length \(H \). We need to integrate over an angle of \(\alpha = \arctan(\eta/H) \leq \eta/H \); see Figure 3.10. We split the integral

Figure 3.10:

Integral around an edge in cylindrical coordinates.

into two parts. First one we integrate only over elements which do not touch edges of the cuboid. In the second term we consider a thin layer of elements of thickness \(h \) touching the edge. Note, that in the latter, the norm of the gradient of \(\bar{\vartheta}_{\mathcal{F}^{ij}} \) is bounded by \(\frac{\dot{C}}{\eta} \cdot \frac{H}{r} \) since \(\bar{\vartheta}_{\mathcal{F}^{ij}} \) decreases to zero towards the outer boundary of the layer. Let \(U \) be a neighborhood of the edge. Then, we obtain

\[
\left| \bar{\vartheta}_{\mathcal{F}^{ij}} \right|_{H^1(U)}^2 \leq \dot{C} \left\{ \int_0^H \int_h^H \int_0^{2\pi} \left(\frac{H}{r} \right)^2 r \, d\alpha \, dr \, dz + \int_0^H \int_0^h \int_0^{2\pi} \left(\frac{H}{r} \right)^2 r \, d\alpha \, dr \, dz \right\} \\
\leq \dot{C} \frac{H^2}{\eta} \left(1 + \log \left(\frac{H}{h} \right) \right).
\]

The same bound applies to the tetrahedron in Figure 3.9 (lower and left), where \(\bar{\vartheta}_{\mathcal{F}^{ij}} \) decreases from \(\frac{1}{6} \) to 0 on a segment of length \(\eta \).
By considering the cases in Figure 3.7 and 3.8, we have covered 16 of the total of the 24 tetrahedra. From the cases in Figure 3.9, we obtain our bounds for the remaining cases by symmetry, where in four cases \(\bar{\vartheta}_{F;ij} \) decreases from 1 to \(\frac{1}{6} \) and in the other cases \(\bar{\vartheta}_{F;ij} \) increases from \(\frac{1}{6} \) to 1.

We also need a discrete Sobolev inequality for a rectangle in two dimensions.

Lemma 3.9. Let \(\hat{\Omega}_{i,\eta} \subset \mathbb{R}^2 \) be a rectangle with side lengths \(H \) and \(\eta \). Then, for finite element functions \(u \in H^1(\hat{\Omega}_{i,\eta}) \),

\[
\| u \|_{L^\infty(\hat{\Omega}_{i,\eta})} \leq C \frac{H}{\eta} \left(1 + \log \left(\frac{\eta}{h} \right) \right) \left(| u |^2_{H^1(\hat{\Omega}_{i,\eta})} + \frac{1}{H^2} \| u \|_{L^2(\hat{\Omega}_{i,\eta})}^2 \right),
\]

where \(C > 0 \) is a constant independent of \(H \) and \(h \).

Proof. Let \(\tilde{\Omega} \) be a square with side length \(\eta \). Then we define \(\tilde{u} \) on \(\tilde{\Omega} \) as

\[
\tilde{u}(\tilde{x}, \tilde{y}) := (u \circ T)(\tilde{x}, \tilde{y}) = u(x, y)
\]

where the transformation \(T \) maps the square \(\tilde{\Omega} \) to the rectangle \(\hat{\Omega}_{i,\eta} \), i.e., \(T: \tilde{\Omega} \to \hat{\Omega}_{i,\eta} \), and

\[
\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} \mapsto \begin{pmatrix} \frac{H}{\eta} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.
\]

We have

\[
\| u \|_{L^\infty(\hat{\Omega}_{i,\eta})} = \| \tilde{u} \|_{L^\infty(\tilde{\Omega})}.
\]

On the square \(\tilde{\Omega} \) we may apply the standard Sobolev inequality, see, e.g., [4, Lemma (4.9.1)].

\[
\| \tilde{u} \|_{L^\infty(\tilde{\Omega})} \leq C \left(1 + \log \left(\frac{\eta}{h} \right) \right) \| \tilde{u} \|_{H^1(\tilde{\Omega})} = C \left(1 + \log \left(\frac{\eta}{h} \right) \right) \left(| \tilde{u} |^2_{H^1(\tilde{\Omega})} + \frac{1}{\eta^2} \| \tilde{u} \|_{L^2(\tilde{\Omega})}^2 \right).
\]

By transforming back to the rectangle, we have for the first part

\[
\| \tilde{u} \|_{H^1(\tilde{\Omega})}^2 = \int_{\tilde{\Omega}} | \nabla \tilde{u} |^2 \, d\tilde{x} = \int_{\hat{\Omega}_{i,\eta}} (\nabla u)^T \begin{pmatrix} \frac{H}{\eta} & 0 \\ 0 & 1 \end{pmatrix} (\nabla u) \left(\frac{\eta}{H} \right) \, dx \leq \frac{H}{\eta} \| u \|_{H^1(\hat{\Omega}_{i,\eta})}^2.
\]
and for the L_2 term
\[\| \tilde{u} \|_{L_2(\tilde{\Omega})}^2 = \int_{\tilde{\Omega}} |\tilde{u}|^2 \, d\tilde{x} = \int_{\tilde{\Omega}_{i,\eta}} \frac{\eta}{H} |u|^2 \, dx = \frac{\eta}{H} \| u \|_{L_2(\tilde{\Omega}_{i,\eta})}^2. \]

With
\[|\tilde{u}|_{H^1(\tilde{\Omega})}^2 + \frac{1}{\eta^2} \| \tilde{u} \|_{L_2(\tilde{\Omega})}^2 \leq \frac{H}{\eta} |u|_{H^1(\Omega_i)}^2 + \frac{1}{\eta H} \| u \|_{L_2(\tilde{\Omega}_{i,\eta})}^2 \]
\[= \frac{H}{\eta} \left(|u|_{H^1(\Omega_i)}^2 + \frac{1}{H^2} \| u \|_{L_2(\tilde{\Omega}_{i,\eta})}^2 \right) \]
we obtain the Sobolev inequality on a cuboid
\[\| u \|_{L_\infty(\tilde{\Omega}_{i,\eta})} \leq C \frac{H}{\eta} \left(1 + \log \left(\frac{\eta}{h} \right) \right) \| u \|_{H^1(\tilde{\Omega}_{i,\eta})}^2. \]

The next lemma is a version of Casarin [7, Lemma 3.3.7], modified for cuboids; see also Dryja, Smith, and Widlund [17, Lemma 4.5] or [57]. A version related to the first part of our lemma can be found in [15, Lemma 5.4].

Lemma 3.10. Let F_{ij} be a face common to Ω_i and Ω_j. Furthermore let $\tilde{\Omega}_{i,\eta}$ be a slab as defined in Definition 3.3. Let $\tilde{\vartheta}_{F_{ij}}$ be given as constructed in Lemma 3.8. Then, for $u \in W^{(i)}$,

1. \[|I^h(\tilde{\vartheta}_{F_{ij}} u)|_{H^1(\tilde{\Omega}_{i,\eta})}^2 \leq C \frac{H}{\eta} \left(1 + \log \left(\frac{\eta}{h} \right) \right)^2 \| u \|_{H^1(\tilde{\Omega}_i)}^2 \]
2. \[|I^h(\tilde{\vartheta}_{F_{ij}} u)|_{H^1(\tilde{\Omega}_{i,\eta})}^2 \leq C \left(\frac{H}{\eta} \right)^2 \left(1 + \log \left(\frac{H}{h} \right) \right) \left(1 + \log \left(\frac{\eta}{h} \right) \right) \| u \|_{H^1(\tilde{\Omega}_{i,\eta})}^2. \]

Proof. Here, we give a scalar version of the proof. In the proof of Lemma 3.8, we have established bounds for the gradient of $\tilde{\vartheta}_{F_{ij}}$. On each element let $\tilde{\vartheta}_{F_{ij}} \in [0, 1]$ be the value of $\vartheta_{F_{ij}}$ at an arbitrary point of that element. For convenience we can choose some kind of average of $\tilde{\vartheta}_{F_{ij}}$ on each element. Then, by the mean value theorem, we obtain $| \vartheta_{F_{ij}} - \tilde{\vartheta}_{F_{ij}} | \leq h \frac{C H}{\eta}$ or $| \vartheta_{F_{ij}} - \tilde{\vartheta}_{F_{ij}} | \leq h \frac{C H}{\eta}$ for elements which do not touch edges, which belong to the boundary of the face F_{ij} and, accordingly, $| \vartheta_{F_{ij}} - \tilde{\vartheta}_{F_{ij}} | \leq h \frac{C H}{\eta}$ or $| \vartheta_{F_{ij}} - \tilde{\vartheta}_{F_{ij}} | \leq h \frac{C H}{\eta}$ for the thin layer of elements of thickness h touching the edge. First, we will only distinguish between elements which touch the edge or do not touch the edge, so we denote the estimates by...
\[|\tilde{\varphi}_{F_{ij}} - \tilde{\varphi}_{F_{ij}}| \leq h \cdot b_E \text{ and } |\tilde{\varphi}_{F_{ij}} - \tilde{\varphi}_{F_{ij}}| \leq h \cdot b_I, \] respectively. Additionally, we denote by \(\omega_\eta \) the union of all elements \(K \) which have a vertex on the edge \(E_{ik} \), which corresponds to the face \(F_{ij} \). Thus, we have

\[
|I^h(\tilde{\varphi}_{F_{ij}} u)|^2_{H^1(\Omega_\eta)} = \sum_{K \in \Omega_\eta} |I^h((\tilde{\varphi}_{F_{ij}} - \tilde{\varphi}_{F_{ij}} + \tilde{\varphi}_{F_{ij}})u)|^2_{H^1(K)} \]

\[
\leq 2 \sum_{K \in \Omega_\eta} |\tilde{\varphi}_{F_{ij}} u|^2_{H^1(K)} + 2 \sum_{K \in \Omega_\eta} |I^h((\tilde{\varphi}_{F_{ij}} - \tilde{\varphi}_{F_{ij}})u)|^2_{H^1(K)} \]

\[
\leq 2 |u|^2_{H^1(\Omega_\eta)} + 2 \sum_{K \in \Omega_\eta} |I^h((\tilde{\varphi}_{F_{ij}} - \tilde{\varphi}_{F_{ij}})u)|^2_{H^1(K)} + 2 \sum_{K \in \omega_\eta} |I^h((\tilde{\varphi}_{F_{ij}} - \tilde{\varphi}_{F_{ij}})u)|^2_{H^1(K)}.
\]

Using an inverse estimate for finite element functions, i.e., \(|v|_{H^1(\Omega)} \leq \hat{C} h^{m-1} |v|_{H^m(\Omega_i)} \), see, e.g., [3, p. 78 and p. 80], the \(H^1 \)-seminorm in the second and the third term can be replaced by the \(L^2 \)-norm with an additional factor \(h^{-2} \). Therefore, we have to estimate

\[
\sum_{K \in \Omega_\eta \setminus \omega_\eta} h^{-2} \left| I^h((\tilde{\varphi}_{F_{ij}} - \tilde{\varphi}_{F_{ij}})u) \right|^2_{L^2(K)} + \sum_{K \in \omega_\eta} h^{-2} \left| I^h((\tilde{\varphi}_{F_{ij}} - \tilde{\varphi}_{F_{ij}})u) \right|^2_{L^2(K)} \]

\[
\leq \sum_{K \in \Omega_\eta \setminus \omega_\eta} (b_I)^2 \left| u \right|^2_{L^2(K)} + \sum_{K \in \omega_\eta} (b_E)^2 \left| u \right|^2_{L^2(K)}.
\]

So far we have used sums over elements, now we return to the integral in cylindrical coordinates. For the critical tetrahedra, where the bounds depend on \(H/\eta, z \) is of the order of \(H \) since the edge \(E_{ik} \) belongs to the face \(F_{ij} \); \(r \) is also of the order of \(H \) and the angle over which we integrate is of the order of \(\frac{\eta}{H} \).

On the critical segment, we have

\[
\sum_{K \in \Omega_\eta \setminus \omega_\eta} \left(\frac{H}{\eta^2} \right)^2 \left| u \right|^2_{L^2(K)} + \sum_{K \in \omega_\eta} \left(\frac{H}{\eta^2} \right)^2 \left| u \right|^2_{L^2(K)} \]

\[
\leq C \left\{ \int_0^H \int_0^H \int_0^{\frac{\epsilon_H}{\eta^2}} \frac{H^2}{\eta^2} u^2 \, r \, d\alpha \, dr \, dz + \int_0^H \int_0^h \int_0^{\frac{\epsilon_H}{\eta^2}} \frac{H^2}{\eta^2} u^2 \, r \, d\alpha \, dr \, dz \right\}
\]

\[
\leq C \left\{ \int_0^H \int_0^{\frac{\epsilon_H}{\eta^2}} \frac{H^2}{\eta^2} \left(\int_0^H u^2 \, dz \right) \, d\alpha \, dr + \int_0^H \int_0^{\frac{\epsilon_H}{\eta^2}} \frac{H^2}{\eta^2} \left(\int_0^H u^2 \, dz \right) \, d\alpha \, dr \right\}
\]

We have to estimate the line segment \(\int_0^H u^2 \, dz \) which is dependent of \(z, \alpha, \) and \(r \). Building a smaller cuboid of size \(\eta \times \eta \times H \) around this segment, we can estimate the line segment.
by an edge of this cuboid, which is also of the order of H. We use the presentation of the estimate of $\|u\|_{L^2(E^{ik})}^2$, given in [28, Lemma A.3]; see [27, Section 5, Proof of Lemma 2] for the proof. Combined with Lemma 3.9, we obtain

$$\|u\|_{L^2(E^{ik})}^2 \leq C \frac{H}{\eta} \left(1 + \log\left(\frac{\eta}{h}\right)\right) \left(|u|_{H^1(\tilde{\Omega}_{i,\eta})}^2 + \frac{1}{H^2} \|u\|_{L^2(\tilde{\Omega}_{i,\eta})}^2\right).$$

From this, we obtain the estimate (3.2)

$$|I^h(\bar{\vartheta}_{F^{ij}} u)|_{H^1(\tilde{\Omega}_{i,\eta})}^2 \leq C \left(1 + \log\left(\frac{H}{h}\right)\right) \left(|u|_{H^1(\Omega_i)}^2 + \frac{1}{H^2} \|u\|_{L^2(\Omega_i)}^2\right).$$

If we can afford to estimate with respect to the whole subdomain Ω_i, we can use the standard edge estimate, see Toselli and Widlund [57, Lemma 4.16], and obtain

$$\|u\|_{L^2(E^{ik})}^2 \leq C \left(1 + \log\left(\frac{H}{h}\right)\right) \left(|u|_{H^1(\Omega_i)}^2 + \frac{1}{H^2} \|u\|_{L^2(\Omega_i)}^2\right).$$

From this, we obtain the inequality (3.1)

$$|I^h(\bar{\vartheta}_{F^{ij}} u)|_{H^1(\tilde{\Omega}_{i,\eta})}^2 \leq C \frac{H}{\eta} \left(1 + \log\left(\frac{H}{h}\right)\right)^2 \left(|u|_{H^1(\Omega_i)}^2 + \frac{1}{H^2} \|u\|_{L^2(\Omega_i)}^2\right).$$

In the next lemma, we just summarize the results for the estimates of the edges obtained in the proof of Lemma 3.10. It is therefore a combination of [57, Lemma 4.19] and [57, Lemma 4.16], and an edge estimate in terms of the energy on a corresponding slab.

Lemma 3.11. Let E^{ik} be an edge of Ω_i, or rather an edge of $\tilde{\Omega}_{i,\eta}$ of the order of H_i. Let $\theta_{E^{ik}}$ be the finite element function which vanishes at all nodes of Γ except of those of E^{ik} where it takes the value 1, and which is discrete harmonically extended to Ω_i. Let $\bar{\vartheta}_{E^{ik}}$ be the function that vanishes on all nodes of Ω_i except on those of E^{ik} where it takes the value 1. By $I^h(\bar{\vartheta}_{E^{ik}} u)$ we denote the extension by zeros of the values of u on E^{ik}. Then, for $u \in W^{(i)}$,

$$(i) \ |H(I^h(\theta_{E^{ik}} u))|_{H^1(\Omega_i)}^2 \leq |I^h(\bar{\vartheta}_{E^{ik}} u)|_{H^1(\Omega_i)}^2 \leq C \|u\|_{L^2(\Omega_i)}^2,$$

since it is a local argument, the estimate is also valid for the slab, i.e.,

$$|H(I^h(\theta_{E^{ik}} u))|_{H^1(\tilde{\Omega}_{i,\eta})}^2 \leq |I^h(\bar{\vartheta}_{E^{ik}} u)|_{H^1(\tilde{\Omega}_{i,\eta})}^2 \leq C \|u\|_{L^2(\Omega_i)}^2.$$
(ii) $\|u\|_{L^2(E^{ik})}^2 \leq C \left(1 + \log \left(\frac{H}{\eta} \right) \right) \left\{ |u|_{H^1(\Omega_i)}^2 + \frac{1}{H^2} \|u\|_{L^2(\Omega_i)}^2 \right\}$,

(iii) $\|u\|_{L^2(E^{ik})}^2 \leq C \frac{H}{\eta} \left(1 + \log \left(\frac{H}{\eta} \right) \right) \left\{ |u|_{H^1(\tilde{\Omega}_{i,\eta})}^2 + \frac{1}{H^2} \|u\|_{L^2(\tilde{\Omega}_{i,\eta})}^2 \right\}$.

Furthermore, we need an extension lemma to extend a function from one slab to a neighboring one.

Lemma 3.12. Let $\tilde{\Omega}_{i,\eta}$ and $\tilde{\Omega}_{j,\eta}$ be two cuboids of the same width η, which share a face $F_{ij} \subset \partial \tilde{\Omega}_{i,\eta} \cap \partial \tilde{\Omega}_{j,\eta}$, and let

$$V_i := \left\{ v \in W^h(\tilde{\Omega}_{i,\eta}) : v(x) = 0 \quad \forall x \in \partial \tilde{\Omega}_{i,\eta} \setminus F_{ij} \right\}$$

$$V_j := \left\{ v \in W^h(\tilde{\Omega}_{j,\eta}) : v(x) = 0 \quad \forall x \in \partial \tilde{\Omega}_{j,\eta} \setminus F_{ij} \right\}.$$

Then, there exists an extension operator $E_{ji} : V_j \to V_i$ with the following properties

1. $(E_{ji} u)|_{\tilde{\Omega}_{j,\eta}} = u \quad \forall u \in V_j$

2. $|E_{ji} u|_{H^1(\tilde{\Omega}_{i,\eta})} = |u|_{H^1(\tilde{\Omega}_{j,\eta})} \quad \forall u \in V_j$;

see also Figure 3.11.

Figure 3.11: Extension

$\Omega_i \quad \Omega_j$

$\tilde{\Omega}_{i,\eta} \quad \tilde{\Omega}_{j,\eta}$

Cross section of two neighboring slabs. An extension from $\tilde{\Omega}_{i,\eta}$ to $\tilde{\Omega}_{j,\eta}$.

Proof. Without loss of generality we suppose that F_{ij} is a subset of the $x - y$-plane. Then it is sufficient to choose a reflection for the extension operator such that

$$E_{ji} u(x, y, z) = \begin{cases}
 u(x, y, -z) & x, y, z \in \tilde{\Omega}_{i,\eta} \\
 u(x, y, z) & x, y, z \in \tilde{\Omega}_{j,\eta}.
\end{cases}$$
We may write $E_{ji}u(x, y, z) = u(x, y, -z) = u \circ T$ with $T = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -z \end{pmatrix}$ for $x, y, z \in \tilde{\Omega}_{i, \eta}$ and we obtain

\begin{align*}
|E_{ji}u|^2_{H^1(\tilde{\Omega}_{i, \eta})} &= \int_{\tilde{\Omega}_{i, \eta}} |\nabla (E_{ji}u(x, y, z))|^2 \, dx \, dy \, dz \\
&= \int_{\tilde{\Omega}_{i, \eta}} |\nabla (u \circ T)|^2 \, dx \, dy \, dz \\
&= \int_{\tilde{\Omega}_{j, \eta}} (\nabla u)^T (DT)^T (DT) (\nabla u) |\det(DT^{-1})| \, d\hat{x} \, d\hat{y} \, d\hat{z} \\
&= \int_{\tilde{\Omega}_{j, \eta}} |\nabla u|^2 \, d\hat{x} \, d\hat{y} \, d\hat{z} \\
&= |u|_{H^1(\tilde{\Omega}_{j, \eta})}^2.
\end{align*}

\hfill \Box

3.4 Convergence Analysis

In this section, we will prove our central theorem on the condition number estimate for the FETI-DP algorithm. Let us first repeat the spaces usually used in the analysis of FETI-DP methods. We denote by $W := \prod_{i=1}^N W^{(i)}$ the product space associated with the spaces $W^{(i)}$, i.e., $W^{(i)} = W^h(\partial \Omega_i \cap \Gamma)$; see also Remark 3.5. Furthermore, we define

$$\tilde{W} := \{u : \exists u^{(i)} \in W^{(i)}, i = 1, \ldots, N, \text{ such that } u = \sum_{i=1}^N R^{(i)T} u^{(i)}\}$$

as the subspace of partially assembled finite element functions with an assembly in the primal variables of FETI-DP, where $R^{(i)T}$ is the local assembly operator. In our analysis we need the local Schur complement matrices $S_z^{(i)}$ obtained from $K^{(i)}$ by the elimination of the interior variables in Ω_i and the partially assembled Schur complement matrix $\tilde{S}_z = \sum_{i=1}^N R^{(i)T} S_z^{(i)} R^{(i)}$.

In order to provide a condition number estimate for the preconditioned FETI-DP matrix $M^{-1}F$, we expand the convergence analysis, given in [37] for compressible linear elasticity, to the case where each subdomain contains an almost incompressible or compressible inclusion surrounded by a compressible hull of thickness η.

\hfill \Box
As in [37, Section 8.1], we introduce the projection

\[P_D : \tilde{W} \rightarrow \tilde{W}, \quad P_D := B_{D,\Gamma}^T B_{\Gamma}. \]

Note that \(P_D \) and also \(P_D^T \) preserve jumps for \(u \in \tilde{W} \) in the sense that \(B_{\Gamma} P_D u = B_{\Gamma} u \) and \(B_{D,\Gamma} P_D^T u = B_{D,\Gamma} u \). In this notation we have \(F = B_{\Gamma} \tilde{S}_e^{-1} B_{\Gamma}^T \) and the Dirichlet preconditioner \(M^{-1} = B_{D,\Gamma} \tilde{S}_e B_{D,\Gamma}^T \). Let \(w \in \tilde{W} \), then, we have

\[
\left(R^{(i)} P_D w \right) (x) = \sum_{j \in N_x} \delta^i_j \left(\left(R^{(i)} w \right)(x) - \left(R^{(j)} w \right)(x) \right), \quad x \in \partial \Omega_{i,h} \cap \Gamma_h,\n\]

where \(\delta^i_j (x) = \frac{G_{i,j}}{\sum_{k \in N_x} G_{i,k}} \) and \(\gamma \in [\frac{1}{2}, \infty) \). For the analysis, we make the following assumption.

Assumption 3.13. For each subdomain, we have an inclusion which can be either almost incompressible or compressible, surrounded by a hull \(\Omega_{i,\eta} \) of compressible material. The material coefficients \(G(x) \) and \(\beta(x) \) have a constant value in the interior inclusion and in the hull respectively, i.e.,

\[
G(x) = \begin{cases}
 G_{1,i} & x \in \overline{\Omega}_{i,\eta} \\
 G_{2,i} & x \in \Omega_i \setminus \Omega_{i,\eta}
\end{cases}, \quad \beta(x) = \begin{cases}
 \beta_{1,i} & x \in \overline{\Omega}_{i,\eta} \\
 \beta_{2,i} & x \in \Omega_i \setminus \Omega_{i,\eta}
\end{cases}.
\]

Note, that this assumption could be easily generalized such that the Young modulus and the Poisson ratio are piecewise constant on each finite element and have positive, arbitrarily bounded values in the inclusion and only mildly varying values on the hull.

Remark 3.14. Note that Assumption 3.13 allows that the Young modulus in the inclusion can be different from the one in the hull and that their quotient can be arbitrarily small or large. Hence, we can allow for arbitrarily large coefficient jumps of the Young modulus across the boundary of the inclusion in addition to an arbitrary Poisson ratio within the inclusion.

The following assumption allows for the improved bound (3.4) in Lemma 3.17 and Theorem 3.18, respectively, which contains a linear factor \(H/\eta \) compared to the \((H/\eta)^4 \)—factor in (3.3).

Assumption 3.15. For each subdomain \(\Omega_i, \ i = 1, \ldots, N \), we assume that \(G_{1,i} \leq k_i \cdot G_{2,i} \), where \(k_i > 0 \) is a constant independent of \(h, H, \eta, G_{1,i}, \) and \(G_{2,i} \).
For the edge term estimate in the proof of Lemma 3.17, we need a further assumption.

Assumption 3.16. For any pair of subdomains \((\Omega_i, \Omega_k)\) which have an edge in common, we assume that there exists an acceptable path \((\Omega_i, \Omega_{j_1}, \ldots, \Omega_{j_n}, \Omega_k)\) from \(\Omega_i\) to \(\Omega_k\), via a uniformly bounded number of other subdomains \(\Omega_{i_q}\), \(q = 1, \ldots, n\), such that the coefficients \(G_{1,j_q}\) of the \(\Omega_{i_q}\)'s satisfy the condition

\[
TOL \cdot G_{1,j_q} \geq \min(\{G_{1,i}, G_{1,k}\}, \; q = 1, \ldots, n),
\]

where \(TOL > 0\) is a chosen tolerance.

For a detailed description of the concept of acceptable paths, see [37, Section 5].

Next, we formulate the central technical lemma of this section.

Lemma 3.17. Given Assumptions 3.13 and 3.16, for all \(w \in \tilde{W}\), we have

\[
|P_D w|_{S_{\varepsilon}}^2 \leq C \max(1, TOL) \left(1 + \log \left(\frac{H}{h} \right) \right) \left(1 + \log \left(\frac{\eta}{\eta} \right) \right) \left(\frac{H}{\eta} \right)^4 |w|_{S_{\varepsilon}}^2, \tag{3.3}
\]

where \(C > 0\) is independent of \(h, H, \eta,\) and the values of \(G_i\) and \(\beta_i\), \(i = 1, \ldots, N\), and hence also of the values of \(E_i\) and \(\nu_i\), \(i = 1, \ldots, N\).

If additionally Assumption 3.15 is satisfied, we have

\[
|P_D w|_{S_{\varepsilon}}^2 \leq C \max(1, TOL) \left(1 + \log \left(\frac{H}{h} \right) \right)^2 \left(\frac{H}{\eta} \right) |w|_{S_{\varepsilon}}^2, \tag{3.4}
\]

where \(C > 0\) is independent of \(h, H, \eta,\) and the values of \(G_i\) and \(\beta_i\), \(i = 1, \ldots, N\), and hence also of the values of \(E_i\) and \(\nu_i\), \(i = 1, \ldots, N\).

We will prove this lemma after the next theorem.

Theorem 3.18. Given Assumptions 3.13 and 3.16, the condition number of the preconditioned FETI-DP system satisfies

\[
\kappa(M^{-1}F) \leq C \max(1, TOL) \left(1 + \log \left(\frac{H}{h} \right) \right) \left(1 + \log \left(\frac{\eta}{\eta} \right) \right) \left(\frac{H}{\eta} \right)^4
\]

where \(C > 0\) is independent of \(h, H, \eta,\) and the values of \(G_i\) and \(\beta_i\), \(i = 1, \ldots, N\), and hence also of the values of \(E_i\) and \(\nu_i\), \(i = 1, \ldots, N\).

If additionally Assumption 3.15 is satisfied, we have

\[
\kappa(M^{-1}F) \leq C \max(1, TOL) \left(1 + \log \left(\frac{H}{h} \right) \right)^2 \left(\frac{H}{\eta} \right)
\]
where \(C > 0 \) is independent of \(h, H, \eta \) and the values of \(G_i \) and \(\beta_i, \ i = 1, \ldots, N \), and hence also of the values of \(E_i \) and \(\nu_i, \ i = 1, \ldots, N \).

Proof. Using Lemma 3.17, the proof can be carried out exactly as in [37, Theorem 8.2]. For the sake of completeness, we give a sketch of the proof. We need to constrain the smallest eigenvalue \(\lambda_{\text{min}}(M^{-1}F) \) from below and the largest eigenvalue \(\lambda_{\text{max}}(M^{-1}F) \) from above. Therefore we consider the following equations in terms of the energy norm \(F \). For all \(\lambda \in \text{range}(M^{-1}) \), we have

\[
\langle \lambda, \lambda \rangle_F \leq \langle M^{-1}F\lambda, \lambda \rangle_F \leq C \max(1, TOL) \left(1 + \log \left(\frac{H}{h} \right) \right) \left(1 + \log \left(\frac{\eta}{h} \right) \right) \left(\frac{H}{\eta} \right)^4 \langle \lambda, \lambda \rangle_F
\]

and accordingly

\[
\langle \lambda, \lambda \rangle_F \leq \langle M^{-1}F\lambda, \lambda \rangle_F \leq C \max(1, TOL) \left(1 + \log \left(\frac{H}{h} \right) \right)^2 \left(\frac{H}{\eta} \right) \langle \lambda, \lambda \rangle_F.
\]

First we consider the lower bound

\[
\langle \lambda, \lambda \rangle_F^2 = \langle \lambda, B_{D,F}B_{F}^T\lambda \rangle_F^2
\]

\[
= \langle \lambda, B_{D,F}\tilde{S}_{\varepsilon}^{1/2}\tilde{S}_{\varepsilon}^{-1/2}B_{F}^T\lambda \rangle_F^2
\]

\[
= \langle F\lambda, B_{D,F}\tilde{S}_{\varepsilon}^{1/2}\tilde{S}_{\varepsilon}^{-1/2}B_{F}^T\lambda \rangle_F^2
\]

\[
\leq \langle \tilde{S}_{\varepsilon}^{1/2}B_{D,F}^T F\lambda, \tilde{S}_{\varepsilon}^{1/2}B_{D,F}^T F\lambda \rangle \langle \tilde{S}_{\varepsilon}^{-1/2}B_{F}^T\lambda, \tilde{S}_{\varepsilon}^{-1/2}B_{F}^T\lambda \rangle
\]

\[
= \langle M^{-1}F\lambda, F\lambda \rangle \langle F\lambda, \lambda \rangle
\]

\[
= \langle M^{-1}F\lambda, \lambda \rangle_F \langle \lambda, \lambda \rangle_F
\]

For the upper bound we just prove the first estimate. The second estimate is obtained...
analogously.

\[\langle M^{-1}F\lambda, \lambda \rangle_F = \langle M^{-1}F\lambda, F\lambda \rangle = \langle B_D^T B_T \tilde{S}_e^{-1} B_T^T \lambda, B_D^T B_T \tilde{S}_e^{-1} B_T^T \lambda \rangle_{\tilde{S}_e} \]

\[= |P_D(\tilde{S}_e^{-1} B_T^T \lambda)|^2_{\tilde{S}_e} \]

\[\leq C \max(1, TOL) \left(1 + \log \left(\frac{H}{\eta} \right) \right) \left(1 + \log \left(\frac{\eta}{h} \right) \right) \left(\frac{H}{\eta} \right)^4 |\tilde{S}_e^{-1} B_T^T \lambda|_{\tilde{S}_e}^2 \]

\[= C \max(1, TOL) \left(1 + \log \left(\frac{H}{h} \right) \right) \left(1 + \log \left(\frac{\eta}{h} \right) \right) \left(\frac{H}{\eta} \right)^4 \langle \tilde{S}_e^{-1} B_T^T \lambda, \tilde{S}_e^{-1} B_T^T \lambda \rangle_{\tilde{S}_e} \]

\[= C \max(1, TOL) \left(1 + \log \left(\frac{H}{h} \right) \right) \left(1 + \log \left(\frac{\eta}{h} \right) \right) \left(\frac{H}{\eta} \right)^4 \langle \lambda, \lambda \rangle_F \]

Now, we will establish Lemma 3.17.

Proof of Lemma 3.17. For simplicity we first assume in this proof that each slab can be represented as the union of finite elements. The generalization to the case where the interior boundary of a slab cuts through certain finite elements can be treated by using a Scott-Zhang interpolation operator, cf. the comment at the end of this proof.

Let \(w \in \tilde{W} \), \(R w := (R^{(1)}w, \ldots, R^{(N)}w) \in W \) and note that \(|P_D w|^2_{\tilde{S}_e} = |R P_D w|^2_{\tilde{S}_e} \) as well as \(|w|^2_{\tilde{S}_e} = |R w|^2_{\tilde{S}_e} \). Let \(v^{(i)} = R^{(i)} P_D w \), then

\[|R P_D w|^2_{\tilde{S}_e} = \sum_{i=1}^{N} \left| v^{(i)} \right|_{\tilde{S}_e}^2 \]

We note that \(R w = (R^{(1)}w, \ldots, R^{(N)}w) = (w^{(1)}, \ldots, w^{(N)}) \in W \). Thus, it is sufficient to prove

\[\left| v^{(i)} \right|^2_{\tilde{S}_e^{(i)}} \leq C \max(1, TOL) \left(1 + \log \left(\frac{H}{h} \right) \right) \left(1 + \log \left(\frac{\eta}{h} \right) \right) \left(\frac{H}{\eta} \right)^4 \sum_{j \in N_i} \left| w^{(j)} \right|^2_{\tilde{S}_e^{(j)}} \]

We consider the local bilinear form for linear elasticity

\[a_i(u, v) = (G(x)\varepsilon(u), \varepsilon(v))_{L^2(\Omega_i)} + (G(x)\beta(x) \mathrm{div}(u), \mathrm{div}(v))_{L^2(\Omega_i)} \]
Using the discrete elastic extension H_e of $v^{(i)}$ to Ω_i and the discrete harmonic extension H_η of $v^{(i)}$ to the hull $\Omega_{i,\eta}$, see Definition 3.4, we have

$$
\left| \frac{v^{(i)}}{S_i} \right| = \left| a_i (H_e v^{(i)}, H_e v^{(i)}) \right| \leq \left| a_i (H_\eta v^{(i)}, H_\eta v^{(i)}) \right|
$$

$$
= \left| (G_{1,i} \varepsilon (H_\eta v^{(i)}), \varepsilon (H_\eta v^{(i)}))_{L^2(\Omega_{i,n})} + (G_{1,i} \beta_{1,i} \text{div}(H_\eta v^{(i)}), \text{div}(H_\eta v^{(i)}))_{L^2(\Omega_{i,n})} \right|
$$

$$
\leq (1 + 3 \beta_{1,i}) G_{1,i} \left| H_\eta v^{(i)} \right|^2_{H^1(\Omega_{i,n})}.
$$

For the proof we use the partition-of-unity functions $\theta_{F_{ij}}$, $\theta_{E_{ik}}$, and $\theta_{V_{il}}$ associated with faces, edges, and vertices; see Definition 3.1. Since all vertices are primal, the vertex terms vanish and we obtain

$$
v^{(i)} = \sum_{F_{ij}} I^h (\theta_{F_{ij}} v^{(i)}) + \sum_{E_{ik}} I^h (\theta_{E_{ik}} v^{(i)}).
$$

Face terms

Let F_{ij} be a face, shared by the subdomains Ω_i and Ω_j. Then, the contribution to $v^{(i)}$ is $I^h (\theta_{F_{ij}} \delta_j^i (w^{(i)} - w^{(j)}))$, and

$$
\left| I^h (\theta_{F_{ij}} \delta_j^i (w^{(i)} - w^{(j)})) \right|^2_{S_i} \leq (1 + 3 \beta_{1,i}) G_{1,i} \left| H_\eta \left(I^h (\theta_{F_{ij}} \delta_j^i (w^{(i)} - w^{(j)})) \right) \right|^2_{H^1(\Omega_{i,n})}.
$$

Using $G_{1,i} [\delta_j^i (x)]^2 \leq \min(G_{1,i}, G_{1,j})$, for details, see, e.g., [37, Lemma 8.4], we get

$$
\left| I^h (\theta_{F_{ij}} \delta_j^i (w^{(i)} - w^{(j)})) \right|^2_{S_i} \leq (1 + 3 \beta_{1,i}) \min(G_{1,i}, G_{1,j}) \left| H_\eta \left(I^h (\theta_{F_{ij}} (w^{(i)} - w^{(j)})) \right) \right|^2_{H^1(\Omega_{i,n})}.
$$

Let $\tilde{\theta}_{F_{ij}}$ be the finite element function, defined in Lemma 3.8, which is piecewise linear on $\tau_h/2$, coincides with $\theta_{F_{ij}}$ on F_{ij}, and vanishes on $\partial \Omega_{i,\eta} \setminus F_{ij}$ and on $\Omega_i \setminus \Omega_{i,\eta}$. Let \tilde{H}_η be the discrete harmonic extension to the slab $\tilde{\Omega}_{i,\eta}$, as in Definition 3.4. Then, we have

$$
\min(G_{1,i}, G_{1,j}) \left| H_\eta \left(I^h (\theta_{F_{ij}} (w^{(i)} - w^{(j)})) \right) \right|^2_{H^1(\Omega_{i,n})} = \min(G_{1,i}, G_{1,j}) \left| \tilde{H}_\eta \left(I^h (\tilde{\theta}_{F_{ij}} (w^{(i)} - w^{(j)})) \right) \right|^2_{H^1(\tilde{\Omega}_{i,\eta})} \leq \min(G_{1,i}, G_{1,j}) \left| \tilde{H}_\eta \left(I^h (\tilde{\theta}_{F_{ij}} (w^{(i)} - w^{(j)})) \right) \right|^2_{H^1(\tilde{\Omega}_{i,\eta})}.
$$
All faces are fully primal; cf. Definition 3.6. Thus, there exist functionals $f_m^{F(i)}$ with $f_m^{F(i)}(w(i)) = f_m^{F(i)}(w(j))$, $m = 1, \ldots, 6$, $f_m^{F(i)}(r_n) = \delta_{mn}$, $m, n = 1, \ldots, 6$, such that

$$w(i) - w(j) = \left(w(i) - \sum_{m=1}^{6} f_m^{F(i)}(w(i))r_m \right) - \left(w(j) - \sum_{m=1}^{6} f_m^{F(i)}(w(j))r_m \right).$$

Using the representation of an arbitrary rigid body mode in terms of the basis $(r_m)_{m=1,\ldots,6}$ of $\ker(\varepsilon)$, we obtain

$$r(i) = \sum_{m=1}^{6} f_m^{F(i)}(r(i))r_m.$$

The combination of these properties leads to

$$\min(G_{1,i}, G_{1,j}) \left| \mathcal{H}_\eta \left(I^h(\bar{\partial}F_{i,j}(w(i)) - w(j)) \right) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2 \tag{3.5}$$

$$\leq 2 G_{1,i} \left| \mathcal{H}_\eta \left(I^h(\bar{\partial}F_{i,j}(w(i)) - r(i) - \sum_{m=1}^{6} f_m^{F(i)}(w(i)) - r(i))r_m \right) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2$$

$$+ 2 G_{1,j} \left| \mathcal{H}_\eta \left(I^h(\bar{\partial}F_{i,j}(w(j)) - r(j) - \sum_{m=1}^{6} f_m^{F(i)}(w(j)) - r(j))r_m \right) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2.$$

With Lemma 3.12, we obtain for the second term

$$G_{1,j} \left| \mathcal{H}_\eta \left(I^h(\bar{\partial}F_{i,j}(w(j)) - r(j) - \sum_{m=1}^{6} f_m^{F(i)}(w(j)) - r(j))r_m \right) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2$$

$$\leq G_{1,j} \left| E_{ij} \mathcal{H}_\eta \left(I^h(\bar{\partial}F_{i,j}(w(j)) - r(j) - \sum_{m=1}^{6} f_m^{F(i)}(w(j)) - r(j))r_m \right) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2$$

$$= G_{1,j} \left| \mathcal{H}_\eta \left(I^h(\bar{\partial}F_{i,j}(w(j)) - r(j) - \sum_{m=1}^{6} f_m^{F(i)}(w(j)) - r(j))r_m \right) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2.$$

Here, we have tacitly assumed that \mathcal{H}_η extends to both slabs $\bar{\Omega}_{i,\eta}$ and $\bar{\Omega}_{j,\eta}$, respectively.

Clearly, it is sufficient to estimate the first term

$$G_{1,i} \left| \mathcal{H}_\eta \left(I^h(\bar{\partial}F_{i,j}(w(i)) - r(i) - \sum_{m=1}^{6} f_m^{F(i)}(w(i)) - r(i))r_m \right) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2$$

$$\leq G_{1,i} \left| I^h(\bar{\partial}F_{i,j}(w(i)) - r(i) - \sum_{m=1}^{6} f_m^{F(i)}(w(i)) - r(i))r_m \right|_{H^1(\bar{\Omega}_{i,\eta})}^2$$

$$\leq 7 G_{1,i} \left\{ I^h(\bar{\partial}F_{i,j}(w(i)) - r(i)) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2 \right\} + \left\{ \sum_{m=1}^{6} f_m^{F(i)}(w(i)) - r(i)) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2 \right\} + \left\{ I^h(\bar{\partial}F_{i,j}r_m) \right|_{H^1(\bar{\Omega}_{i,\eta})}^2 \right\}.$$

3.4. CONVERGENCE ANALYSIS 47
Next, we will estimate the three terms (I), (II), and (III) separately. Let us first consider (I). This term can be estimated by Lemma 3.10.
\[
\left| I^h(\tilde{\varphi}_{F^{ij}}(w^{(i)} - r^{(i)}) \right|^{2}_{H^1(\bar{\Omega}_{i,n})} \leq C \left(\frac{H_i}{\eta} \right)^2 \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left(1 + \log \left(\frac{H_i}{h_i} \right) \right) \left\| w^{(i)} - r^{(i)} \right\|^2_{H^1(\bar{\Omega}_{i,n})}.
\]

Next, we estimate (II). All faces are fully primal and with Definition 3.6, we obtain
\[
\left| \mathcal{F}^j_m (w^{(i)} - r^{(i)}) \right|^{2} \leq C \left(\frac{H_i}{\eta} \right) \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left\| w^{(i)} - r^{(i)} \right\|^2_{H^1(\bar{\Omega}_{i,n})}.
\]

Finally, we consider (III). Since \(\tilde{\varphi}_{F^{ij}}r_m \) is at most piecewise quadratic on \(\tau_{h/2} \), using the stability of the interpolation operator for piecewise quadratic functions on \(\tau_{h/2} \) into the space of piecewise quadratic functions on \(\tau_h \), we can follow the arguments given in [57, Lemma 3.9] or the detailed arguments in [28, Lemma A.1], and we obtain
\[
\left| I^h(\tilde{\varphi}_{F^{ij}}r_m) \right|^{2}_{H^1(\bar{\Omega}_{i,n})} \leq C \left\{ \left\| \nabla \tilde{\varphi}_{F^{ij}} \right\|^2_{L^2(\bar{\Omega}_{i,n})} \left\| r_m \right\|^2_{L^\infty(\bar{\Omega}_{i,n})} + \left\| \tilde{\varphi}_{F^{ij}} \right\|^2_{L^\infty(\bar{\Omega}_{i,n})} \left\| \nabla r_m \right\|^2_{L^2(\bar{\Omega}_{i,n})} \right\}.
\]

First, we consider (a) and obtain by Lemma 3.8
\[
\left\| \nabla \tilde{\varphi}_{F^{ij}} \right\|^2_{L^2(\bar{\Omega}_{i,n})} \leq C \left(1 + \log \left(\frac{H_i}{h_i} \right) \right) \frac{H^2}{\eta}.
\]

Next, we consider (b). By estimating \(|(r_m)_k|^2\) we get the upper bound independent of \(H_i \)
\[
|(r_m)_k|^2 = \begin{cases} 1 \cdot \frac{1}{H_i^2} \left((x_i - x_i)^2 - (-x_j + x_j)^2 \right)^2 & \text{for } m = 1, 2, 3 \\ \frac{1}{H_i^2} \cdot 2CH_i^2 & \text{for } m = 4, 5, 6 \end{cases}
\]
\[
\Rightarrow \left\| (r_m)_k \right\|^2_{L^\infty(\bar{\Omega}_{i,n})} \leq C \forall k = 1, 2, 3
\]
\[
\Rightarrow \left\| r_m \right\|^2_{L^\infty(\bar{\Omega}_{i,n})} = \sum_{k=1}^{3} \left\| (r_m)_k \right\|^2_{L^\infty(\bar{\Omega}_{i,n})} \leq C.
\]

Considering (c), we have \(\left\| \tilde{\varphi}_{F^{ij}} \right\|^2_{L^\infty(\bar{\Omega}_{i,n})} = 1 \). Finally, we estimate (d) by
\[
\left\| \nabla r_m \right\|^2_{L^2(\bar{\Omega}_{i,n})} = \sum_{k=1}^{3} \left\| \nabla (r_m)_k \right\|^2_{L^2(\bar{\Omega}_{i,n})} \leq 2 \int_{\bar{\Omega}_{i,n}} \frac{1}{H_i^2} \; dx = C\eta.
\]

Combining the estimates (a)-(d), we obtain as an estimate for (III)
\[
\left| I^h(\tilde{\varphi}_{F^{ij}}r_m) \right|^{2}_{H^1(\bar{\Omega}_{i,n})} \leq C \left(1 + \log \left(\frac{H_i}{h_i} \right) \right) \frac{H^2}{\eta}.
\]
Combining (I)-(III), we have

\[
G_{1,i} \left\{ \left| I^h(\bar{\partial}_{\mathcal{F}_i} (w^{(i)} - r^{(r)})) \right|^2_{H^1(\Omega_i, \eta)} + \sum_{m=1}^{6} \left| f_m^{\mathcal{F}_i} (w^{(i)} - r^{(i)}) \right|^2_{H^1(\Omega_i, \eta)} \right\}
\]

\[
\leq C G_{1,i} \left(\frac{H_i}{\eta} \right)^2 \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left(1 + \log \left(\frac{H_i}{h_i} \right) \right) \| w^{(i)} - r^{(i)} \|^2_{H^1(\Omega_i, \eta)}.
\]

With an appropriate Korn inequality, see Lemma 3.7, we obtain

\[
C G_{1,i} \left(\frac{H_i}{\eta} \right)^2 \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left(1 + \log \left(\frac{H_i}{h_i} \right) \right) \| w^{(i)} - r^{(i)} \|^2_{L^2(\Omega_i, \eta)}
\]

\[
\leq C \left(\frac{H_i}{\eta} \right)^4 \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left(1 + \log \left(\frac{H_i}{h_i} \right) \right) \left\{ G_{1,i} \| \varepsilon(w^{(i)}) \|^2_{L^2(\Omega_i, \eta)} + G_{2,i} \| \varepsilon(w^{(i)}) \|^2_{L^2(\Omega_i \setminus \Omega_i, \eta)} \right\}.
\]

Under the additional Assumption 3.15 we can obtain an improved estimate following basically the same arguments. The only difference is that we can be a bit more lenient and can always estimate the energy on the whole subdomain \(\Omega_i \) instead of estimating on the slab \(\tilde{\Omega}_i, \eta \). Then, using Lemma 3.10, Definition 3.6, and Lemma 3.7, we obtain

\[
G_{1,i} \left\{ \left| I^h(\bar{\partial}_{\mathcal{F}_i} (w^{(i)} - r^{(r)})) \right|^2_{H^1(\Omega_i, \eta)} + \sum_{m=1}^{6} \left| f_m^{\mathcal{F}_i} (w^{(i)} - r^{(i)}) \right|^2_{H^1(\Omega_i, \eta)} \right\}
\]

\[
\leq C \left(\frac{H_i}{\eta} \right)^2 \left(1 + \log \left(\frac{\eta}{h_i} \right) \right)^2 \left\{ G_{1,i} \| \varepsilon(w^{(i)}) \|^2_{L^2(\Omega_i, \eta)} + G_{2,i} \| \varepsilon(w^{(i)}) \|^2_{L^2(\Omega_i \setminus \Omega_i, \eta)} \right\}.
\]
Edge terms

Let \(E^{ik} \) be the edge shared by the four subdomains \(\Omega_i, \Omega_j, \Omega_k, \) and \(\Omega_l \); see Figure 3.12. Then, the contributions of the edge terms to \(v^{(i)} \) are

\[
I^h \left(\theta_{E^{ik}} \delta_j^i (w^{(i)} - w^{(j)}) \right) + I^h \left(\theta_{E^{ik}} \delta_k^i (w^{(i)} - w^{(k)}) \right) + I^h \left(\theta_{E^{ik}} \delta_l^i (w^{(i)} - w^{(l)}) \right),
\]

(3.6)

Let \(\bar{\psi}_{E^{ik}} \) be the finite element function, defined in Lemma 3.11, which is piecewise linear on \(\tau_{h/2} \), coincides with \(\theta_{E^{ik}} \) on \(E^{ik} \), and vanishes on \(\partial\tilde{\Omega}_{i,\eta} \setminus E^{ik} \) and on \(\Omega_i \setminus \tilde{\Omega}_{i,\eta} \). Let \(\tilde{\mathcal{H}}_\eta \) be the discrete harmonic extension to the slab \(\tilde{\Omega}_{i,\eta} \), as in Definition 3.4. We consider the first term of (3.6). The edge \(E^{ik} \) belongs to the boundary of the face \(F^{ij} \), which is common to \(\Omega_i \) and \(\Omega_j \).

Let \(\tilde{\Omega}_{i,\eta} \subset \Omega_i \) be a slab, such that \(F^{ij} \subset \partial \tilde{\Omega}_{i,\eta} \). We assume, that \(\tilde{\mathcal{H}}_\eta \left(I^h \left(\bar{\psi}_{E^{ik}} (w^{(i)} - w^{(j)}) \right) \right) \) is trivially extended by zero on \(\Omega_i \setminus \tilde{\Omega}_{i,\eta} \). Then,

\[
\min(G_{1,i}, G_{1,j}) \left| \tilde{\mathcal{H}}_\eta \left(I^h \left(\theta_{E^{ik}} (w^{(i)} - w^{(j)}) \right) \right) \right|^2_{H^1(\tilde{\Omega}_{i,\eta})} \leq \min(G_{1,i}, G_{1,j}) \left| \tilde{\mathcal{H}}_\eta \left(I^h \left(\bar{\psi}_{E^{ik}} (w^{(i)} - w^{(j)}) \right) \right) \right|^2_{H^1(\tilde{\Omega}_{i,\eta})}.
\]

The neighboring subdomains \(\Omega_i \) and \(\Omega_j \) share the face \(F^{ij} \) and all faces are fully primal. Thus, \(f_{m}^{F^{ij}}(w^{(i)}) = f_{m}^{F^{ij}}(w^{(j)}) \), \(m = 1, \ldots, 6 \), and \(f_{m}^{F^{ij}}(r_n) = \delta_{mn} \) for \(m, n = 1, \ldots, 6 \). Analogously to the estimates for the face terms, we obtain

\[
\min(G_{1,i}, G_{1,j}) \left| \tilde{\mathcal{H}}_\eta \left(I^h \left(\bar{\psi}_{E^{ik}} (w^{(i)} - w^{(j)}) \right) \right) \right|^2_{H^1(\tilde{\Omega}_{i,\eta})} \leq 2 G_{1,i} \left| \tilde{\mathcal{H}}_\eta \left(I^h \left(\bar{\psi}_{E^{ik}} (w^{(i)} - r^{(i)} - \sum_{m=1}^{6} f_{m}^{F^{ij}} (w^{(i)} - r^{(i)})r_{m}) \right) \right) \right|^2_{H^1(\tilde{\Omega}_{i,\eta})} + 2 G_{1,j} \left| \tilde{\mathcal{H}}_\eta \left(I^h \left(\bar{\psi}_{E^{ik}} (w^{(j)} - r^{(j)} - \sum_{m=1}^{6} f_{m}^{F^{ij}} (w^{(j)} - r^{(j)})r_{m}) \right) \right) \right|^2_{H^1(\tilde{\Omega}_{j,\eta})}.
\]

Here, we again have used Lemma 3.12. As before, it is sufficient to consider the first term.
on the right hand side

\[G_{1,i} \left| \bar{\mathcal{H}}_{\eta} \left(I^h(\bar{\partial}_{E,i}(u^{(i)} - r^{(i)}) - 6 \sum_{m=1}^{6} f_m^{F_{i,j}}(w^{(i)} - r^{(i)}) r_m) \right) \right|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} \]

\[\leq 7 G_{1,i} \left\{ \left| \bar{\mathcal{H}}_{\eta} \left(I^h(\bar{\partial}_{E,i}(w^{(i)} - r^{(i)})) \right) \right|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} \right. \]

\[+ \sum_{m=1}^{6} \left| I^h(\bar{\partial}_{E,i}(w^{(i)} - r^{(i)})) \right|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} \left(I^{\tilde{\Omega}_{i,\eta}} \left(I^h(\bar{\partial}_{E,i}(r_m)) \right) \right)^{2}_{H^1(\tilde{\Omega}_{i,\eta})} \right\} . \]

Next, we will estimate the three terms (I), (II), and (III) separately.

First, we consider (I). Using Lemma 3.11, we obtain

\[\left| \bar{\mathcal{H}}_{\eta} \left(I^h(\bar{\partial}_{E,i}(w^{(i)} - r^{(i)})) \right) \right|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} \leq C \left\| w^{(i)} - r^{(i)} \right\|^{2}_{L^2(\mathcal{E}^k)} \]

\[\leq C \frac{H_i}{h_i} \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left\| w^{(i)} - r^{(i)} \right\|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} . \]

Now, we consider (II). Again, all faces are fully primal, see Definition 3.6, and we obtain

\[\left| f_m^{F_{i,j}}(w^{(i)} - r^{(i)}) \right|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} \leq C \frac{1}{\eta} \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left\| w^{(i)} - r^{(i)} \right\|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} . \]

Finally, we consider (III). Using the first inequality of Lemma 3.11, we get

\[\left| \bar{\mathcal{H}}_{\eta} \left(I^h(\bar{\partial}_{E,i}(r_m)) \right) \right|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} \leq \left\| r_m \right\|^{2}_{L^2(\mathcal{E}^k)} \leq C \min(H_i, H_j) . \]

Combining the estimates for (I)-(III), we obtain

\[G_{1,i} \left| \bar{\mathcal{H}}_{\eta} \left(I^h(\bar{\partial}_{E,i}(u^{(i)} - r^{(i)}) - 6 \sum_{m=1}^{6} f_m^{F_{i,j}}(w^{(i)} - r^{(i)}) r_m) \right) \right|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} \]

\[\leq C G_{1,i} \frac{H_i}{\eta} \left(1 + \log \left(\frac{\eta}{h_i} \right) \right) \left\| w^{(i)} - r^{(i)} \right\|^{2}_{H^1(\tilde{\Omega}_{i,\eta})} . \]

The third term in (3.6) can be estimated analogously. The second term in (3.6) cannot be reduced to face estimates, since the edge E_{ik} is shared by the subdomains Ω_i and Ω_k, which have no face in common. We have
From this, we obtain
\[
\min(G_{1,i}, G_{1,k}) \left| H_{\eta} \left(I^h \left(\theta_{E_{1k}}(w^{(i)} - w^{(k)}) \right) \right) \right|^2_{H^{1}(\Omega_{i,n})} \\
\leq \min(G_{1,i}, G_{1,k}) \left| \tilde{H}_{\eta} \left(I^h \left(\bar{\theta}_{E_{1k}}(w^{(i)} - w^{(k)}) \right) \right) \right|^2_{H^{1}(\tilde{\Omega}_{i,n})}.
\]

The neighboring subdomains \(\Omega_i \) and \(\Omega_j \) share a fully primal face \(F^{ij} \), thus we have \(f^{F^{ij}}_m (w^{(i)}) = f^{F^{ij}}_m (w^{(j)}) \). Also \(\Omega_j \) and \(\Omega_k \) have a fully primal face \(F^{jk} \) in common, such that \(f^{F^{jk}}_m (w^{(j)}) = f^{F^{jk}}_m (w^{(k)}) \). We have
\[
w^{(i)} - w^{(k)} = \left(w^{(i)} - w^{(j)} \right) - \left(w^{(k)} - w^{(j)} \right) \\
= \left(w^{(i)} - \sum_{m=1}^{6} f^{F^{ij}}_m (w^{(i)}) r_m \right) - \left(w^{(j)} - \sum_{m=1}^{6} f^{F^{ij}}_m (w^{(j)}) r_m \right) \\
- \left(w^{(k)} - \sum_{m=1}^{6} f^{F^{jk}}_m (w^{(k)}) r_m \right) - \left(w^{(j)} - \sum_{m=1}^{6} f^{F^{jk}}_m (w^{(j)}) r_m \right).
\]

From this, we obtain
\[
\min(G_{1,i}, G_{1,k}) \left| \tilde{H}_{\eta} \left(I^h \left(\bar{\theta}_{E_{1k}}(w^{(i)} - w^{(k)}) \right) \right) \right|^2_{H^{1}(\tilde{\Omega}_{i,n})} \\
\leq 4 \ G_{1,i} \left| \tilde{H}_{\eta} \left(I^h \left(\bar{\theta}_{E_{1k}}(w^{(i)} - r^{(i)} - \sum_{m=1}^{6} f^{F^{ij}}_m (w^{(i)}) r_m) \right) \right) \right|^2_{H^{1}(\tilde{\Omega}_{i,n})} \\
+ 4 \ G_{1,k} \left| \tilde{H}_{\eta} \left(I^h \left(\bar{\theta}_{E_{1k}}(w^{(k)} - r^{(k)} - \sum_{m=1}^{6} f^{F^{jk}}_m (w^{(k)}) r_m) \right) \right) \right|^2_{H^{1}(\tilde{\Omega}_{i,n})} \\
+ 4 \ \min(G_{1,i}, G_{1,k}) \left| \tilde{H}_{\eta} \left(I^h \left(\bar{\theta}_{E_{1k}}(w^{(j)} - r^{(j)} - \sum_{m=1}^{6} f^{F^{ij}}_m (w^{(j)}) r_m) \right) \right) \right|^2_{H^{1}(\tilde{\Omega}_{i,n})} \\
+ 4 \ \min(G_{1,i}, G_{1,k}) \left| \tilde{H}_{\eta} \left(I^h \left(\bar{\theta}_{E_{1k}}(w^{(j)} - r^{(j)} - \sum_{m=1}^{6} f^{F^{jk}}_m (w^{(j)}) r_m) \right) \right) \right|^2_{H^{1}(\tilde{\Omega}_{i,n})}.
\]
3.4. CONVERGENCE ANALYSIS

\[
\leq C G_{1,k} \left\| u^{(k)} - r^{(k)} - \sum_{m=1}^{6} f_m^{F_{jk}} (w^{(k)} - r^{(k)}) r_m \right\|_{L_2(\mathcal{E}^k)}^2
\]

\[
\leq C G_{1,k} \frac{H_k}{\eta} \left(1 + \log \left(\frac{\eta}{h_k} \right) \right) \left\| u^{(k)} - r^{(k)} \right\|_{H^1(\tilde{\Omega}_{k,\eta})}^2.
\]

Using Assumption 3.16 for the last two terms of (3.8), i.e., \(TOL \cdot G_{1,j} \geq \min(G_{1,i}, G_{1,k}) \), and using again Lemma 3.11, we have

\[
\min(G_{1,i}, G_{1,k}) \left\| \tilde{H}_{\eta} \left(I^h(\tilde{\nu}_{E^{ik}} (w^{(j)} - r^{(j)}) - \sum_{m=1}^{6} f_m^{F_{ij}} (w^{(j)} - r^{(j)}) r_m) \right) \right\|_{H^1(\tilde{\Omega}_{i,\eta})}^2
\]

\[
\leq TOL \cdot G_{1,j} \left\| \tilde{H}_{\eta} \left(I^h(\tilde{\nu}_{E^{ik}} (w^{(j)} - r^{(j)}) - \sum_{m=1}^{6} f_m^{F_{ij}} (w^{(j)} - r^{(j)}) r_m) \right) \right\|_{H^1(\tilde{\Omega}_{i,\eta})}^2
\]

\[
\leq C TOL \cdot G_{1,j} \left\| w^{(j)} - r^{(j)} - \sum_{m=1}^{6} f_m^{F_{ij}} (w^{(j)} - r^{(j)}) r_m \right\|_{L_2(\mathcal{E}^k)}^2.
\]

We obtain as before

\[
\min(G_{1,i}, G_{1,k}) \left\| \tilde{H}_{\eta} \left(I^h(\tilde{\nu}_{E^{ik}} (w^{(j)} - r^{(j)}) - \sum_{m=1}^{6} f_m^{F_{ij}} (w^{(j)} - r^{(j)}) r_m) \right) \right\|_{H^1(\tilde{\Omega}_{i,\eta})}^2
\]

\[
\leq C TOL \cdot G_{1,j} \frac{H_j}{\eta} \left(1 + \log \left(\frac{\eta}{h_j} \right) \right) \left\| w^{(j)} - r^{(j)} \right\|_{H^1(\tilde{\Omega}_{j,\eta})}^2.
\]

Using identical arguments we obtain the estimates for the last term of (3.8).

To conclude the proof for the edge terms we can apply the same arguments as used at the end of the proof for the face terms.

For our analysis we have assumed that the completion of the slab can be represented as the union of finite elements. We can generalize our theory to the case where the interior boundary of the slab cuts through finite elements and where the completion of the slab cannot be represented anymore exactly as the union of finite elements. Therefore, we remesh the slab of width \(\eta \) using a mesh size similar to \(h \), see Figure 2.5. Next, we use a Scott-Zhang interpolation operator to the auxiliary mesh and the associated auxiliary finite element space, respectively. Here, we only have to assume, that our irregular mesh resolves \(\eta \) in the sense that the incompressible inclusion is separated from the interface by at least one element; see Figure 2.5.

Let us briefly sketch the part of the proof for the face terms that is altered. The edge estimate can be carried out completely analogously. Let us denote by \(\Pi^h_i \) the Scott-Zhang
operator interpolating from the original finite element spaces into the space related to the auxiliary mesh. For a reference to the Scott-Zhang operator, see [56, 4]. We use the property $\Pi_h^i u \mid_{\partial \Omega_i} = u$ to insert the interpolation into (3.5)

$$\min(G_{1,i}, G_{1,j}) \left| _{H^1(\tilde{\Omega}_{i,\eta})} \tilde{H}_{\eta} \left(I_h^1 \left(\tilde{\varphi}_{F_{ij}} (\Pi_h^i (u^i) - u^j) \right) \right) \right|^2_{H^1(\tilde{\Omega}_{i,\eta})} = \min(G_{1,i}, G_{1,j}) \left| _{H^1(\tilde{\Omega}_{i,\eta})} \tilde{H}_{\eta} \left(I_h^1 \left(\tilde{\varphi}_{F_{ij}} (\Pi_h^i (u^i) - u^j) \right) \right) \right|^2_{H^1(\tilde{\Omega}_{i,\eta})}.$$

We now proceed as before for the face terms. Finally, we can remove the interpolation from the right hand side of the estimate by using the stability $\| \Pi_h^i u \|^2_{H^1(\tilde{\Omega}_{i,\eta})} \leq C \| u \|^2_{H^1(\tilde{\Omega}_{i,\eta})}$.

3.5 Numerical Results

In this section we present our numerical results for a linear elasticity problem in three dimensions, using P_2 finite elements for the compressible hulls and statically condensed $Q_2 - P_0$ mixed finite elements for the inclusions. We consider almost incompressible inclusions or inclusions with a different Young modulus in the interior of the subdomains. The inclusions are always surrounded by a compressible hull with $\nu = 0.3$; see Figure 3.13. We use a FETI-DP algorithm with vertices and edge averages as primal constraints to control the rigid body modes and a relative residual reduction by 10^{-10} in the cg-method. For the algorithmic concept, see for example [37, 29, 34]. The numerical results confirm our theoretical estimates.

Figure 3.13:

Decomposition into subdomains, hulls in red and inclusions in blue
3.5. NUMERICAL RESULTS

Table 3.1: Growing η; $H/h = 11$; $1/H = 3$; $P_2/Q_2 - P_0$

<table>
<thead>
<tr>
<th>η</th>
<th>iterations</th>
<th>condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1h$</td>
<td>32</td>
<td>12.366</td>
</tr>
<tr>
<td>$2h$</td>
<td>32</td>
<td>12.250</td>
</tr>
<tr>
<td>$3h$</td>
<td>32</td>
<td>12.230</td>
</tr>
<tr>
<td>$4h$</td>
<td>32</td>
<td>12.231</td>
</tr>
<tr>
<td>$5h$</td>
<td>32</td>
<td>12.233</td>
</tr>
<tr>
<td>$6h$</td>
<td>31</td>
<td>12.233</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
<td>1597.8</td>
</tr>
</tbody>
</table>

Growing η for $3 \times 3 \times 3$ subdomains, $E = 210$ on the whole domain, $\nu = 0.499999$ in the inclusions, and $\nu = 0.3$ in the hulls. The results show only a weak dependence on η.

3.5.1 Variable η

In this subsection we present results for $3 \times 3 \times 3$ subdomains, a fixed $H/h = 11$, and a fixed Poisson ratio $\nu = 0.499999$ in the inclusions. For these computations we vary the thickness of the compressible hull from zero to six element diameters, i.e., $\eta = 0, h, \ldots, 6h$; see Table 3.1. For almost incompressibility on the whole domain, i.e., $\eta = 0$, it is not surprising that we obtain a large condition number, because we use a coarse space designed for compressible linear elasticity. But it is striking that already a hull of one element, i.e., $\eta = h$, is sufficient to obtain a good condition number which is then not improved significantly by further increasing η. As a result, the number of iteration steps needed does not change significantly for $\eta = h, \ldots, 6h$. From our theory, for this configuration of coefficients, we expect an estimate of $\kappa(\kappa^{-1}F) \leq C_{\max}(1, \text{TOL}) \left(1 + \log \left(\frac{H}{\eta}\right)\right)^2 \frac{H}{\eta}$, i.e., a linear behavior in $\frac{H}{\eta}$; see Theorem 3.18, which we cannot see in the numerical results. This might be due to the fact, that our meshes are not fine enough.

3.5.2 Variable $1/H$ - Weak Scaling

In this category of tests we vary the number of subdomains from $3 \times 3 \times 3$ up to $10 \times 10 \times 10$, but we fix the number of elements in a subdomain by $H/h = 3$. We choose incompressible inclusions $\nu = 0.499999$, compressible hulls $\nu = 0.3$, and $E = 210$ in each subdomain; see Table 3.2. The results show that also in the presence of incompressible inclusions our standard coarse space is sufficient to obtain a condition number and a number of iterations which is bounded independently of the number of subdomains.
Table 3.2: Growing $1/H$; $H/h = 3$; $\eta = h$; $P_2/Q_2 - P_0$

<table>
<thead>
<tr>
<th>$1/H$</th>
<th>$$ iterations</th>
<th>condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>21</td>
<td>5.0324</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>5.5950</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>5.6937</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>5.7121</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>5.7529</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>5.7820</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>5.8094</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>5.8281</td>
</tr>
</tbody>
</table>

Growing $1/H$; $E = 210$ on the whole domain; $\nu = 0.499999$ in the inclusions, $\nu = 0.3$ in the hulls.

3.5.3 Variable H/h

For a fixed decomposition into $3 \times 3 \times 3$ subdomains and a Poisson ratio of $\nu = 0.499999$ for the inclusion in each subdomain, we solve the linear elasticity problem for different H/h. This means, we increase the number of elements in each subdomain. We consider three cases for the thickness of the hull, namely zero, one, and two element diameters, i.e., $\eta = 0, h, 2h$; for the results see Table 3.3.

Using a hull of a thickness of only one element, i.e., $\eta = h$, already gives a good condition number; see Table 3.3 (center). Increasing the hull’s width by one further element, i.e., $\eta = 2h$, has almost no additional effect on the condition number; see Table 3.3 (right). This is consistent with the findings in Section 3.5.1 and Table 3.5.1. From Figure 3.14, we see that we have numerically confirmed the polylogarithmic factor in our condition number estimate, cf. Theorem 3.18, $\kappa(M^{-1}F) \leq C \max(1, \text{TOL}) \left(1 + \log \left(\frac{H}{h}\right)\right)^2 \frac{H}{\eta}$. Note that here, $\eta = h$, but we are far from the asymptotics with respect to η. In Figure 3.15 we also plot the square root of the condition number in a semilogarithmic plot of H/h. We observe the expected linear behavior in the plot. We do not include plots for $\eta = 2h$, since the results are nearly identical.

For comparison, we also provide results for the case $\eta = 0$, see Table 3.3 (left), where we have almost incompressible linear elasticity on the whole domain. Since our coarse space is designed for compressible elasticity problems it is clear that the condition number is very large, i.e., of the order of 10^3. In this case using a different, larger coarse space is the remedy; see [42, 13, 50].
3.5. NUMERICAL RESULTS

Figure 3.14:

Least square fit of a polynomial in \(\log \left(\frac{H}{h} \right) \) to the data from Table 3.3. Growing \(H/h \) and a hull of one element, i.e., \(\eta = h \).

Figure 3.15:

Semilog plot of \(x = H/h, \ y = \sqrt{\kappa} \). We have \(\eta = h \); data from Table 3.3.

<table>
<thead>
<tr>
<th>(H/h)</th>
<th>(\eta = 0)</th>
<th>(\eta = h)</th>
<th>(\eta = 2h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H/h)</td>
<td>% iterations</td>
<td>condition number</td>
<td>% iterations</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>1272.3</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>1345.6</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>1397.9</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>1440.0</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>1475.4</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>47</td>
<td>1506.2</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>1533.4</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>47</td>
<td>1557.7</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>1579.8</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>1600.0</td>
<td>33</td>
</tr>
</tbody>
</table>

Growing \(H/h \) for \(3 \times 3 \times 3 \) subdomains, \(\nu = 0.499999 \) in the inclusions, \(\nu = 0.3 \) in the hulls, \(E = 210 \) on the whole domain, and \(\eta = 0, h, 2h \). A thickness of the compressible hull of one element is sufficient to obtain a good condition number; see also Figure 3.14 and 3.15.
3.5.4 Variable ν

We fix $H/h = 7$ and the thickness of the hull to $\eta = h$. The Poisson ratio in the inclusions is varied from $\nu = 0.4$ to $\nu = 0.499999$; see Table 3.4 (left). We see only a slight increase of the condition number and nearly no effect on the number of iterations. The condition number seems to approach a limit once a value of $\nu = 0.49999$ is reached. This clearly confirms that the condition number of the preconditioned FETI-DP method is indeed independent of the almost incompressibility in the inclusions.

The situation is identical if we choose a large Young modulus in the inclusions, i.e., $E = 1e6$, in addition to the almost incompressibility in the inclusions; see Table 3.4 (right).

It is also possible to choose more than one almost incompressible inclusion in a subdomain, see Figure 3.16. For the results, see Table 3.5. There, we have eight inclusions in each subdomain and we vary the Poisson ratio in all eight inclusions from $\nu = 0.4$ to $\nu = 0.499999$. Also for this kind of tests the condition number is quite low and seems to approach a limit.

Figure 3.16: Cross section of a cube with 8 inclusions in each subdomain.
Table 3.4: Growing ν; $H/h = 7$; $1/H = 3$; $\eta = h$; $P_2/Q_2 - P_0$

<table>
<thead>
<tr>
<th>ν</th>
<th>$#$ iterations</th>
<th>condition number</th>
<th>$#$ iterations</th>
<th>condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>27</td>
<td>9.4841</td>
<td>29</td>
<td>11.188</td>
</tr>
<tr>
<td>0.49</td>
<td>28</td>
<td>9.5038</td>
<td>29</td>
<td>11.188</td>
</tr>
<tr>
<td>0.499</td>
<td>28</td>
<td>9.5063</td>
<td>30</td>
<td>11.188</td>
</tr>
<tr>
<td>0.4999</td>
<td>28</td>
<td>9.5049</td>
<td>30</td>
<td>11.188</td>
</tr>
<tr>
<td>0.49999</td>
<td>28</td>
<td>9.5066</td>
<td>31</td>
<td>11.188</td>
</tr>
<tr>
<td>0.499999</td>
<td>29</td>
<td>9.5066</td>
<td>32</td>
<td>11.187</td>
</tr>
</tbody>
</table>

Growing ν for $3 \times 3 \times 3$ subdomains, $\eta = h$. The condition number is independent of the Poisson ratio in the inclusions.

Table 3.5: Growing ν; $H/h = 7$; $1/H = 3$; $\eta = h$; $P_2/Q_2 - P_0$; 8 inclusions in each subdomain

<table>
<thead>
<tr>
<th>ν</th>
<th>$#$ iterations</th>
<th>condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>27</td>
<td>9.4847</td>
</tr>
<tr>
<td>0.49</td>
<td>27</td>
<td>9.5015</td>
</tr>
<tr>
<td>0.499</td>
<td>28</td>
<td>9.5025</td>
</tr>
<tr>
<td>0.4999</td>
<td>28</td>
<td>9.5041</td>
</tr>
<tr>
<td>0.49999</td>
<td>28</td>
<td>9.5041</td>
</tr>
<tr>
<td>0.499999</td>
<td>28</td>
<td>9.5041</td>
</tr>
</tbody>
</table>

Growing ν for $3 \times 3 \times 3$ subdomains, $H/h = 7$, and 8 inclusions in each subdomain for which the Poisson ratio is varied. The distance to the subdomain boundary and the distance to between the single inclusions is one element.
3.5.5 Variable Young’s Modulus Combined with Almost Incompressibility

Now, we consider configurations of different E and ν as well as some “realistic” material properties for steel and rubber; see Table 3.6.

In a last set of experiments, we consider subdomains with inclusions of a high and low Young modulus, i.e., $E = 1e+4$ and $E = 1e-4$, either combined with a Poisson ratio of $\nu = 0.4$ or $\nu = 0.499999$. The Young modulus on the hull is always $E = 1$ and its Poisson ratio is always $\nu = 0.3$. The four different parameter settings are constructed by the number of the subdomain modulo four; see Figure 3.17. The results in Table 3.7 show that the condition number is quite small even if the thickness of the hull is only $\eta = h$. While this is a favorable result it also means that it is difficult to confirm numerically whether our theoretical bounds are sharp.

Theoretically, for the most general configuration of coefficients, we could show an estimate of the condition number

$$\kappa(M^{-1}F) \leq C \max(1, \text{TOL}) \left(1 + \log \left(\frac{H}{h} \right) \right) \left(1 + \log \left(\frac{2}{h} \right) \right) \left(\frac{H}{h} \right)^4;$$

see Theorem 3.18.

<table>
<thead>
<tr>
<th>Material parameters in the inclusions</th>
<th>material parameters in the hulls</th>
<th>η iterations</th>
<th>condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>ν</td>
<td>E</td>
<td>ν</td>
</tr>
<tr>
<td>1e+6</td>
<td>0.3</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>1e+6</td>
<td>0.3</td>
<td>1e-1</td>
<td>0.3</td>
</tr>
<tr>
<td>1e+6</td>
<td>0.3</td>
<td>1e-2</td>
<td>0.3</td>
</tr>
<tr>
<td>1e+6</td>
<td>0.3</td>
<td>1e-3</td>
<td>0.3</td>
</tr>
<tr>
<td>1e+6</td>
<td>0.499999</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>1e+6</td>
<td>0.499999</td>
<td>1e-1</td>
<td>0.3</td>
</tr>
<tr>
<td>1e+6</td>
<td>0.499999</td>
<td>1e-2</td>
<td>0.3</td>
</tr>
<tr>
<td>1e+6</td>
<td>0.499999</td>
<td>1e-3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 3.6: Variable Young’s modulus E; $\mathcal{P}_2/Q_2 - \mathcal{P}_0$

<table>
<thead>
<tr>
<th>material parameters</th>
<th>iterations</th>
<th>condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>steel</td>
<td>44</td>
<td>18.249</td>
</tr>
<tr>
<td>rubber</td>
<td>22</td>
<td>5.651</td>
</tr>
<tr>
<td>21e5</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>0.037e5</td>
<td>0.485</td>
<td></td>
</tr>
<tr>
<td>0.037e5</td>
<td>0.485</td>
<td></td>
</tr>
</tbody>
</table>

Variable Young’s modulus E for $3 \times 3 \times 3$ subdomains, $H/h = 4$ elements in each direction in each subdomain, and $\eta = h$. The material parameters for steel and rubber are taken from Ciarlet [8].
3.5. NUMERICAL RESULTS

Table 3.7: Growing η; $H/h = 7$; $1/H = 3$; $P_2/Q_2 - P_0$

<table>
<thead>
<tr>
<th>distance η</th>
<th>$#$ iterations</th>
<th>condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1h$</td>
<td>36</td>
<td>11.956</td>
</tr>
<tr>
<td>$2h$</td>
<td>29</td>
<td>9.2575</td>
</tr>
<tr>
<td>$3h$</td>
<td>29</td>
<td>9.4767</td>
</tr>
<tr>
<td>$4h$</td>
<td>27</td>
<td>9.4812</td>
</tr>
<tr>
<td>0</td>
<td>> 250</td>
<td>13426</td>
</tr>
</tbody>
</table>

Growing η for $3 \times 3 \times 3$ subdomains. Four different kind of material parameter settings in the inclusions: $E = 1e + 4, \nu = 0.4$, $E = 1e - 4, \nu = 0.4$, $E = 1e + 4, \nu = 0.499999$, $E = 1e - 4, \nu = 0.499999$; and for the hulls: $E = 1, \nu = 0.3$.

3.5.6 $P_2 - P_0$ Mixed Finite Elements

For our theory, and also for the numerical tests presented before, we use different finite elements for the discretization of the inclusions and the hulls, namely tetrahedra for the hulls and hexahedra for the inclusions. The discretization of $Q_2 - P_0$ mixed finite elements is known to be inf-sup stable. We obtain similar numerical results when using $P_2 - P_0$ mixed finite elements as a discretization of the mixed formulation for the whole domain Ω. Although these elements are not known to be inf-sup stable in 3D. We present some numerical results in Tables 3.8 and 3.9. Let us note that these experiments are not contained in [22] due to space limitations.
Table 3.8: Growing H/h; $1/H = 3$; $\eta = 0, h, 2h$; $\mathcal{P}_2 - \mathcal{P}_0$

<table>
<thead>
<tr>
<th>H/h</th>
<th>$\eta = 0$</th>
<th>$\eta = h$</th>
<th>$\eta = 2h$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$#$ iterations</td>
<td>condition number</td>
<td>$#$ iterations</td>
</tr>
<tr>
<td>3</td>
<td>>250</td>
<td>8.528e3</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>119</td>
<td>7.610e3</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>>250</td>
<td>8.883e3</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>131</td>
<td>8.381e3</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>>250</td>
<td>9.161e3</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>8.929e3</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>>250</td>
<td>9.468e3</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>139</td>
<td>9.352e3</td>
<td>30</td>
</tr>
</tbody>
</table>

Growing H/h for $3 \times 3 \times 3$ subdomains. For $\eta = 0$, i.e., the complete domain is almost incompressible; $\nu = 0.499999$ and $E = 210$. The condition number is large since we use a coarse space designed for compressible elasticity. But it is striking that a hull of thickness of one element, i.e., $\eta = h$, is sufficient to obtain a good condition number, which is hardly improved by increasing the thickness by one further element.

Table 3.9: Growing ν; $H/h = 7$; $1/H = 3$; $\eta = h$; $\mathcal{P}_2 - \mathcal{P}_0$

<table>
<thead>
<tr>
<th>ν</th>
<th>inclusions: $E = 210$, ν variable hulls: $E = 210$, $\nu = 0.3$</th>
<th>Inclusions: $E = 1e6$, ν variable inclusions: $E = 1$, $\nu = 0.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$#$ iterations</td>
<td>condition number</td>
</tr>
<tr>
<td>0.4</td>
<td>28</td>
<td>8.5581</td>
</tr>
<tr>
<td>0.49</td>
<td>28</td>
<td>8.6064</td>
</tr>
<tr>
<td>0.499</td>
<td>28</td>
<td>8.6997</td>
</tr>
<tr>
<td>0.4999</td>
<td>29</td>
<td>8.7237</td>
</tr>
<tr>
<td>0.49999</td>
<td>29</td>
<td>9.1683</td>
</tr>
<tr>
<td>0.499999</td>
<td>29</td>
<td>9.2377</td>
</tr>
<tr>
<td>0.4999999</td>
<td>29</td>
<td>9.2377</td>
</tr>
<tr>
<td>0.49999999</td>
<td>29</td>
<td>9.2378</td>
</tr>
<tr>
<td>0.499999999</td>
<td>29</td>
<td>9.2379</td>
</tr>
</tbody>
</table>

Growing ν for $3 \times 3 \times 3$ subdomains, $\eta = h$. The condition number is independent of the almost incompressibility in the inclusion.
4 A New Coarse Space for Almost Incompressible Linear Elasticity

In the previous chapter we discussed linear elasticity problems with varying coefficients inside subdomains. There, we had a compressible matrix material within the hulls, which means we had a compressible neighborhood of the interface, such that we could use the standard coarse space for FETI-DP; see [22]. Now, we expand the analysis and therein the coarse space for the FETI-DP algorithm to the case, where we have an almost incompressible material on the whole domain; see also [21, Section 3]. To establish again a polylogarithmic condition number estimate for the preconditioned FETI-DP system, we need to control the rigid body modes on each face; see, e.g., [15, 50, 42]. We consider the mixed formulation, which has been introduced in Chapter 1. From [50, Lemma 3.1] or [15, Lemma 3.3] it follows that we have to impose the following zero net flux constraint

\[
\int_{\partial \Omega_i} \left(R^{(i)} P_D w \right) \cdot n \, ds = 0
\]

(4.1)
on each subdomain \(\Omega_i \). To implement these additional constraints, we discuss two strategies. Both strategies have in common that the zero net flux condition for a subdomain is separated into constraints for each, face and edge terms. Note, that vertex terms need not to be considered since vertices are set to be primal. Additionally, in both approaches, we use projector preconditioning to establish the face constraints, i.e., instead of solving \(B_B u_B = 0 \) with a conjugate gradient algorithm, we iterate on \(U^T B_B u_B = 0 \), where the rows of \(U^T \) contain the net flux over faces; see [33] or Section 2.5 for the concept of projector preconditioning and deflation in the context of FETI-DP methods. Traditionally, in FETI-DP and BDDC methods, one normal constraint for each face is then used to enforce the zero net flux; see [42, 35, 13, 50]. In the early works [23, 24] for Neumann-Neumann methods for incompressible elasticity a coarse pressure was introduced on each subdomain.

In our new coarse space a single face constraint for each subdomain is sufficient. This
single face constraint is obtained by summing up the face contributions of each subdomain and therefore the generated new coarse space is much smaller; cf. Section 4.1.

The considered strategies here only differ in establishing the edge constraints. In the first approach, cf. Section 4.2.1, we will use primal edge averages in the normal directions to enforce the zero net flux condition for the edge terms, using a transformation of basis; see, e.g., [30, 26]. In a second approach, cf. Section 4.2.2, the zero net flux condition for edges is also enforced by projector preconditioning.

For the analysis of the zero net flux condition, we first assume that all vertices are primal. Then,

\[v^{(i)} = \sum_{F^{(i)} \subset \partial \Omega_i} I^h \left(\theta_{F^{(i)}} v^{(i)} \right) + \sum_{E^{ik} \subset \partial \Omega_i} I^h \left(\theta_{E^{ik}} v^{(i)} \right) \]

\[= \sum_{F^{(i)} \subset \partial \Omega_i} I^h \left(\theta_{F^{(i)}} \delta_j^l (w^{(i)} - w^{(j)}) \right)
+ \sum_{E^{ik} \subset \partial \Omega_i} \left\{ I^h \left(\theta_{E^{ik}} \delta_j^l (w^{(i)} - w^{(j)}) \right) + I^h \left(\theta_{E^{ik}} \delta_k^l (w^{(i)} - w^{(k)}) \right) \right\} . \]

This means for the constraint

\[0 = \int_{\partial \Omega_i} \left(R^{(i)} P_D w \right) \cdot n \, ds \]

\[= \sum_{F^{(i)} \subset \partial \Omega_i} \int_{\partial \Omega_i} \left[I^h \left(\theta_{F^{(i)}} \delta_j^l (w^{(i)} - w^{(j)}) \right) \right] \cdot n \, ds \]

\[+ \sum_{E^{ik} \subset \partial \Omega_i} \left\{ \int_{\partial \Omega_i} \left[I^h \left(\theta_{E^{ik}} \delta_j^l (w^{(i)} - w^{(j)}) \right) \right] \cdot n \, ds \right\} . \]

To fulfill this condition, we consider the face and edge terms separately.
4.1 Zero Net Flux for Face Terms

We will establish the zero net flux for face constraints by projector preconditioning; see e.g., [33, 26] for further references.

\[
\sum_{F^{ij} \subset \partial \Omega_{i}} \int_{\partial \Omega_{i}} \left[t^h \left(\theta_{F^{ij}} \delta_{j}^{\dagger} \left(w^{(i)} - w^{(j)} \right) \right) \right] \cdot n \ ds
\]

\[
= \sum_{F^{ij} \subset \partial \Omega_{i}} \int_{\partial \Omega_{i}} \sum_{x \in F^{ij}_{h}} \delta_{j}^{\dagger} \left(w^{(i)} - w^{(j)} \right) (x) \ \varphi_{x} \cdot n \ ds
\]

\[
= \sum_{F^{ij} \subset \partial \Omega_{i}} \sum_{x \in F^{ij}_{h}} \int_{\partial \Omega_{i}} \delta_{j}^{\dagger} \left(\begin{array}{c}
\left(w_{1}^{(i)} - w_{1}^{(j)} \right) (x) \ \varphi_{x}^{(1)} \\
\left(w_{2}^{(i)} - w_{2}^{(j)} \right) (x) \ \varphi_{x}^{(2)} \\
\left(w_{3}^{(i)} - w_{3}^{(j)} \right) (x) \ \varphi_{x}^{(3)}
\end{array} \right) \cdot \begin{pmatrix} n_{1} \\ n_{2} \\ n_{3} \end{pmatrix} \ ds
\]

\[
= \sum_{F^{ij} \subset \partial \Omega_{i}} \sum_{x \in F^{ij}_{h}} \left\{ \int_{\partial \Omega_{i}} \delta_{j}^{\dagger} n_{1} \left(w_{1}^{(i)} - w_{1}^{(j)} \right) (x) \ \varphi_{x}^{(1)} ds + \int_{\partial \Omega_{i}} \delta_{j}^{\dagger} n_{2} \left(w_{2}^{(i)} - w_{2}^{(j)} \right) (x) \ \varphi_{x}^{(2)} ds + \int_{\partial \Omega_{i}} \delta_{j}^{\dagger} n_{3} \left(w_{3}^{(i)} - w_{3}^{(j)} \right) (x) \ \varphi_{x}^{(3)} ds \right\}
\]

For all of those integrals we integrate for all \(x \in F^{ij}_{h} \) over \(\partial \Omega_{i} \cap \text{supp}(\varphi_{x}) \subset F^{ij} \); cf. Figure 4.1.

Thus, we obtain

Figure 4.1:

\[
\begin{array}{c}
\Omega_{i} \\
\times \times \times \times \times \\
\end{array}
\]

\[
\begin{array}{c}
\Omega_{j} \\
\times \times \times \times \times \\
\end{array}
\]

A cross section of a face shared by two subdomains \(\Omega_{i} \) and \(\Omega_{j} \), containing one element each. The support of a shape function corresponding to each node on a face, here denoted by the circle, is a subset of the face.

\[
\sum_{F^{ij} \subset \partial \Omega_{i}} \sum_{x \in F^{ij}_{h}} \left\{ \int_{F^{ij}} \delta_{j}^{\dagger} n_{1}^{(j)} \left(w_{1}^{(i)} - w_{1}^{(j)} \right) (x) \ \varphi_{x}^{(1)} ds + \int_{F^{ij}} \delta_{j}^{\dagger} n_{2}^{(j)} \left(w_{2}^{(i)} - w_{2}^{(j)} \right) (x) \ \varphi_{x}^{(2)} ds + \int_{F^{ij}} \delta_{j}^{\dagger} n_{3}^{(j)} \left(w_{3}^{(i)} - w_{3}^{(j)} \right) (x) \ \varphi_{x}^{(3)} ds \right\}
\]
where \(n^{(j)} \) specifies the outer normal in the direction of subdomain \(\Omega_j \). Using the short notation

\[
\begin{pmatrix} a, b, c \end{pmatrix} := \left(\int_{\Omega_j} \delta_j n^{(j)}_1 \varphi^{(1)} x ds, \int_{\Omega_j} \delta_j n^{(j)}_2 \varphi^{(2)} x ds, \int_{\Omega_j} \delta_j n^{(j)}_3 \varphi^{(3)} x ds \right),
\]

we have

\[
\sum_{F^{ij} \subset \partial \Omega_i} \sum_{x \in F^{ij}_h} \begin{pmatrix} a, b, c \end{pmatrix} \begin{pmatrix} \phi^{(i)}_1 - \phi^{(j)}_1(x) \\ \phi^{(i)}_2 - \phi^{(j)}_2(x) \\ \phi^{(i)}_3 - \phi^{(j)}_3(x) \end{pmatrix} = U^T B_B u_B = 0,
\]

where \(\sum_{F^{ij} \subset \partial \Omega_i} \sum_{x \in F^{ij}_h} \left(\int_{\Omega_j} \delta_j n^{(j)}_1 \varphi^{(1)} x ds, \int_{\Omega_j} \delta_j n^{(j)}_2 \varphi^{(2)} x ds, \int_{\Omega_j} \delta_j n^{(j)}_3 \varphi^{(3)} x ds \right) \) builds one row in \(U^T \). Hence, the zero net flux condition for the face terms can be enforced by one constraint for each subdomain.

Note, that the traditional strategy, as e.g., known from [13, 35, 42, 41], is to enforce a stronger condition, i.e., a single constraint for each face. Instead of ensuring the sum over all face contributions belonging to one subdomain to be zero, we force each additive term to be zero independently. Then, we obtain one constraint for each face, such that

\[
\sum_{x \in F^{ij}_h} \begin{pmatrix} a, b, c \end{pmatrix} \begin{pmatrix} \phi^{(i)}_1 - \phi^{(j)}_1(x) \\ \phi^{(i)}_2 - \phi^{(j)}_2(x) \\ \phi^{(i)}_3 - \phi^{(j)}_3(x) \end{pmatrix} = 0,
\]

which also satisfies the zero net flux condition.

Obviously, summing up the face contributions result in a smaller coarse space.

4.2 Zero Net Flux for Edge Terms

The zero net flux condition for the face terms is always enforced by projector preconditioning. For the edge terms we consider two possibilities to establish the zero net flux. Using the concept of a transformation of basis with partial assembly will work as well as expected from the theory. But using projector preconditioning, we obtain a good condition number only by enforcing a stronger condition; cf. Section 4.2.2.
4.2.1 Transformation of Basis

To enforce edge averages as primal constraints and hence the zero net flux condition for edges, i.e., edge averages in each component and direction of the displacement, we use a transformation of basis with partial assembly. In contrast to the well-known concept of transformation of basis with partial assembly for linear shape functions, see e.g., [37, 30], we use quadratic shape functions. The difference results in the values of the entries in the transformation matrix; see Figures 4.2 and 4.3.

We consider one edge of the reference element $[-1,1]^3$, i.e., three shape functions corresponding to the three nodes on that edge. Here, we consider the nodes $P_1 = (-1,-1,-1)$, $P_2 = (-1,0,-1)$, $P_3 = (-1,1,-1)$, where P_1 and P_3 are the endpoints and P_2 is the midpoint of an edge of the reference element. We integrate the corresponding shape functions over this edge, i.e.,

$$\int_{-1}^{1} \varphi_1 \, dy = \frac{1}{2} \int_{-1}^{1} y^2 - y \, dy = \frac{1}{6}$$

$$\int_{-1}^{1} \varphi_2 \, dy = \frac{1}{2} \int_{-1}^{1} 1 - y^2 \, dy = \frac{2}{3}$$

$$\int_{-1}^{1} \varphi_3 \, dy = \frac{1}{2} \int_{-1}^{1} y + y^2 \, dy = \frac{1}{6}$$

By assembly of the element edges, we obtain a weight of $2/3$ to $1/3$ from the midpoints to the endpoints of the element edges; see Figure 4.3.

Figure 4.2:

Transformation of basis for P_1. Weights for element edges and the result after assembling.

This means, in our transformation matrix, we set $1/3$ for the endpoints of the element edges and $2/3$ as the value for the midpoints of element edges. Using this transformation of
basis, we automatically enforce the zero net flux condition for each edge in each direction of the displacement.

\[\begin{array}{c}
\frac{1}{6} \\
\frac{2}{3} \\
\frac{1}{6}
\end{array} + \begin{array}{c}
\frac{1}{6} \\
\frac{2}{3} \\
\frac{1}{6}
\end{array} \]

\[\begin{array}{c}
\frac{1}{6} \\
\frac{2}{3} \\
\frac{1}{6}
\end{array} \times \begin{array}{c}
\frac{1}{6} \\
\frac{2}{3} \\
\frac{1}{6}
\end{array} = \begin{array}{c}
\frac{1}{6} \\
\frac{2}{3} \\
\frac{1}{6}
\end{array} \]

Transformation of basis for P_2. Weights for element edges and the result after assembling.

4.2.2 Projector Preconditioning

In a second approach we establish the zero net flux condition for the edge terms by projector preconditioning. For simplicity, we first consider one edge and one jump direction, i.e., the jump between Ω_i and Ω_k; cf. Figure 4.4. Then,

\[
\int_{\partial \Omega_i} \left[I_h \left(\theta_{E_{ik}} \delta^1_k \left(w^{(i)} - w^{(k)} \right) \right) \right] \cdot n \, ds
= \int_{\partial \Omega_i} \sum_{x \in E_{ik}} \delta^1_k \left(w^{(i)} - w^{(k)} \right) (x) \varphi_x \cdot n \, ds
= \sum_{x \in E_{ik}} \int_{\partial \Omega_i} \delta^1_k \left(\begin{array}{c}
w^{(i)} - w^{(k)} (x) \\
w_2^{(i)} - w_2^{(k)} (x) \\
w_3^{(i)} - w_3^{(k)} (x)
\end{array} \right) \cdot \left(\begin{array}{c}
\varphi_x^{(1)} \\
\varphi_x^{(2)} \\
\varphi_x^{(3)}
\end{array} \right) \, ds
= \sum_{x \in E_{ik}} \int_{\partial \Omega_i} \delta^1_k n_1 \left(w^{(i)} - w^{(k)} \right) (x) \varphi_x^{(1)} \, ds + \int_{\partial \Omega_i} \delta^1_k n_2 \left(w_2^{(i)} - w_2^{(k)} \right) (x) \varphi_x^{(2)} \, ds + \int_{\partial \Omega_i} \delta^1_k n_3 \left(w_3^{(i)} - w_3^{(k)} \right) (x) \varphi_x^{(3)} \, ds.
\]

Again the integrals only have a nonzero value in the intersection of $\partial \Omega_i$ with the support of φ_x. It is $\text{supp}(\varphi_x) \subset \Omega_i \cup \Omega_j \cup \Omega_k \cup \Omega_l$ for all $x \in E_{ik}$ since each subdomain contains one element; see Figure 4.4. Therefore, $\partial \Omega_i \cap \text{supp}(\varphi_x) \subset F^{ij} \cup F^{il}$ for the jump between Ω_i and Ω_k. And we have, for one component
Thus, for all three components of a single jump, we obtain

$$\sum_{x \in E_{ik}} \int_{\partial \Omega_i} \delta_{k}^{(1)} n_1^{(j)} \left(w^{(i)} - w^{(k)} \right) (x) \varphi_x^{(1)} \, ds + \int_{\partial \Omega_i} \delta_{k}^{(1)} n_1^{(l)} \left(w^{(i)} - w^{(k)} \right) (x) \varphi_x^{(1)} \, ds$$

$$+ \int_{\partial \Omega_i} \delta_{k}^{(1)} n_1^{(j)} \left(w^{(i)} - w^{(k)} \right) (x) \varphi_x^{(2)} \, ds + \int_{\partial \Omega_i} \delta_{k}^{(1)} n_1^{(l)} \left(w^{(i)} - w^{(k)} \right) (x) \varphi_x^{(2)} \, ds$$

$$+ \int_{\partial \Omega_i} \delta_{k}^{(1)} n_1^{(j)} \left(w^{(i)} - w^{(k)} \right) (x) \varphi_x^{(3)} \, ds + \int_{\partial \Omega_i} \delta_{k}^{(1)} n_1^{(l)} \left(w^{(i)} - w^{(k)} \right) (x) \varphi_x^{(3)} \, ds.$$
To simplify our notation, we define

\[A := \int_{F_{ij}} \delta^\dagger_j n_3^{(j)} (w_3^{(i)} - w_3^{(j)}) (x) \varphi_x^{(3)} \, ds + \int_{F_{ij}} \delta^\dagger_j n_3^{(l)} (w_3^{(i)} - w_3^{(j)}) (x) \varphi_x^{(3)} \, ds \]

\[+ \int_{F_{ij}} \delta^\dagger_k n_1^{(j)} (w_1^{(i)} - w_1^{(k)}) (x) \varphi_x^{(1)} \, ds + \int_{F_{ij}} \delta^\dagger_k n_1^{(l)} (w_1^{(i)} - w_1^{(k)}) (x) \varphi_x^{(1)} \, ds \]

\[+ \int_{F_{ij}} \delta^\dagger_k n_2^{(j)} (w_2^{(i)} - w_2^{(k)}) (x) \varphi_x^{(2)} \, ds + \int_{F_{ij}} \delta^\dagger_k n_2^{(l)} (w_2^{(i)} - w_2^{(k)}) (x) \varphi_x^{(2)} \, ds \]

\[+ \int_{F_{ij}} \delta^\dagger_k n_3^{(j)} (w_3^{(i)} - w_3^{(k)}) (x) \varphi_x^{(3)} \, ds + \int_{F_{ij}} \delta^\dagger_k n_3^{(l)} (w_3^{(i)} - w_3^{(k)}) (x) \varphi_x^{(3)} \, ds \]

\[+ \int_{F_{ij}} \delta^\dagger_l n_1^{(j)} (w_1^{(i)} - w_1^{(l)}) (x) \varphi_x^{(1)} \, ds + \int_{F_{ij}} \delta^\dagger_l n_1^{(l)} (w_1^{(i)} - w_1^{(l)}) (x) \varphi_x^{(1)} \, ds \]

\[+ \int_{F_{ij}} \delta^\dagger_l n_2^{(j)} (w_2^{(i)} - w_2^{(l)}) (x) \varphi_x^{(2)} \, ds + \int_{F_{ij}} \delta^\dagger_l n_2^{(l)} (w_2^{(i)} - w_2^{(l)}) (x) \varphi_x^{(2)} \, ds \]

\[+ \int_{F_{ij}} \delta^\dagger_l n_3^{(j)} (w_3^{(i)} - w_3^{(l)}) (x) \varphi_x^{(3)} \, ds + \int_{F_{ij}} \delta^\dagger_l n_3^{(l)} (w_3^{(i)} - w_3^{(l)}) (x) \varphi_x^{(3)} \, ds. \]

To simplify our notation, we define

\[
A := \int_{F_{ij}} \delta_j n_1^{(j)} \varphi_x^{(1)} \, ds + \int_{F_{ij}} \delta_j n_1^{(l)} \varphi_x^{(1)} \, ds, \\
B := \int_{F_{ij}} \delta_j n_2^{(j)} \varphi_x^{(2)} \, ds + \int_{F_{ij}} \delta_j n_2^{(l)} \varphi_x^{(2)} \, ds, \\
C := \int_{F_{ij}} \delta_j n_3^{(j)} \varphi_x^{(3)} \, ds + \int_{F_{ij}} \delta_j n_3^{(l)} \varphi_x^{(3)} \, ds, \\
D := \int_{F_{ij}} \delta_k n_1^{(j)} \varphi_x^{(1)} \, ds + \int_{F_{ij}} \delta_k n_1^{(l)} \varphi_x^{(1)} \, ds, \\
E := \int_{F_{ij}} \delta_k n_2^{(j)} \varphi_x^{(2)} \, ds + \int_{F_{ij}} \delta_k n_2^{(l)} \varphi_x^{(2)} \, ds, \\
F := \int_{F_{ij}} \delta_k n_3^{(j)} \varphi_x^{(3)} \, ds + \int_{F_{ij}} \delta_k n_3^{(l)} \varphi_x^{(3)} \, ds, \\
G := \int_{F_{ij}} \delta_l n_1^{(j)} \varphi_x^{(1)} \, ds + \int_{F_{ij}} \delta_l n_1^{(l)} \varphi_x^{(1)} \, ds, \\
H := \int_{F_{ij}} \delta_l n_2^{(j)} \varphi_x^{(2)} \, ds + \int_{F_{ij}} \delta_l n_2^{(l)} \varphi_x^{(2)} \, ds, \\
J := \int_{F_{ij}} \delta_l n_3^{(j)} \varphi_x^{(3)} \, ds + \int_{F_{ij}} \delta_l n_3^{(l)} \varphi_x^{(3)} \, ds.
\]

Then, the zero net flux condition results in one constraint for each subdomain, i.e.,

\[
\begin{pmatrix} A, B, C \end{pmatrix} \left(\begin{array}{c} w_1^{(i)} - w_1^{(j)} (x) \\ w_2^{(i)} - w_2^{(j)} (x) \\ w_3^{(i)} - w_3^{(j)} (x) \end{array} \right)
\]
\[+ \left(D, E, F \right) \begin{pmatrix}
\left(w_1^{(i)} - w_1^{(j)} \right)(x) \\
\left(w_2^{(i)} - w_2^{(j)} \right)(x) \\
\left(w_3^{(i)} - w_3^{(j)} \right)(x)
\end{pmatrix}
\]

\[+ \left(G, H, J \right) \begin{pmatrix}
\left(w_1^{(i)} - w_1^{(j)} \right)(x) \\
\left(w_2^{(i)} - w_2^{(j)} \right)(x) \\
\left(w_3^{(i)} - w_3^{(j)} \right)(x)
\end{pmatrix}
\]

\[= \left(A, B, C, D, E, F, G, H, J \right) \begin{pmatrix}
\left(w_1^{(i)} - w_1^{(j)} \right)(x) \\
\left(w_2^{(i)} - w_2^{(j)} \right)(x) \\
\left(w_3^{(i)} - w_3^{(j)} \right)(x)
\end{pmatrix} .
\]

It should be sufficient to establish the zero net flux condition (4.1) for the edge terms by one single constraint. But so far the numerical results do not correspond to this, i.e., the tests result in a large condition number.

Enforcing a stronger condition, i.e., enforcing each face integral to be zero, results in

\[
\begin{pmatrix}
\int_{\Gamma_{ij}} \delta_j^i n_1^{(i)} \varphi_1^{(1)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_2^{(i)} \varphi_2^{(1)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_3^{(i)} \varphi_3^{(1)} \, ds \\
\int_{\Gamma_{ij}} \delta_j^i n_1^{(i)} \varphi_1^{(2)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_2^{(i)} \varphi_2^{(2)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_3^{(i)} \varphi_3^{(2)} \, ds \\
\int_{\Gamma_{ij}} \delta_j^i n_1^{(i)} \varphi_1^{(3)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_2^{(i)} \varphi_2^{(3)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_3^{(i)} \varphi_3^{(3)} \, ds
\end{pmatrix}
\begin{pmatrix}
\left(w_1^{(i)} - w_1^{(j)} \right)(x) \\
\left(w_2^{(i)} - w_2^{(j)} \right)(x) \\
\left(w_3^{(i)} - w_3^{(j)} \right)(x)
\end{pmatrix}
\]

\[
\begin{pmatrix}
\int_{\Gamma_{ij}} \delta_j^i n_1^{(i)} \varphi_1^{(1)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_2^{(i)} \varphi_2^{(1)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_3^{(i)} \varphi_3^{(1)} \, ds \\
\int_{\Gamma_{ij}} \delta_j^i n_1^{(i)} \varphi_1^{(2)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_2^{(i)} \varphi_2^{(2)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_3^{(i)} \varphi_3^{(2)} \, ds \\
\int_{\Gamma_{ij}} \delta_j^i n_1^{(i)} \varphi_1^{(3)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_2^{(i)} \varphi_2^{(3)} \, ds, & \int_{\Gamma_{ij}} \delta_j^i n_3^{(i)} \varphi_3^{(3)} \, ds
\end{pmatrix}
\begin{pmatrix}
\left(w_1^{(i)} - w_1^{(j)} \right)(x) \\
\left(w_2^{(i)} - w_2^{(j)} \right)(x) \\
\left(w_3^{(i)} - w_3^{(j)} \right)(x)
\end{pmatrix}
\]
\[
\begin{align*}
 &\left(\begin{array}{ccc}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3
 \end{array}\right) \begin{pmatrix}
 w_1^{(i)} - w_1^{(j)}(x) \\
 w_2^{(i)} - w_2^{(j)}(x) \\
 w_3^{(i)} - w_3^{(j)}(x)
 \end{pmatrix} + \left(\begin{array}{ccc}
 c_1 & c_2 & c_3 \\
 d_1 & d_2 & d_3
 \end{array}\right) \begin{pmatrix}
 w_1^{(i)} - w_1^{(k)}(x) \\
 w_2^{(i)} - w_2^{(k)}(x) \\
 w_3^{(i)} - w_3^{(k)}(x)
 \end{pmatrix} \\
 + \left(\begin{array}{ccc}
 e_1 & e_2 & e_3 \\
 f_1 & f_2 & f_3
 \end{array}\right) \begin{pmatrix}
 w_1^{(i)} - w_1^{(l)}(x) \\
 w_2^{(i)} - w_2^{(l)}(x) \\
 w_3^{(i)} - w_3^{(l)}(x)
 \end{pmatrix}
\end{align*}
\]

this means, here we have six constraints for each edge. Note, that by enforcing this stronger constraints the zero net flux condition for edge terms is also satisfied.

For our numerical results we use the implementation of six constraints for each edge.
The outer normals belonging to one edge span the corresponding normal space.

4.3 Numerical Results

For all tests we use the following parameter setting. The domain Ω is discretized by statically condensed $Q_2 - P_0$ mixed finite elements. We consider an almost incompressible material on the whole domain Ω, i.e., $\nu = 0.499999$ and $E = 210$. Dirichlet boundary conditions are used on $\partial \Omega$ and all vertices are chosen as primal constraints. To establish the zero net flux condition for the face terms we always use projector preconditioning, as described in Section 4.1. For the edge terms, we use on the one hand the transformation of basis, see Section 4.3.1, and on the other hand we use projector preconditioning, i.e., six constraints for each edge; see Section 4.3.2.

4.3.1 Edges by Transformation of Basis

The zero net flux condition for edges is established using a transformation of basis, see Section 4.2.1, and for the face constraints we use projector preconditioning as described in Section 4.1. We run all tests on the one hand with one constraint for each subdomain, i.e., we sum up all face contributions belonging to one subdomain, and on the other hand also using all face constraints as several constraints, which enforces a stronger condition. Using this stronger condition it is not surprising, that the condition number is slightly better.
In the first set of tests, we increase the number of elements, while having a constant number of subdomains, i.e., $N = 27$; see Table 4.1. We observe only a slight difference in the condition number, but we save 50% of constraints when using our new coarse space, i.e., summing up the face contributions. Here, our stopping criterion for the cg method is the relative reduction of the preconditioned residual to $1e-14$. We have chosen a very small tolerance in order to obtain an accurate eigenvalue estimate. A least square fit of the condition number estimates with a quadratic polynomial in $\log(H/h)$ confirms our theoretical condition number estimate of $C \cdot (1 + \log(H/h))^2$; see Fig. 4.8.

Table 4.1: Growing H/h, $1/H = 3$

<table>
<thead>
<tr>
<th>H/h</th>
<th>New Coarse Space (# constraints: 27)</th>
<th>Standard Coarse Space (# constraints: 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># iterations</td>
<td>condition</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>2.2118</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>3.2485</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>3.9686</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>4.6184</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>5.2073</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>5.7442</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>6.2369</td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>6.6920</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>7.1150</td>
</tr>
</tbody>
</table>

For a fixed decomposition in $3 \times 3 \times 3$ subdomains, we increase the number of elements in each direction in each subdomain.

In Table 4.2 we have the results for the weak scaling, i.e., we increase the number of subdomains from 8 to 1000, but the number of elements in each direction in each subdomain is fixed to $H/h = 3$. The condition number does not vary significantly and for an increasing number of subdomains the new approach is increasingly advantageous; cf. Figure 4.6. Here and for the following results, our stopping criterion for the cg method is the relative reduction of the preconditioned residual to $1e-10$.

In the next set of experiments, we consider a variable incompressibility on the whole domain, i.e., we vary the Poisson ratio from $\nu = 0.3$ up to $\nu = 0.4999999999$. We fix the number of subdomains to $N = 27$; in Table 4.3 we choose $H/h = 5$ elements in each direction in each subdomain, in contrast to Table 4.4, where we use $H/h = 8$ elements in each direction of each
Table 4.2: Growing $1/H$ - weak scaling

<table>
<thead>
<tr>
<th>$1/H$</th>
<th>New Coarse Space</th>
<th>Standard Coarse Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(# constr.</td>
<td># its</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>216</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>343</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>512</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>729</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>20</td>
</tr>
</tbody>
</table>

For a fixed number of elements in each direction in each subdomain, i.e., $H/h = 3$, we vary the number of subdomains from 8 to 1000. For an increasing number of subdomains the new approach generates increasingly higher savings; see also Figure 4.6.

subdomain. The condition number is bounded independently of the almost incompressibility in the domain.

In comparison to Chapter 3, we now consider a possible dependency on the thickness of a hull which has a different material parameter. We choose Young’s modulus $E = 210$ on the whole domain and for the Poisson ratio $\nu = 0.3$ in the inclusions and $\nu = 0.499999$ on the hulls, conversely to the parameter settings in the previous chapter. For a fixed number of elements, i.e., once $H/h = 11$, once $H/h = 7$ and for a fixed number of 27 subdomains, we vary the thickness of the almost incompressible hull. We cannot observe a dependency of the condition number on the thickness of the hulls in the numerical results.
Table 4.3: Growing ν, $H/h = 5$, $1/H = 3$

<table>
<thead>
<tr>
<th>ν</th>
<th>New Coarse Space</th>
<th>Standard Coarse Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(=one constraint for each subdomain)</td>
<td>(=one constraint for each face)</td>
</tr>
<tr>
<td></td>
<td># constraints: 27</td>
<td># constraints: 54</td>
</tr>
<tr>
<td>0.3</td>
<td>16</td>
<td>3.4224</td>
</tr>
<tr>
<td>0.4</td>
<td>16</td>
<td>3.3552</td>
</tr>
<tr>
<td>0.49</td>
<td>17</td>
<td>3.7324</td>
</tr>
<tr>
<td>0.499</td>
<td>18</td>
<td>3.8820</td>
</tr>
<tr>
<td>0.4999</td>
<td>18</td>
<td>3.8991</td>
</tr>
<tr>
<td>0.49999</td>
<td>18</td>
<td>3.9009</td>
</tr>
<tr>
<td>0.499999</td>
<td>18</td>
<td>4.1788</td>
</tr>
<tr>
<td>0.4999999</td>
<td>18</td>
<td>4.6146</td>
</tr>
<tr>
<td>0.49999999</td>
<td>18</td>
<td>4.6170</td>
</tr>
<tr>
<td>0.499999999</td>
<td>19</td>
<td>4.6183</td>
</tr>
<tr>
<td>0.4999999999</td>
<td>19</td>
<td>4.6184</td>
</tr>
</tbody>
</table>

For a fixed number of elements in each direction in each subdomain, i.e., $H/h = 5$, a fixed number of subdomains, i.e., $1/H = 3$, we vary the incompressibility on the whole domain Ω, this means we vary the Poisson ratio from $\nu = 0.3$ up to $\nu = 0.4999999999$.

Table 4.4: Growing ν, $H/h = 8$, $1/H = 3$

<table>
<thead>
<tr>
<th>ν</th>
<th>New Coarse Space</th>
<th>Standard Coarse Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(=one constraint for each subdomain)</td>
<td>(=one constraint for each face)</td>
</tr>
<tr>
<td></td>
<td># constraints: 27</td>
<td># constraints: 54</td>
</tr>
<tr>
<td>ν</td>
<td># iterations</td>
<td>condition</td>
</tr>
<tr>
<td>0.3</td>
<td>20</td>
<td>5.9482</td>
</tr>
<tr>
<td>0.4</td>
<td>19</td>
<td>4.3946</td>
</tr>
<tr>
<td>0.49</td>
<td>21</td>
<td>5.7142</td>
</tr>
<tr>
<td>0.499</td>
<td>21</td>
<td>5.6901</td>
</tr>
<tr>
<td>0.4999</td>
<td>21</td>
<td>6.2180</td>
</tr>
<tr>
<td>0.49999</td>
<td>21</td>
<td>6.2364</td>
</tr>
<tr>
<td>0.499999</td>
<td>22</td>
<td>6.2367</td>
</tr>
<tr>
<td>0.4999999</td>
<td>22</td>
<td>6.2369</td>
</tr>
<tr>
<td>0.49999999</td>
<td>22</td>
<td>6.2369</td>
</tr>
<tr>
<td>0.499999999</td>
<td>22</td>
<td>6.2369</td>
</tr>
</tbody>
</table>

For a fixed number of elements in each direction in each subdomain, i.e., $H/h = 8$, a fixed number of subdomains, i.e., $1/H = 3$, we vary the incompressibility, this means we vary the Poisson ratio from $\nu = 0.3$ up to $\nu = 0.4999999999$.
While increasing the number of subdomains from 8 to 1000 the number of saving constraints increases; data from Table 4.2. The more subdomains we choose, summing up the face contributions ensures a much smaller coarse space.

(a) Least square fit of a polynomial in $\log \left(\frac{H}{h} \right)$ to the data from Table 4.1 (left), new coarse space, i.e., one constraint for each subdomain.

(b) Least square fit of a polynomial in $\log \left(\frac{H}{h} \right)$ to the data from Table 4.1 (right), standard coarse space, i.e., one constraint for each face.
Table 4.5: Growing η

<table>
<thead>
<tr>
<th></th>
<th>New Coarse Space</th>
<th>Standard Coarse Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(=one constraint for each subdomain)</td>
<td>(=one constraint for each face)</td>
</tr>
<tr>
<td></td>
<td># constraints: 27</td>
<td># constraints: 54</td>
</tr>
<tr>
<td>η</td>
<td># iterations</td>
<td>condition</td>
</tr>
<tr>
<td>0</td>
<td>22</td>
<td>7.1655</td>
</tr>
<tr>
<td>h</td>
<td>24</td>
<td>7.5140</td>
</tr>
<tr>
<td>2h</td>
<td>24</td>
<td>7.5196</td>
</tr>
<tr>
<td>3h</td>
<td>24</td>
<td>7.5127</td>
</tr>
<tr>
<td>4h</td>
<td>24</td>
<td>7.5107</td>
</tr>
<tr>
<td>5h</td>
<td>24</td>
<td>7.5103</td>
</tr>
<tr>
<td>6h</td>
<td>24</td>
<td>7.5103</td>
</tr>
<tr>
<td>0</td>
<td>18</td>
<td>4.1834</td>
</tr>
<tr>
<td>h</td>
<td>21</td>
<td>5.7601</td>
</tr>
<tr>
<td>2h</td>
<td>20</td>
<td>5.7462</td>
</tr>
<tr>
<td>3h</td>
<td>20</td>
<td>5.7433</td>
</tr>
</tbody>
</table>

For a fixed number of elements in each direction in each subdomain, i.e., $H/h = 11$ first, in the second part $H/h = 7$, we vary the thickness of the almost incompressible hull.
4.3.2 Edges by Projector Preconditioning

In a second set of tests, we establish the zero net flux condition for faces and edges using projector preconditioning. This means, we use six constraints for each edge and run all tests with one face constraint for each subdomain, i.e., our new coarse space, and also with several face constraints for each subdomain. First we again increase the number of elements in each direction of each subdomain from $H/h = 2$ up to $H/h = 19$; see Table 4.6. We observe only a slight effect in the condition number between the new and the standard coarse space.

<table>
<thead>
<tr>
<th>H/h</th>
<th>New Coarse Space</th>
<th>Standard Coarse Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(=one face constraint for each subdomain + several edge constraints)</td>
<td>(=one constraint for each face + several edge constraints)</td>
</tr>
<tr>
<td># constraints: 243</td>
<td># constraints: 270</td>
<td></td>
</tr>
<tr>
<td># iterations</td>
<td>condition</td>
<td># iterations</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>2.3621</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>4.6805</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>5.9544</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>7.0797</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>8.0883</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>9.0036</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>9.8421</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>10.616</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>11.336</td>
</tr>
</tbody>
</table>

For a fixed decomposition in $3 \times 3 \times 3$ subdomains, we increase the number of elements in each direction in each subdomain. In this case, we have 54 faces and 36 edges.

But, by establishing the edge constraints by projector preconditioning, the condition number is larger than by using a transformation of basis, cf. Table 4.7.

The results for the tests of the weak scaling can be found in Table 4.8. Due to the fact that we have much more edge than face constraints, using the new coarse space has only a small effect; we still need about 90% of the single constraints.
Table 4.7: Comparison

<table>
<thead>
<tr>
<th>H/h</th>
<th># iterations</th>
<th>condition</th>
<th># iterations</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12</td>
<td>2.2118</td>
<td>12</td>
<td>2.3621</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>2.8989</td>
<td>16</td>
<td>4.6805</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>3.4495</td>
<td>18</td>
<td>5.9544</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4.1788</td>
<td>21</td>
<td>7.0797</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>5.2044</td>
<td>22</td>
<td>8.0883</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>5.7437</td>
<td>23</td>
<td>9.0036</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>6.2367</td>
<td>24</td>
<td>9.8421</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>6.6920</td>
<td>25</td>
<td>10.616</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>7.1150</td>
<td>27</td>
<td>11.336</td>
</tr>
</tbody>
</table>

Comparison of the two approaches, both with the new coarse space; stopping criterion $1e-10$ in the cg method.

Figure 4.8: Comparison

(a) Least square fit of a polynomial in $\log\left(\frac{H}{h}\right)$ to the data from Table 4.7 (left), new coarse space and edge constraints established using a transformation of basis.

(b) Least square fit of a polynomial in $\log\left(\frac{H}{h}\right)$ to the data from Table 4.7 (right), new coarse space and edge constraints established using projector preconditioning.
For a fixed number of elements in each direction in each subdomain, i.e., $H/h = 3$, we vary the number of subdomains.
Bibliography

http://dx.doi.org/10.1002/cnm.2504.

